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Preface 

This book illustrates mathematical techniques that a software engineer would 
need to develop a professional-quality 3D graphics engine. Particular attention is 
paid to the derivation of key results in order to provide a complete exposition of 
the subject and to encourage a deep understanding of the mechanics behind the 
mathematical tools used by game programmers. 
 Most of the material in this book is presented in a manner that is independent 
of the underlying 3D graphics system used to render images. We assume that the 
reader is familiar with the basic concepts needed to use a 3D graphics library and 
understands how models are constructed out of vertices and polygons. However, 
the book begins with a short review of the rendering pipeline as it is implemented 
in the OpenGL library. When it becomes necessary to discuss a topic in the con-
text of a 3D graphics library, OpenGL is the one that we choose due to its availa-
bility across multiple platforms. 
 Each chapter ends with a summary of the important equations and formulas 
derived within the text. The summary is intended to serve as a reference tool so 
that the reader is not required to wade through long discussions of the subject 
matter in order to find a single result. There are also several exercises at the end 
of each chapter. The answers to exercises requiring a calculation are given in 
Appendix E. 

What’s New in the Third Edition 

The following list highlights the major changes and additions in the third edition. 
Many minor additions and enhancements have also been made, including updates 
to almost all of the figures in the book. 

■ A discussion of oblique near plane clipping has been added to the view frus-
tum topics covered in Chapter 5. 
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■ Chapter 10 now begins with a discussion of shadow casting set determination 
before going into discussions of shadow generation techniques. 

■ In addition to the stencil shadow algorithm, the shadow mapping technique is 
now covered in Chapter 10. 

■ The discussion of the inertia tensor in Chapter 14 has been expanded. 

■ Chapter 15 has been expanded to include an introduction to cloth simulation 
in addition to its discussion of fluid surface simulation. 

■ A fast method for calculating the sine and cosine functions has been added to 
the beginning of the numerical methods coverage in Chapter 16. 

Contents Overview 

Chapter 1: The Rendering Pipeline. This is a preliminary chapter that provides 
an overview of the rendering pipeline in the context of the OpenGL library. 
Many of the topics mentioned in this chapter are examined in higher detail else-
where in the book, so mathematical discussions are intentionally avoided here. 

Chapter 2: Vectors. This chapter begins the mathematical portion of the book 
with a thorough review of vector quantities and their properties. Vectors are of 
fundamental importance in the study of 3D computer graphics, and we make ex-
tensive use of operations such as the dot product and cross product throughout 
the book. 

Chapter 3: Matrices. An understanding of matrices is another basic necessity of 
3D game programming. This chapter discusses elementary concepts such as ma-
trix representation of linear systems as well as more advanced topics, including 
eigenvectors and diagonalization, which are required later in the book. For com-
pleteness, this chapter goes into a lot of detail to prove various matrix properties, 
but an understanding of those details is not essential when using matrices later in 
the book, so the uninterested reader may skip over the proofs. 

Chapter 4: Transforms. In Chapter 4, we investigate matrices as a tool for per-
forming transformations such as translations, rotations, and scales. We introduce 
the concept of four-dimensional homogeneous coordinates, which are widely 
used in 3D graphics systems to move between different coordinate spaces. We 
also study the properties of quaternions and their usefulness as a transformation 
tool. 
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Chapter 5: Geometry for 3D Engines. It is at this point that we begin to see 
material presented in the previous three chapters applied to practical applications 
in 3D game programming and computer graphics. After analyzing lines and 
planes in 3D space, we introduce the view frustum and its relationship to the vir-
tual camera. This chapter includes topics such as field of view, perspective-
correct interpolation, and projection matrices. 

Chapter 6: Ray Tracing. Ray tracing methods are useful in many areas of game 
programming, including light map generation, line-of-sight determination, and 
collision detection. This chapter begins with analytical and numerical root-
finding techniques, and then presents methods for intersecting rays with common 
geometrical objects. Finally, calculation of reflection and refraction vectors is 
discussed. 

Chapter 7: Lighting and Shading. Chapter 7 discusses a wide range of topics 
related to illumination and shading methods. We begin with an enumeration of 
the different types of light sources and then proceed to simple reflection models. 
Later, we inspect methods for adding detail to rendered surfaces using texture 
maps, gloss maps, and bump maps. The chapter closes with a detailed explana-
tion of the Cook-Torrance physical illumination model. 

Chapter 8: Visibility Determination. The performance of a 3D engine is heavi-
ly dependent on its ability to determine what parts of a scene are visible. This 
chapter presents methods for constructing various types of bounding volumes and 
subsequently testing their visibility against the view frustum. Large-scale visibil-
ity determination enabled through spatial partitioning and the use of portal sys-
tems is also examined. 

Chapter 9: Polygonal Techniques. Chapter 9 presents several techniques in-
volving the manipulation of polygonal models. The first topic covered is decal 
application to arbitrary surfaces and includes a related method for performing 
vertex depth offset. Other topics include billboarding techniques used for various 
special effects, a polygon reduction technique, T-junction elimination, and poly-
gon triangulation. 

Chapter 10: Shadows. This chapter discusses shadow-casting sets and the two 
prominent methods for generating shadows in a real-time application, shadow 
mapping and stencil shadows. The presentation of the stencil shadow algorithm is 
particularly detailed because it draws on several smaller geometric techniques. 
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Chapter 11: Curves and Surfaces. In this chapter, we examine of a broad varie-
ty of cubic curves, including Bézier curves and B-splines. We also discuss how 
concepts pertaining to two-dimensional curves are extended to three-dimensional 
surfaces. 

Chapter 12: Collision Detection. Collision detection is necessary for interaction 
between different objects in a game universe. This chapter presents general 
methods for determining whether moving objects collide with the static environ-
ment and whether they collide with each other. 

Chapter 13: Linear Physics. At this point in the book, we begin a two-chapter 
survey of various topics in classical physics that pertain to the motion that objects 
are likely to exhibit in a 3D game. Chapter 13 begins with a discussion of posi-
tion functions as solutions to second-order differential equations. We then inves-
tigate projectile motion both through empty space and through a resistive medi-
um, and close with a look at frictional forces. 

Chapter 14: Rotational Physics. Chapter 14 continues the treatment of physics 
with a rather advanced exposition on rotation. We first study the forces experi-
enced by an object in a rotating environment. Next, we examine rigid body mo-
tion and derive the relationship between angular velocity and angular momentum 
through the inertia tensor. Also included is a discussion of the oscillatory motion 
exhibited by springs and pendulums. 

Chapter 15: Fluid and Cloth Simulation. We continue with the theme of phys-
ical simulation by presenting a physical model for fluid motion based on the two-
dimensional wave equation and cloth motion based on a spring-damper system. 

Chapter 16: Numerical Methods. The book finishes with an examination of 
numerical techniques for calculating trigonometric functions and solving three 
particular types of problems. We first discuss effective methods for finding the 
solutions to linear systems of any size. Next, we present an iterative technique for 
determining the eigenvalues and eigenvectors of a 3 3  symmetric matrix. Final-
ly, we study methods for approximating the solutions to ordinary differential 
equations. 

Appendix A: Complex Numbers. Although not used extensively, complex 
numbers do appear in a few places in the text. Appendix A reviews the concept 
of complex numbers and discusses the properties that are used elsewhere in the 
book. 
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Appendix B: Trigonometry Reference. Appendix B reviews the trigonometric 
functions and quickly derives many formulas and identities that are used 
throughout this book. 

Appendix C: Coordinate Systems. Appendix C provides a brief overview of 
Cartesian coordinates, cylindrical coordinates, and spherical coordinates. These 
coordinate systems appear in several places throughout the book, but are used 
most extensively in Chapter 14. 

Appendix D: Taylor Series. The Taylor series of various functions are em-
ployed in a number of places throughout the book. Appendix D derives the Tay-
lor series and reviews power series representations for many common functions. 

Appendix E: Answers to Exercises. This appendix contains the answer to every 
exercise in the book having a solution that can be represented by a mathematical 
expression. 

Website and Code Listings 

The official website for this book can be found at the following address: 

 http://www.mathfor3dgameprogramming.com/ 

All of the code listings in the book can be downloaded from this website. Some 
of the listings make use of simple structures such as Triangle and Edge or 
mathematical classes such as Vector3D and Matrix3D. The source code for 
these can also be found on the website. 
 The language used for all code that is intended to run on the CPU is standard 
C++. Vertex shaders and fragment shaders that are intended to run on the GPU 
use the OpenGL Shading Language (GLSL). 

Notational Conventions 

We have been careful to use consistent notation throughout this book. Scalar 
quantities are always represented by italic Roman or Greek letters. Vectors, ma-
trices, and quaternions are always represented by bold letters. A single compo-
nent of a vector, matrix, or quaternion is a scalar quantity, so it is italic. For ex-
ample, the x component of the vector v is written xv . These conventions and other 
notational standards used throughout the book are summarized in the table on the 
next page. 
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Quantity/Operation Notation/Examples 

Scalars Italic letters: x, t, A, ,  

Angles Italic Greek letters: , ,  

Vectors Boldface letters: V, P, x, ω 

Quaternions Boldface letters: q, 1q , 2q  

Matrices Boldface letters: M, P 

RGB Colors Script letters: , , ,   

Magnitude of a vector Double bar: P  

Conjugate of a complex number z or a 
quaternion q 

Overbar: z , q 

Transpose of a matrix Superscript T: TM  

Determinant of a matrix det M or single bars: M  

Time derivative Dot notation:    d
t t

dt
x x  

Binomial coefficient  
!

! !

n n

k k n k
     

 

Floor of x x   

Ceiling of x x   

Fractional part of x  frac x  

Sign of x  
1, if 0

sgn 0, if 0

1, if 0

x

x x

x


 
 

 

Closed interval    , |a b x a x b   
Open interval    , |a b x a x b   
Interval closed at one end and open at 
the other end 

   
   

, |

, |

a b x a x b

a b x a x b

  

  


Set of real numbers 
Set of complex numbers 
Set of quaternions 
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Chapter 1 
The Rendering Pipeline 

This chapter provides a preliminary review of the rendering pipeline. It covers 
general functions, such as vertex transformation and primitive rasterization, 
which are performed by modern 3D graphics hardware. Readers who are familiar 
with these concepts may safely skip ahead. We intentionally avoid mathematical 
discussions in this chapter and instead provide pointers to other parts of the book 
where each particular portion of the rendering pipeline is examined in greater 
detail. 

1.1  Graphics Processors 

A typical scene that is to be rendered as 3D graphics is composed of many sepa-
rate objects. The geometrical forms of these objects are each represented by a set 
of vertices and a particular type of graphics primitive that indicates how the ver-
tices are connected to produce a shape. Figure 1.1 illustrates the ten types of 
graphics primitive defined by the OpenGL library. Graphics hardware is capable 
of rendering a set of individual points, a series of line segments, or a group of 
filled polygons. Most of the time, the surface of a 3D model is represented by a 
list of triangles, each of which references three points in a list of vertices. 
 The usual modern 3D graphics board possesses a dedicated Graphics Pro-
cessing Unit (GPU) that executes instructions independently of the Central Pro-
cessing Unit (CPU). The CPU sends rendering commands to the GPU, which 
then performs the rendering operations while the CPU continues with other tasks. 
This is called asynchronous operation. When geometrical information is submit-
ted to a rendering library such as OpenGL, the function calls used to request the 
rendering operations typically return a significant amount of time before the GPU 
has finished rendering the graphics. The lag time between the submission of a 
rendering command and the completion of the rendering operation does not nor-
mally cause problems, but there are cases when the time at which drawing com- 
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Figure 1.1. The OpenGL library defines ten types of graphics primitive. The numbers 
indicate the order in which the vertices are specified for each primitive type. 

pletes needs to be known. There exist OpenGL extensions that allow the program 
running on the CPU to determine when a particular set of rendering commands 
have finished executing on the GPU. Such synchronization has the tendency to 
slow down a 3D graphics application, so it is usually avoided whenever possible 
if performance is important. 
 An application communicates with the GPU by sending commands to a ren-
dering library, such as OpenGL, which in turn sends commands to a driver that 
knows how to speak to the GPU in its native language. The interface to OpenGL 
is called a Hardware Abstraction Layer (HAL) because it exposes a common set 
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of functions that can be used to render a scene on any graphics hardware that 
supports the OpenGL architecture. The driver translates the OpenGL function 
calls into code that the GPU can understand. A 3D graphics driver usually im-
plements OpenGL functions directly to minimize the overhead of issuing render-
ing commands. The block diagram shown in Figure 1.2 illustrates the communi-
cations that take place between the CPU and GPU. 
 A 3D graphics board has its own memory core, which is commonly called 
VRAM (Video Random Access Memory). The GPU may store any information in 
VRAM, but there are several types of data that can almost always be found in the 
graphics board’s memory when a 3D graphics application is running. Most im-
portantly, VRAM contains the front and back image buffers. The front image 
buffer contains the exact pixel data that is visible in the viewport. The viewport is 
the area of the display containing the rendered image and may be a subregion of 
a window, the entire contents of a window, or the full area of the display. The 

Main MemoryCPU

Application

OpenGL or
DirectX

Graphics
Driver

GPU
Video Memory

Rendering commands
Vertex data
Texture data
Shader parameters

Image
Buffers

Texture
Maps

Vertex
Buffers

Depth/stencil
Buffer

Command buffer

 

Figure 1.2. The communications that take place between the CPU and GPU. 
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back image buffer is the location to which the GPU actually renders a scene. The 
back buffer is not visible and exists so that a scene can be rendered in its entirety 
before being shown to the user. Once an image has been completely rendered, the 
front and back image buffers are exchanged. This operation is called a buffer 
swap and can be performed either by changing the memory address that repre-
sents the base of the visible image buffer or by copying the contents of the back 
image buffer to the front image buffer. The buffer swap is often synchronized 
with the refresh frequency of the display to avoid an artifact known as tearing. 
Tearing occurs when a buffer swap is performed during the display refresh inter-
val, causing the upper and lower parts of a viewport to show data from different 
image buffers. 
 Also stored in VRAM is a block of data called the depth buffer or z-buffer. 
The depth buffer stores, for every pixel in the image buffer, a value that repre-
sents how far away the pixel is or how deep the pixel lies in the image. The depth 
buffer is used to perform hidden surface elimination by only allowing a pixel to 
be drawn if its depth is less than the depth of the pixel already in the image buff-
er. Depth is measured as the distance from the virtual camera through which we 
observe the scene being rendered. The name z-buffer comes from the convention 
that the z axis points directly out of the display screen in the camera’s local coor-
dinate system. (See Section 5.3.) 
 An application may request that a stencil buffer be created along with the 
image buffers and the depth buffer. The stencil buffer contains an integer mask 
for each pixel in the image buffer that can be used to enable or disable drawing 
on a per-pixel basis. The operations that can be performed in the stencil buffer 
are described in Section 1.3, later in this chapter. An advanced application of the 
stencil buffer used to generate real-time shadows is discussed in Chapter 10. 
 For the vast majority of 3D rendering applications, the usage of VRAM is 
dominated by texture maps. Texture maps are images that are applied to the sur-
face of an object to give it greater visual detail. In advanced rendering applica-
tions, texture maps may contain information other than a simple pixel image. For 
instance, a bump map contains vectors that represent varying slopes at different 
locations on an object’s surface. Texture mapping details, including the process 
of bump mapping, are discussed in detail in Chapter 7. 

1.2  Vertex Transformation 

Geometrical data is passed to the graphics hardware in the context of a three-
dimensional space. One of the jobs performed by the graphics hardware is to 
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transform this data into geometry that can be drawn into a two-dimensional 
viewport. There are several different coordinate systems associated with the ren-
dering pipeline—their relationships are shown in Figure 1.3. The vertices of a 
model are typically stored in object space, a coordinate system that is local to the 
particular model and used only by that model. The position and orientation of 
each model are often stored in world space, a global coordinate system that ties 
all of the object spaces together. Before an object can be rendered, its vertices 
must be transformed into camera space (also called eye space), the space in 
which the x and y axes are aligned to the display and the z axis is parallel to the 
viewing direction. (See Section 5.3.) It is possible to transform vertices from ob-
ject space directly into camera space by concatenating the matrices representing 
the transformations from object space to world space and from world space to 
camera space. The product of these transformations is called the model-view 
transformation. 
 Once a model’s vertices have been transformed into camera space, they un-
dergo a projection transformation that has the effect of applying perspective so 
that geometry becomes smaller as the distance from the camera increases. (Pro- 
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Figure 1.3. The coordinate spaces appearing in the rendering pipeline. Vertex positions 
are submitted to the graphics library in object space and are eventually transformed into 
window space for primitive rasterization. 
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jections are discussed in Section 5.5.) The projection is performed in four-
dimensional homogeneous coordinates, described in Section 4.4, and the space in 
which the vertices exist after projection is called homogeneous clip space. Ho-
mogeneous clip space is so named because it is in this space that graphics primi-
tives are clipped to the boundaries of the visible region of the scene, ensuring that 
no attempt is made to render any part of a primitive that falls outside the 
viewport. 
 In homogeneous clip space, vertices have normalized device coordinates. 
The term normalized pertains to the fact that the x, y, and z coordinates of each 
vertex fall in the range  1,1 , but reflect the final positions in which they will 
appear in the viewport. The vertices must undergo one more transformation, 
called the viewport transformation, that maps the normalized coordinates to the 
actual range of pixel coordinates covered by the viewport. The z coordinate is 
usually mapped to the floating-point range  0,1, but this is subsequently scaled to 
the integer range corresponding to the number of bits per pixel utilized by the 
depth buffer. After the viewport transformation, vertex positions are said to lie in 
window space. 
 A graphics processor usually performs several per-vertex calculations in ad-
dition to the transformation from object space to window space. For instance, the 
OpenGL lighting model determines the color and intensity of light reaching each 
vertex and then calculates how much of that is reflected toward the camera. The 
reflected color assigned to each vertex is interpolated over the area of a graphics 
primitive in the manner described in Section 5.4.2. This process is called per-
vertex lighting. More-advanced graphics applications may perform per-pixel 
lighting to achieve highly detailed lighting interactions at every pixel covered by 
a graphics primitive. Per-vertex and per-pixel lighting are discussed in Sec-
tions 7.7 and 7.8. 
 Each vertex may also carry with it one or more sets of texture coordinates. 
Texture coordinates may be explicitly specified by an application or automatical-
ly generated by the GPU. When a graphics primitive is rendered, the texture co-
ordinates are interpolated over the area of the primitive and used to look up col-
ors in a texture map. These colors are then combined with other interpolated data 
at each pixel to determine the final color that appears in the viewport. 

1.3  Rasterization and Fragment Operations 

Once a model’s vertices have been clipped and transformed into window space, 
the GPU must determine what pixels in the viewport are covered by each 
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graphics primitive. The process of filling in the horizontal spans of pixels belong-
ing to a primitive is called rasterization. The GPU calculates the depth, interpo-
lated vertex colors, and interpolated texture coordinates for each pixel. This in-
formation, combined with the location of the pixel itself, is called a fragment. 
 The process through which a graphics primitive is converted to a set of frag-
ments is illustrated in Figure 1.4. An application may specify that face culling be 
performed as the first stage of this process. Face culling applies only to polygonal 
graphics primitives and removes either the polygons that are facing away from 
the camera or those that are facing toward the camera. Ordinarily, face culling is 
employed as an optimization that skips polygons facing away from the camera 
(backfacing polygons) since they correspond to the unseen far side of a model. 
 A graphics application specifies how the fragment data is used to determine 
the final color and final depth of each pixel during rasterization. This process is 
called fragment shading or pixel shading. The final color may simply be given by 
the product of an interpolated vertex color and a value fetched from a texture 
map, or it may be the result of a complex per-pixel lighting calculation. The final 
depth is ordinarily just the unaltered interpolated depth, but advanced 3D 
graphics hardware allows an application to replace the depth with the result of an 
arbitrary calculation. 
 Figure 1.5 illustrates the operations performed for each fragment generated 
during rasterization. Most of these operations determine whether a fragment 
should be drawn to the viewport or discarded altogether. Although these opera-
tions occur logically after fragment shading, most GPUs perform as many tests as 
possible before performing fragment shading calculations to avoid spending time 
figuring out the colors of fragments that will ultimately be discarded. 

Face
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Graphics
primitives

Fragments

Rasterization

Fragment
Shading

Fragment
Operations

 

Figure 1.4. A graphics primitive is converted to a set of fragments during rasterization. 
After shading, fragments undergo the operations shown in Figure 1.5. 
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Figure 1.5. Operations performed before a fragment is written to the image buffer. 

 The first fragment operation performed, and the only one that cannot be disa-
bled, is the pixel ownership test. The pixel ownership test simply determines 
whether a fragment lies in the region of the viewport that is currently visible on 
the display. A possible reason that the pixel ownership test fails is that another 
window is obscuring a portion of the viewport. In this case, fragments falling 
behind the obscuring window are not drawn. 
 Next, the scissor test is performed. An application may specify a rectangle in 
the viewport, called the scissor rectangle, to which rendering should be restrict-
ed. Any fragments falling outside the scissor rectangle are discarded. A particular 
application of the scissor rectangle in the context of the stencil shadow algorithm 
is discussed in Section 10.3.7. 
 If the scissor test passes, a fragment undergoes the alpha test. When the final 
color of a fragment is calculated, an application may also calculate an alpha val-
ue that usually represents the degree of transparency associated with the frag-
ment. The alpha test compares the final alpha value of a fragment to a constant 
value that is preset by the application. The application specifies what relationship 
between the two values (such as less than, greater than, or equal to) causes the 
test to pass. If the relationship is not satisfied, then the fragment is discarded. 
 After the alpha test passes, a fragment moves on to the stencil test. The sten-
cil test reads the value stored in the stencil buffer at a fragment’s location and 
compares it to a value previously specified by the application. The stencil test 
passes only if a specific relationship is satisfied (e.g., the stencil value is equal to 



1.3  Rasterization and Fragment Operations  9 

 

a particular value); otherwise, the stencil test fails, and the fragment is discarded. 
An application is able to specify actions to be taken in the stencil buffer when the 
stencil test passes or fails. Additionally, if the stencil test passes, the value in the 
stencil buffer may be affected in a way that depends on the result of the depth test 
(described next). For instance, an application may choose to increment the value 
in the stencil buffer if the stencil test passes and the depth test fails. This func-
tionality is used extensively by one of the shadow-rendering techniques described 
in Chapter 10. 
 The final test undergone by a fragment is the depth test. The depth test com-
pares the final depth associated with a fragment to the value currently residing in 
the depth buffer. If the fragment’s depth does not satisfy an application-specified 
relationship with the value in the depth buffer, then the fragment is discarded. 
Normally, the depth test is configured so that a fragment passes the depth test 
only if its depth is less than or equal to the value in the depth buffer. When the 
depth test passes, the depth buffer is updated with the depth of the fragment to 
facilitate hidden surface removal for subsequently rendered primitives. 
 Once the pixel ownership test, scissor test, alpha test, stencil test, and depth 
test have all passed, a fragment’s final color is blended into the image buffer. The 
blending operation calculates a new color by combining the fragment’s final col-
or and the color already stored in the image buffer at the fragment’s location. The 
fragment’s alpha value and the alpha value stored in the image buffer may also 
be used to determine the color that ultimately appears in the viewport. The blend-
ing operation may be configured to simply replace the previous color in the im-
age buffer, or it may produce special visual effects such as transparency. 
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Chapter 2 

Vectors 

Vectors are of fundamental importance in any 3D game engine. They are used to 
represent points in space, such as the locations of objects in a game or the verti-
ces of a triangle mesh. They are also used to represent spatial directions, such as 
the orientation of the camera or the surface normals of a triangle mesh. Under-
standing how to manipulate vectors is an essential skill of the successful 3D pro-
grammer. 
 Throughout this book, we encounter vectors of various types, usually repre-
senting two-dimensional, three-dimensional, or four-dimensional quantities. For 
now, we make no distinction between vectors representing points and vectors 
representing directions, nor do we concern ourselves with how vectors are trans-
formed from one coordinate system to another. These topics are extremely im-
portant in 3D engine development, however, and are addressed in Chapter 4. 

2.1  Vector Properties 

We assume that the reader possesses a basic understanding of vectors, but it is 
beneficial to provide a quick review of properties that are used extensively 
throughout this book. Although more abstract definitions are possible, we usually 
restrict ourselves to vectors defined by n-tuples of real numbers, where n is typi-
cally 2, 3, or 4. An n-dimensional vector V can be written as 

 1 2, , , ,nV V V=V   (2.1) 

where the numbers iV  are called the components of the vector V. We have used 
numbered subscripts here, but the components will usually be labeled with the 
name of the axis to which they correspond. For instance, the components of a 
three-dimensional point P could be written as xP , yP , and zP . 
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 The vector V in Equation (2.1) may also be represented by a matrix having a 
single column and n rows: 

 

1

2

n

V
V

V

 
 
 =
 
 
 

V


. (2.2) 

We treat this column vector as having a meaning identical to that of the comma-
separated list of components written in Equation (2.1). Vectors are normally ex-
pressed in these forms, but we sometimes need to express vectors as a matrix 
consisting of a single row and n columns. We write row vectors as the transpose 
of their corresponding column vectors: 

 [ ]T
1 2 nV V V=V  . (2.3) 

 A vector may be multiplied by a scalar to produce a new vector whose com-
ponents retain the same relative proportions. The product of a scalar a and a vec-
tor V is defined as 

 1 2, , , na a aV aV aV= =V V  . (2.4) 

In the case that 1a = − , we use the slightly simplified notation −V to represent the 
negation of the vector V. 
 Vectors add and subtract componentwise. Thus, given two vectors P and Q, 
we define the sum +P Q  as 

 1 1 2 2, , , n nP Q P Q P Q+ = + + +P Q  . (2.5) 

The difference between two vectors, written −P Q, is really just a notational sim-
plification of the sum ( )+ −P Q . 
 With the above definitions in hand, we are now ready to examine some fun-
damental properties of vector arithmetic. 

Theorem 2.1. Given any two scalars a and b, and any three vectors P, Q, and 
R, the following properties hold.  
 
 (a) + = +P Q Q P 
 (b) ( ) ( )+ + = + +P Q R P Q R  
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 (c) ( ) ( )ab a b=P P  
 (d) ( )a a a+ = +P Q P Q 
 (e) ( )a b a b+ = +P P P 

Using the associative and commutative properties of the real numbers, these 
properties are easily verified through direct computation. 
 The magnitude of an n-dimensional vector V is a scalar denoted by V  and is 
given by the formula 

 2

1

n

i
i

V
=

= V . (2.6) 

The magnitude of a vector is also sometimes called the norm or the length of a 
vector. A vector having a magnitude of exactly one is said to have unit length, or 
may simply be called a unit vector. When V represents a three-dimensional point 
or direction, Equation (2.6) can be written as 

 2 2 2
x y zV V V= + +V . (2.7) 

 A vector V having at least one nonzero component can be resized to unit 
length through multiplication by 1 V . This operation is called normalization and 
is used often in 3D graphics. It should be noted that the term to normalize is in no 
way related to the term normal vector, which refers to a vector that is perpen-
dicular to a surface at a particular point. 
 The magnitude function given in Equation (2.6) obeys the following rules. 

Theorem 2.2. Given any scalar a and any two vectors P and Q, the following 
properties hold.  
 
 (a) 0≥P  
 (b) 0=P  if and only if 0,0, ,0=P    
 (c) a a=P P  
 (d) + ≤ +P Q P Q  

Proof. 

(a) This follows from the fact that the radicand in Equation (2.6) is a sum of 
squares, which cannot be less than zero. 
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P

QP + Q

 
Figure 2.1. The triangle inequality states that + ≤ +P Q P Q . Geometrically, this 
follows from the fact that the length of one side of a triangle can be no longer than the 
sum of the lengths of the other two sides. 

(b) Suppose that 0,0, ,0=P  . Then the radicand in Equation (2.6) evaluates to 
zero, so 0=P . Conversely, if we assume 0=P , then each component of P 
must be zero, since otherwise the sum in Equation (2.6) would be a positive 
number. 

(c) Evaluating Equation (2.6), we have the following. 

 

2 2

1

2 2

1

2

1

n

i
i

n

i
i

n

i
i

a a P

a P

a P

a

=

=

=

=

=

=

=







P

P  (2.8) 

(d) This is known as the triangle inequality since a geometric proof can be given 
if we treat P and Q as two sides of a triangle. As shown in Figure 2.1, +P Q  
forms the third side of the triangle, which cannot have a length greater than 
the sum of the other two sides.  

 We will be able to give an algebraic proof of the triangle inequality after in-
troducing the dot product in the next section. 
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2.2  The Dot Product 

The dot product of two vectors, also known as the scalar product or inner prod-
uct, is one of the most heavily used operations in 3D graphics because it supplies 
a measure of the difference between the directions in which the two vectors 
point. 

Definition 2.3. The dot product of two n-dimensional vectors P and Q, written 
as ⋅P Q, is the scalar quantity given by the formula  
 

 
1

n

i i
i

PQ
=

⋅ =P Q .  (2.9) 

This definition states that the dot product of two vectors is given by the sum of 
the products of each component. In three dimensions, we have 

 x x y y z zP Q P Q P Q⋅ = + +P Q . (2.10) 

The dot product ⋅P Q may also be expressed as the matrix product 

 [ ]

1

2T
1 2 n

n

Q
Q

P P P

Q

 
 
 =
 
 
 

P Q 


, (2.11) 

which yields a 1 1×  matrix (i.e., a scalar) whose single entry is equal to the sum in 
Equation (2.9). 
 Now for an important theorem that reveals the ubiquitous utility of the dot 
product. 

Theorem 2.4. Given two n-dimensional vectors P and Q, the dot product ⋅P Q 
satisfies the equation  
 
  cosα⋅ =P Q P Q , (2.12) 
 
where α is the planar angle between the lines connecting the origin to the points 
represented by P and Q. 
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Figure 2.2. The dot product is related to the angle between two vectors by the equation 

cosα⋅ =P Q P Q . 

Proof. Let α be the angle between the vectors P and Q, as shown in Figure 2.2. 
By the law of cosines (see Appendix B, Section B.6), we know 

 2 2 2 2 cosα− = + −P Q P Q P Q . (2.13) 

This expands to 

 ( ) 2 2 2

1 1 1
2 cos

n n n

i i i i
i i i

P Q P Q α
= = =

− = + −   P Q . (2.14) 

All the 2
iP  and 2

iQ  terms cancel, and we are left with 

 
1

2 2 cos
n

i i
i

PQ α
=

− = − P Q . (2.15) 

Dividing both sides by 2−  gives us the desired result.  

 A couple of important facts follow immediately from Theorem 2.4. The first 
is that two vectors P and Q are perpendicular if and only if 0⋅ =P Q . This follows 
from the fact that the cosine function is zero at an angle of 90 degrees. Vectors 
whose dot product yields zero are called orthogonal. We define the zero vector, 

0,0, ,0≡0  , to be orthogonal to every vector P, since ⋅0 P always equals zero. 
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QQ

Q

Q

Q

0⋅ >P Q

0⋅ <P Q  
Figure 2.3. The sign of the dot product tells us whether two vectors lie on the same side 
or on opposite sides of a plane. 

 The second fact is that the sign of the dot product tells us how close two vec-
tors are to pointing in the same direction. Referring to Figure 2.3, we can consid-
er the plane passing through the origin and perpendicular to a vector P. Any vec-
tor lying on the same side of the plane as P yields a positive dot product with P, 
and any vector lying on the opposite side of the plane from P yields a negative 
dot product with P. 
 Several additional properties of the dot product are presented by the follow-
ing theorem. 

Theorem 2.5. Given any scalar a and any three vectors P, Q, and R, the fol-
lowing properties hold.  
 
 (a) ⋅ = ⋅P Q Q P 
 (b) ( ) ( )a a⋅ = ⋅P Q P Q  
 (c) ( )⋅ + = ⋅ + ⋅P Q R P Q P R 
 (d) 2⋅ =P P P  
 (e) ⋅ ≤P Q P Q  

Proof. Parts (a), (b), and (c) are easily verified using the associative and commu-
tative properties of the real numbers. Part (d) follows directly from the definition 
of P  given in Equation (2.6) and the definition of the dot product given in Equa-
tion (2.9). Part (e) is implied by Theorem 2.4 since cos 1α ≤ .  
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 We use the notation 2P  when we take the dot product of a vector P with it-
self. Thus, by part (d) of Theorem 2.5, we can say that ⋅P P, 2P , and 2P  all have 
identical meanings. We use italics instead of boldface in the expression 2P  be-
cause it is a scalar quantity. 
 Part (e) of Theorem 2.5 is known as the Cauchy-Schwarz inequality and 
gives us a tool that we can use to provide the following algebraic proof of the 
triangle inequality. 

Proof of Theorem 2.2(d). (Triangle Inequality) Beginning with 2+P Q , we can 
calculate 

 

( )

( )

2

2 2

2 2

2

( )

2
2

,

+ = + ⋅ +

= + + ⋅
≤ + +

= +

P Q P Q P Q

P Q P Q

P Q P Q

P Q  (2.16) 

where Theorem 2.5(e) has been used to attain the inequality. Taking square roots, 
we arrive at the desired result.  

 The situation often arises in which we need to decompose a vector P into 
components that are parallel and perpendicular to another vector Q. As shown in 
Figure 2.4, if we think of the vector P as the hypotenuse of a right triangle, then 
the perpendicular projection of P onto the vector Q produces the side adjacent to 
the angle α between P and Q. 
 Basic trigonometry tells us that the length of the side adjacent to α is given 
by cosαP . Theorem 2.4 gives us a way to calculate the same quantity without 
knowing the angle α: 

 cosα ⋅= P Q
P

Q
. (2.17) 

To obtain a vector that has this length and is parallel to Q, we simply multiply by 
the unit vector Q Q . We now have the following formula for the projection of P 
onto Q, which we denote by projQ P. 

 2proj ⋅=Q
P Q

P Q
Q

 (2.18) 
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P

Q
α

⋅P Q
Q  

Figure 2.4. The length of the projection of the vector P onto the vector Q is given by 
⋅P Q Q  because cosα⋅ =P Q P Q . 

The perpendicular component of P with respect to Q, denoted by perpQ P, is 
simply the vector left over when we subtract away the parallel component given 
by Equation (2.18) from the original vector P: 

 2

perp proj= −
⋅= −

Q QP P P

P Q
P Q

Q
. (2.19) 

 The projection of P onto Q is a linear transformation of P and can thus be 
expressed as a matrix-vector product. In three dimensions, projQ P can be com-
puted using the alternative formula 

 

2

2
2

2

1proj
x x y x z x

x y y y z y

x z y z z z

Q Q Q Q Q P
Q Q Q Q Q P
Q Q Q Q Q P

   
   =    
      

Q P
Q

. (2.20) 

2.3  The Cross Product 

The cross product of two three-dimensional vectors, also known as the vector 
product, returns a new vector that is perpendicular to both of the vectors being 
multiplied together. This property has many uses in computer graphics, one of 
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which is a method for calculating a surface normal at a particular point given two 
distinct tangent vectors. 

Definition 2.6. The cross product of two 3D vectors P and Q, written as ×P Q, 
is a vector quantity given by the formula  
 
 , ,y z z y z x x z x y y xP Q P Q P Q P Q P Q P Q× = − − −P Q . (2.21) 

A commonly used tool for remembering this formula is to calculate cross prod-
ucts by evaluating the pseudodeterminant 

 x y z

x y z

P P P
Q Q Q

× =
i j k

P Q , (2.22) 

where i, j, and k are unit vectors parallel to the x, y, and z axes: 

 

1,0,0
0,1,0
0,0,1

=
=
=

i

j

k . (2.23) 

We call the right side of Equation (2.22) a pseudodeterminant because the top 
row of the matrix consists of vectors, whereas the remaining entries are scalars. 
Nevertheless, the usual method for evaluating a determinant does produce the 
correct value for the cross product, as shown below. 

 ( ) ( ) ( )x y z y z z y x z z x x y y x

x y z

P P P P Q P Q P Q P Q P Q P Q
Q Q Q

= − − − + −
i j k

i j k  (2.24) 

The cross product ×P Q can also be expressed as a linear transformation derived 
from P that operates on Q as follows. 

 
0

0
0

z y x

z x y

y x z

P P Q
P P Q
P P Q

−   
   × = −   
   −   

P Q  (2.25) 
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 As mentioned previously, the cross product ×P Q produces a vector that is 
perpendicular to both of the vectors P and Q. This fact is summarized by the fol-
lowing theorem. 

Theorem 2.7. Let P and Q be any two 3D vectors. Then ( ) 0× ⋅ =P Q P  and 
( ) 0× ⋅ =P Q Q . 

Proof. Applying the definitions of the cross product and the dot product, we have 
the following for ( )× ⋅P Q P: 

 

( ) , ,

0.

y z z y z x x z x y y x

x y z x z y y z x x y z x z y y z x

P Q P Q P Q P Q P Q P Q
P P Q P P Q P P Q P P Q P P Q P P Q

× ⋅ = − − − ⋅
= − + − + −
=

P Q P P

 (2.26) 

The fact that ( ) 0× ⋅ =P Q Q  is proven in a similar manner.  

The same result arises when we consider the fact that given any three 3D vectors 
P, Q, and R, the expression ( )× ⋅P Q R may be evaluated by calculating the 
determinant 

 ( )
x y z

x y z

x y z

P P P
Q Q Q
R R R

× ⋅ =P Q R . (2.27) 

If any one of the vectors P, Q, or R can be expressed as a linear combination of 
the other two vectors, then this determinant evaluates to zero. This includes the 
cases in which =R P or =R Q. 
 Like the dot product, the cross product has trigonometric significance. 

Theorem 2.8. Given two 3D vectors P and Q, the cross product ×P Q satisfies 
the equation  
 
  sinα× =P Q P Q , (2.28) 
 
where α is the planar angle between the lines connecting the origin to the points 
represented by P and Q. 
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Proof. Squaring ×P Q , we have 

 

( ) ( ) ( )
( ) ( ) ( )

2 2

2 2 2

2 2 2 2 2 2 2 2 2

, ,

2 2 2 .

y z z y z x x z x y y x

y z z y z x x z x y y x

y z x x z y x y z

x x y y x x z z y y z z

P Q P Q P Q P Q P Q P Q

P Q P Q P Q P Q P Q P Q

P P Q P P Q P P Q
P Q P Q P Q P Q P Q P Q

× = − − −

= − + − + −

= + + + + +

− − −

P Q

 (2.29) 

By adding and subtracting 2 2 2 2 2 2
x x y y z zP Q P Q P Q+ +  on the right side of this equa-

tion, we can write 

 

( )( )
( )

( )

2 2 2 2 2 2 2

2

2 2 2 .

x y z x y z

x x y y z z

P P P Q Q Q

P Q P Q P Q

× = + + + +

− + +

= − ⋅

P Q

P Q P Q  (2.30) 

Replacing the dot product with the right side of Equation (2.12), we have 

 

( )
2 2 2 2 2 2

2 2 2

2 2 2

cos

1 cos

sin .

α
α

α

× = −

= −

=

P Q P Q P Q

P Q

P Q  (2.31) 

Taking square roots proves the theorem.  

 As shown in Figure 2.5, Theorem 2.8 demonstrates that the magnitude of the 
cross product ×P Q is equal to the area of the parallelogram whose sides are 
formed by the vectors P and Q. As a consequence, the area A of an arbitrary tri-
angle whose vertices are given by the points 1V , 2V , and 3V  can be calculated us-
ing the formula 

 ( ) ( )2 1 3 1
1
2

A = − × −V V V V . (2.32) 

 We know that any nonzero result of the cross product must be perpendicular 
to the two vectors being multiplied together, but there are two possible directions 
that satisfy this requirement. It turns out that the cross product follows a pattern 
called the right hand rule. As shown in Figure 2.6, if the fingers of the right hand 
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P

Q
α

sinαP

 
Figure 2.5. This parallelogram has base width Q  and height sinαP . The product of 
these two lengths is equal to ×P Q  and gives the area of the parallelogram. 

P

Q

×P Q

Q

P

×P Q  
Figure 2.6. The right hand rule provides a way for determining in which direction the 
cross product points. When the vectors P and Q are interchanged, their cross product is 
negated. 

are aligned with a vector P, and the palm is facing in the direction of a vector Q, 
then the thumb points along the direction of the cross product ×P Q. 
 The unit vectors i, j, and k, which point in the directions of the positive x, y, 
and z axes, respectively, behave as follows. If we order the axes in a circular 
fashion so that i precedes j, j precedes k, and k precedes i, then the cross product 
of two of these vectors in order yields the third vector as follows. 

 
× =
× =
× =

i j k

j k i

k i j

 (2.33) 
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The cross product of two of the vectors in reverse order yields the negation of 
the third vector as follows. 

 
× = −
× = −

× = −

j i k

k j i

i k j

 (2.34) 

 Several additional properties of the cross product are presented by the fol-
lowing theorem. 

Theorem 2.9. Given any two scalars a and b, and any three 3D vectors P, Q, 
and R, the following properties hold.  
 
 (a) ( )× = − ×Q P P Q  
 (b) ( ) ( )a a× = ×P Q P Q  
 (c) ( )× + = × + ×P Q R P Q P R  
 (d) 0,0,0× = =P P 0  
 (e) ( ) ( ) ( )× ⋅ = × ⋅ = × ⋅P Q R R P Q Q R P 
 (f) ( ) ( )2P× × = × × = − ⋅P Q P P Q P Q P Q P 

Proof. Parts (a) through (d) follow immediately from the definition of the cross 
product and the associative and commutative properties of the real numbers. Part 
(e) can be directly verified using Equation (2.27). For part (f), we first observe 
that 

 

( )
[ ]

( )
( )

.

× × = × − ×
= − − × ×
= × ×

P Q P P P Q

P Q P

P Q P  (2.35) 

Direct computation of the x component gives us 

 

( ) ( )
( ) ( )
( ) ( )2 2

, ,

,

x y z z y z x x z x y y x x

z x x z z x y y x y

y z x y y z z x

P Q P Q P Q P Q P Q P Q
P Q P Q P P Q P Q P

P P Q P Q P Q P

× × = − − − ×
= − − −

= + − +

P Q P P

 (2.36) 

which isn’t quite what we need, but we can add and subtract a 2
x xP Q  term to 

achieve our desired result, as follows: 
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( ) ( )
( ) ( )
( ) ( )

( )

2 2

2 2 2 2

2 2 2

2 .

y z x y y z z x

y z x x x y y z z x x x

x y z x x x y y z z x

x x

P P Q P Q P Q P

P P Q P Q P Q P Q P P Q

P P P Q P Q P Q P Q P

P Q P

+ − +

= + + − + −

= + + − + +

= − ⋅P Q  (2.37) 

The y and z components can be checked in a similar manner.  

 By part (a) of Theorem 2.9, the cross product is not a commutative operation. 
Because reversing the order of the vectors has the effect of negating the product, 
the cross product is labeled anticommutative. Additionally, it is worth noting that 
the cross product is not an associative operation. That is, given any three 3D vec-
tors P, Q, and R, it may be true that ( ) ( )× × ≠ × ×P Q R P Q R . As an example, let 

1,1,0=P , 0,1,1=Q , and 1,0,1=R . First calculating ( )× ×P Q R, we have 

 ( )

1 1 0 1, 1,1
0 1 1

1 1 1 1,0,1
1 0 1

× = = −

× × = − = −

i j k

P Q

i j k

P Q R . (2.38) 

Now calculating ( )× ×P Q R , we have 

 ( )

0 1 1 1,1, 1
1 0 1

1 1 0 1,1,0
1 1 1

× = = −

× × = = −
−

i j k

Q R

i j k

P Q R , (2.39) 

which yields a different result. 
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2.4  Vector Spaces 

The vectors we have dealt with so far belong to sets called vector spaces. An ex-
amination of vector spaces allows us to introduce concepts that are important for 
our study of matrices in Chapter 3. 

Definition 2.10. A vector space is a set V, whose elements are called vectors, 
for which addition and scalar multiplication are defined, and the following 
properties hold.  
 
 (a) V is closed under addition. That is, for any elements P and Q in V, the 
  sum +P Q  is an element of V.  
 (b) V is closed under scalar multiplication. That is, for any real number a 
  and any element P in V, the product aP is an element of V.  
 (c) There exists an element in V called 0 such that for any element P in V, 
  + = + =P 0 0 P P.  
 (d) For every element P in V, there exists an element Q in V such that 
  + =P Q 0.  
 (e) Addition is associative. That is, for any elements P, Q, and R in V, 
  ( ) ( )+ + = + +P Q R P Q R .  
 (f) Scalar multiplication is associative. That is, for any real numbers a and 
  b, and any element P in V, ( ) ( )ab a b=P P .  
 (g) Scalar multiplication distributes over vector addition. That is, for any 
  real number a, and any elements P and Q in V, ( )a a a+ = +P Q P Q. 
 (h) Addition of scalars distributes over scalar multiplication. That is, for 
  any real numbers a and b, and any element P in V, ( )a b a b+ = +P P P. 

 Many of the properties required of vector spaces are mentioned in Section 
2.1 and are easily shown to be satisfied for vectors having the form of n-tuples of 
real numbers. We denote the vector space consisting of all such n-tuples by n . 
For instance, the vector space consisting of all 3D vectors is denoted by 3 . 
 Every vector space can be generated by linear combinations of a subset of 
vectors called a basis for the vector space. Before we can define exactly what a 
basis is, we need to know what it means for a set of vectors to be linearly 
independent. 
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Definition 2.11. A set of n vectors { }1 2, , , ne e e  is linearly independent if 
there do not exist real numbers 1 2, , , na a a , where at least one of the ia  is not 
zero, such that  
 
  1 1 2 2 n na a a+ + + =e e e 0 . (2.40) 
 
Otherwise, the set { }1 2, , , ne e e  is called linearly dependent. 

 An n-dimensional vector space is one that can be generated by a set of n line-
arly independent vectors. Such a generating set is called a basis, whose formal 
definition follows. 

Definition 2.12. A basis  for a vector space V is a set of n linearly independ-
ent vectors { }1 2, , , n= e e e  for which, given any element P in V, there exist 
real numbers 1 2, , , na a a  such that  
 
 1 1 2 2 n na a a= + + +P e e e . (2.41) 

Every basis of an n-dimensional vector space has exactly n vectors in it. For in-
stance, it is impossible to find a set of four linearly independent vectors in 3 , 
and a set of two linearly independent vectors is insufficient to generate the entire 
vector space. 
 There are an infinite number of choices for a basis of any of the vector spaces 

n . We assign special terms to those that have certain properties. 

Definition 2.13. A basis { }1 2, , , n= e e e  for a vector space is called orthog-
onal if for every pair ( ),i j  with i j≠ , we have 0i j⋅ =e e . 

The fact that the dot product between two vectors is zero actually implies that the 
vectors are linearly independent, as the following theorem demonstrates. 

Theorem 2.14. Given two nonzero vectors 1e  and 2e , if 1 2 0⋅ =e e , then 1e  and 
2e  are linearly independent. 

Proof. We suppose that 1e  and 2e  are not linearly independent and arrive at a con-
tradiction. If 1e  and 2e  are linearly dependent, then there exist scalars 1a  and 2a  
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such that 1 1 2 2a a+ =e e 0. Note that 2a  cannot be zero since it would require that 1a  
also be zero. Thus, we can write ( )2 1 2 1a a= −e e . But then ( ) 2

1 2 1 2 1a a e⋅ = −e e  
0≠ , a contradiction.  

This theorem shows that if we can find any n orthogonal vectors in a vector space 
V, then they form a basis for V. 
 A more specific term is given to a basis whose elements all have unit length. 
For convenience, we introduce the Kronecker delta symbol ijδ , which is defined 
as 

 
1, if ;
0, if .ij

i j
δ

i j
=≡  ≠

 (2.42) 

Definition 2.15. A basis { }1 2, , , n= e e e  for a vector space is called ortho-
normal if for every pair ( ),i j  we have i j ijδ⋅ =e e . 

The set { }, ,i j k  is obviously an orthonormal basis for 3 . A slightly less trivial 
example of an orthonormal basis for 3  is given by the three vectors 2 2

2 2, ,0 , 
2 2

2 2, ,0− , and 0,0,1 . 
 There is a simple method by which a linearly independent set of n vectors 
can be transformed into an orthogonal basis for n . The basic idea is to subtract 
away the projection of each vector onto the vectors preceding it in the set. What-
ever vector is left over must then be orthogonal to its predecessors. The exact 
procedure is as follows. 

Algorithm 2.16. Gram-Schmidt Orthogonalization. Given a set of n linearly 
independent vectors { }1 2, , , n= e e e , this algorithm produces a set ′ =  
{ }1 2, , , n′ ′ ′e e e  such that 0i j′ ′⋅ =e e  whenever i j≠ . 

 A. Set 1 1′ =e e . 
 B. Begin with the index 2i = . 
 C. Subtract the projection of ie  onto the vectors 1 2 1, , , i−′ ′ ′e e e  from ie  and 

store the result in i′e . That is, 

 
1

2
1

i
i k

i i k
kk

−

=

′⋅′ ′= −
′ e e

e e e
e

. (2.43) 

 D. If i n< , increment i and loop to step C. 



Chapter 2 Summary 29 
 

Chapter 2 Summary 

Dot Products 

The dot product between two n-dimensional vectors P and Q is a scalar defined 
by 

 1 1 2 2
1

n

i i n n
i

PQ PQ P Q P Q
=

⋅ = = + + +P Q  . 

The dot product is related to the angle α between the vectors P and Q by the for-
mula 

 cosα⋅ =P Q P Q . 

Vector Projections 

The projection of a vector P onto a vector Q is given by 

 2proj ⋅=Q
P Q

P Q
Q

, 

and the component of P that is perpendicular to Q is given by 

 2

perp proj= −
⋅= −

Q QP P P

P Q
P Q

Q
. 

Cross Products 

The cross product between two 3D vectors P and Q is a 3D vector defined by 

 , ,y z z y z x x z x y y xP Q P Q P Q P Q P Q P Q× = − − −P Q . 

This can also be written as the matrix-vector product 

 
0

0
0

z y x

z x y

y x z

P P Q
P P Q
P P Q

−   
   × = −   
   −   

P Q . 

The magnitude of the cross product is related to the angle α between the vectors 
P and Q by the formula 
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 sinα× =P Q P Q . 

Gram-Schmidt Orthogonalization 

A basis { }1 2, , , n= e e e  for an n-dimensional vector space can be orthogo-
nalized by constructing a new set of vectors { }1 2, , , n′ ′ ′ ′= e e e  using the formula 

 
1

2
1

i
i k

i i k
kk

−

=

′⋅′ ′= −
′ e e

e e e
e

. 

Exercises for Chapter 2 

1. Let 2,2,1=P  and 1, 2,0= −Q . Calculate the following. 

(a) ⋅P Q 

(b) ×P Q 

(c) projP Q 

2. Orthogonalize the following set of vectors. 

 

2 2
1 2 2

2

3

, ,0

1,1, 1
0, 2, 2

=

= − −
= − −

e

e

e

 

3. Calculate the area of the triangle whose vertices lie at the points 1,2,3 , 
2,2,4− , and 7, 8,6− . 

4. Show that ( ) 2 2 2 2V W⋅ + × =V W V W  for any two vectors V and W. 

5. Prove that for any three 3D vectors P, Q, and R, 

 ( ) ( )× × = ⋅ − ⋅P Q R P R Q Q R P. 

6. Prove that for any two vectors P and Q, 

 − ≥ −P Q P Q , 

and show that this implies the extended triangle inequality, 

 − ≤ + ≤ +P Q P Q P Q . 
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Chapter 3 

Matrices 

In a 3D graphics engine, calculations can be performed in a multitude of different 
Cartesian coordinate spaces. Moving from one coordinate space to another re-
quires the use of transformation matrices. We casually referred to matrices at var-
ious places in Chapter 2; and in this chapter, we acknowledge the importance of 
matrices in 3D graphics programming by presenting a more formal exposition of 
their properties. The process of transforming points and direction vectors from 
one coordinate space to another is described in Chapter 4. 

3.1  Matrix Properties 

An n m×  matrix M is an array of numbers having n rows and m columns. If 
n m= , then we say that the matrix M is square. We write ijM  to refer to the entry 
of M that resides at the i-th row of the j-th column. As an example, suppose that 
F is a 3 4×  matrix. Then we could write 

 
11 12 13 14

21 22 23 24

31 32 33 34

F F F F
F F F F
F F F F

 
 =  
  

F . (3.1) 

The entries for which i j=  are called the main diagonal entries of the matrix. A 
square matrix whose only nonzero entries appear on the main diagonal is called a 
diagonal matrix. 
 The transpose of an n m×  matrix M, which we denote by TM , is an m n×  
matrix for which the ( ),i j  entry is equal to jiM  (i.e., T

ij jiM M= ). The transpose of 
the matrix F in Equation (3.1) is 
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11 21 31

12 22 32T

13 23 33

14 24 34

F F F
F F F
F F F
F F F

 
 
 =
 
 
 

F . (3.2) 

 As with vectors (which can be thought of as 1n ×  matrices), scalar multiplica-
tion is defined for matrices. Given a scalar a and an n m×  matrix M, the product 
aM is given by 

 

11 12 1

21 22 2

1 2

m

m

n n nm

aM aM aM
aM aM aM

a a

aM aM aM

 
 
 = =
 
 
 

M M




   


. (3.3) 

Also in a manner similar to vectors, matrices add entrywise. Given two n m×  ma-
trices F and G, the sum +F G  is given by 

 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

m m

m m

n n n n nm nm

F G F G F G
F G F G F G

F G F G F G

+ + + 
 + + + + =
 
 + + + 

F G




   


. (3.4) 

 Two matrices F and G can be multiplied together, provided that the number 
of columns in F is equal to the number of rows in G. If F is an n m×  matrix and 
G is an m p×  matrix, then the product FG is an n p×  matrix whose ( ),i j  entry is 
given by 

 ( )
1

m

ij ik kj
k

F G
=

=FG . (3.5) 

Another way of looking at this is that the ( ),i j  entry of FG is equal to the dot 
product of the i-th row of F and the j-th column of G. 
 There is an n n×  matrix called the identity matrix, denoted by nI , for which 

n n= =MI I M M for any n n×  matrix M. The identity matrix has the form 

 

1 0 0
0 1 0

0 0 1

n

 
 
 =
 
 
 

I




   


. (3.6) 
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We usually drop the subscript n and denote the identity matrix simply by I, since 
the size of the matrix can be inferred from the context. 
 Several additional properties of matrices are given by the two theorems that 
follow. 

Theorem 3.1. Given any two scalars a and b and any three n m×  matrices F, 
G, and H, the following properties hold.  
 
 (a) + = +F G G F 
 (b) ( ) ( )+ + = + +F G H F G H  
 (c) ( ) ( )a b ab=F F 
 (d) ( )a a a+ = +F G F G 
 (e) ( )a b a b+ = +F F F 

As with vectors, these properties are easily verified through direct computation 
using the associative and commutative properties of the real numbers. 

Theorem 3.2. Given any scalar a, an n m×  matrix F, an m p×  matrix G, and a 
p q×  matrix H, the following properties hold.  
 
 (a) ( ) ( )a a=F G FG  
 (b) ( ) ( )=FG H F GH  
 (c) ( ) T T T=FG G F  

Proof. 

(a) Using the definition for matrix multiplication given by Equation (3.5), the 
( ),i j  entry of ( )aF G is 

 

( )[ ] ( )

( )

( )

1

1

1

.

m

ij ik kj
k
m

ik kj
k

m

ik kj
k

ij

a a G

a F G

a F G

a

=

=

=

=

=

=

=







F G F

FG  (3.7) 
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(b) Again using Equation (3.5), the ( ),i j  entry of ( )FG H is 

 

( )[ ] ( )

( )

( )[ ]

1

1 1

1 1

1

.

p

ij ik kj
k

p m

il lk kj
k l

pm

il lk kj
l k

m

il lj
l

ij

H

F G H

F G H

F

=

= =

= =

=

=

 =  
 

 =  
 

=

=



 

 



FG H FG

GH

F GH  (3.8) 

(c) Applying Equation (3.5), and reversing the indexes whenever a transpose 
operation is added or removed, we have for the ( ),i j  entry of ( ) TFG  

 

( ) ( )

( )

T

1

T T

1
T T

ij ji

m

jk ki
k
m

kj ik
k

ij

F G

F G

=

=

=

=

=

=





FG FG

G F .  (3.9) 

3.2  Linear Systems 

Matrices provide a compact and convenient way to represent systems of linear 
equations. For instance, the linear system given by the equations 

 

3 2 3 13
4 3 6 7

5

x y z
x y z

x z

+ − = −
− + =

− = −  (3.10) 

can be represented in matrix form as 

 
3 2 3 13
4 3 6 7
1 0 1 5

x
y
z

− −     
     − =     

− −          

. (3.11) 
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The matrix preceding the vector , ,x y z  of unknowns is called the coefficient 
matrix, and the column vector on the right side of the equals sign is called the 
constant vector. Linear systems for which the constant vector is nonzero (like the 
example above) are called nonhomogeneous. Linear systems for which every en-
try of the constant vector is zero are called homogeneous. 
 Finding solutions to a system of linear equations can be achieved by per-
forming elementary row operations on the matrix formed by concatenating the 
coefficient matrix and the constant vector. 

Definition 3.3. An elementary row operation is one of the following three op-
erations that can be performed on a matrix.  
 
 (a) Exchange two rows.  
 (b) Multiply a row by a nonzero scalar.  
 (c) Add a multiple of one row to another row. 

For the example given by Equation (3.11), the augmented matrix formed by con-
catenating the coefficient matrix and constant vector is 

 
3 2 3 13
4 3 6 7
1 0 1 5

− − 
 − 

− −  

. (3.12) 

 Elementary row operations modify the augmented matrix representation of a 
linear system in such a way that the solution to the system is not affected, but it 
becomes much easier to calculate. When solving a linear system using elemen-
tary row operations, our goal is to transform the coefficient matrix into its re-
duced form, defined as follows. 

Definition 3.4. A matrix is in reduced form if and only if it satisfies the follow-
ing conditions.  
 
 (a) For every nonzero row, the leftmost nonzero entry, called the leading 
  entry, is 1.  
 (b) Every nonzero row precedes every row of zeros. That is, all rows of 
  zeros reside at the bottom of the matrix. 



36 3. Matrices 
 

 (c) If a row’s leading entry resides in column j, then no other row has a 
  nonzero entry in column j.  
 (d) For every pair of nonzero rows 1i  and 2i  such that 2 1i i> , the columns 1j  
  and 2j  containing those rows’ leading entries must satisfy 2 1j j> . 

This definition tells us that the leading entries of a matrix in reduced form move 
to the right as we move downward through its rows. Furthermore, any column 
containing a leading entry of a row has a 1 at that location and zeros everywhere 
else. 

Example 3.5. The following matrix is in reduced form.  
 

   

1 0 3 0
0 1 2 0
0 0 0 1
0 0 0 0

− 
 
 
 
 
 

  (3.13) 

 
However, the matrix  
 

   

1 0 0 3
0 0 1 0
0 2 0 0
0 0 0 1

 
 
 
 
 
 

  (3.14) 

 
is not in reduced form because the leading entry of the third row does not fall to 
the right of the leading entry of the second row. Furthermore, the fourth col-
umn, which contains the leading entry of the fourth row, is not zero everywhere 
else.  

 Algorithm 3.6 describes which elementary row operations to apply to the 
augmented matrix representation of a linear system in order to transform its coef-
ficient matrix into its reduced form. 

Algorithm 3.6. This algorithm transforms an ( )1n n× +  augmented matrix M 
representing a linear system into its reduced form. At each step, M refers to the 
current state of the matrix, not the original state. 
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 A. Set the row i equal to 1.  
 B. Set the column j equal to 1. We will loop through columns 1 to n.  
 C. Find the row k with k i≥  for which kjM  has the largest absolute value. If 
  no such row exists for which 0kjM ≠ , then skip to step H.  
 D. If k i≠ , then exchange rows k and i using elementary row operation (a) 
  under Definition 3.3.  
 E. Multiply row i by 1 ijM . This sets the ( ),i j  entry of M to 1 using ele- 
  mentary row operation (b).  
 F. For each row r, where 1 r n≤ ≤  and r i≠ , add rjM−  times row i to row r. 
  This step clears each entry above and below row i in column j to 0 using 
  elementary row operation (c).  
 G. Increment i.  
 H. If j n< , increment j and loop to step C. 

 The procedure performed by steps C and D is known as pivoting. In addition 
to its ability to remove zeros from the main diagonal, pivoting is absolutely es-
sential for numerical stability. The following example demonstrates the applica-
tion of Algorithm 3.6 to the nonhomogeneous linear system given by Equation 
(3.11). After the augmented coefficient matrix is reduced, the solution to the sys-
tem becomes obvious. 

Example 3.7. Solve the nonhomogeneous linear system  
 

  
3 2 3 13
4 3 6 7
1 0 1 5

x
y
z

− −     
     − =     

− −          

.  (3.15) 

Solution. We first form the augmented matrix 

 
3 2 3 13
4 3 6 7
1 0 1 5

− − 
 − 

− −  

. (3.16) 

We must now pivot (using steps C and D) so that the row containing the largest 
entry in the first column appears in the first row. We therefore exchange the first 
two rows. To produce a leading entry of 1, we then multiply the first row by 1

4 , as 
follows. 
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 1
4

3 3 7
4 2 4

Exchange rows 1 and 2
Multiply new row 1 by 

1
3 2 3 13
1 0 1 5

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.17) 

Applying step F of Algorithm 3.6, we now eliminate the other nonzero entries in 
the first column. 

 

3 3 7
4 2 4

Add 3  row 1 to row 2 17 15 73
4 2 4Add 1  row 1 to row 3
3 5 27
4 2 4

1
0
0

− ×
− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.18) 

Moving to the second row, we multiply by 4
17  to obtain a leading entry of 1. 

 
4

17

3 3 7
4 2 4

Multiply row 2 by 30 73
17 17

3 5 27
4 2 4

1
0 1
0

− 
 ⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.19) 

Again applying step F, we eliminate the other nonzero entries in the second col-
umn. 

 
3
4
3
4

3 25
17 17

Add   row 2 to row 1 30 73
17 17Add   row 2 to row 3
20 60
17 17

1 0
0 1
0 0

×
− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.20) 

Finally, we apply the same steps to the third row, as follows. 

 

17
20

3
17

30
17

3 25
17 17

Multiply row 3 by 30 73
17 17

Add   row 3 to row 1
Add   row 3 to row 2

1 0
0 1
0 0 1 3

1 0 0 2
0 1 0 1
0 0 1 3

−

− ×
×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
  

− 
 ⎯⎯⎯⎯⎯⎯⎯→  
  

 (3.21) 

The coefficient matrix has now been completely transformed into its reduced 
form. The reduced augmented matrix represents the equation 
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1 0 0 2
0 1 0 1
0 0 1 3

x
y
z

−     
     =     
          

, (3.22) 

from which the solution to the original system is immediate: 

 

2
1
3.

x
y
z

= −
=
=   (3.23) 

 In the previous example, we found that the reduced form of the coefficient 
matrix was equal to the identity matrix. In such a case, the corresponding linear 
system has exactly one solution. When the reduced coefficient matrix has one or 
more rows of zeros, however, the corresponding system may have no solution at 
all, or may have infinitely many solutions. If the entry in the constant vector cor-
responding to a row of zeros in the coefficient matrix is not zero, then the system 
has no solution because that row equates zero to a nonzero number. In the re-
maining case that the entry in the constant vector is zero, there are infinitely 
many solutions to the linear system that must be expressed in terms of arbitrary 
constants. The number of arbitrary constants is equal to the number of rows of 
zeros, and arbitrary constants are assigned to variables corresponding to columns 
of the reduced coefficient matrix that do not contain a leading entry. 

Example 3.8. Solve the following homogeneous linear system.  
 

  

2 3 0
0

3 0

x y z
y z

x y z

+ + =
− =

+ − =   (3.24) 

Solution. The augmented matrix representation of this system is given by 

 
2 1 3 0
0 1 1 0
1 3 1 0

 
 − 

−  

. (3.25) 

Using Algorithm 3.6 to calculate the reduced form gives us the matrix 
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1 0 2 0
0 1 1 0
0 0 0 0

 
 − 
  

. (3.26) 

Since this matrix has a row of zeros, we can assign an arbitrary value to the vari-
able corresponding to the third column since it does not contain a leading entry; 
in this case we set z a= . The first two rows then represent the equations 

 
2 0

0
x a

y a
+ =

− = , (3.27) 

so the solution to the system can be written as 

 
2

1
1

x
y a
z

−   
   =   
      

.  (3.28) 

 Homogeneous linear systems always have at least one solution—the zero 
vector. Nontrivial solutions exist only when the reduced form of the coefficient 
matrix possesses at least one row of zeros. 

3.3  Matrix Inverses 

An n n×  matrix M is invertible if there exists a matrix, which we denote by 1−M , 
such that 1 1− −= =MM M M I. The matrix 1−M  is called the inverse of M. Not 
every matrix has an inverse, and those that do not are called singular. An exam-
ple of a singular matrix is any one that has a row or column consisting of all 
zeros. 

Theorem 3.9. A matrix possessing a row or column consisting entirely of zeros 
is not invertible. 

Proof. Suppose every entry in row r of an n n×  matrix F is 0. For any n n×  ma-
trix G, the ( ),r r  entry of the product FG is given by 1Σ n

k rk krF G= . Since each of 
the rkF  is 0, the ( ),r r  entry of FG is 0. Since the inverse of F would need to pro-
duce a 1 in the ( ),r r  entry, F cannot have an inverse. A similar argument proves 
the theorem for a matrix possessing a column of zeros.  
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 Using this theorem, we will be able to show later in this section that any ma-
trix possessing a row that is a linear combination of the other rows of the matrix 
is singular. The same is true for the columns of a matrix due to the following fact. 

Theorem 3.10. A matrix M is invertible if and only if TM  is invertible. 

Proof. Assume M is invertible. Then 1−M  exists, so we can write 

 ( ) ( )T 1 T 1 T T− −= = =M M M M I I (3.29) 

and 

 ( ) ( )1 T T 1 T T− −= = =M M MM I I. (3.30) 

Therefore, ( )1 T−M  is the inverse of TM . Similarly, if we assume that TM  is in-
vertible, then ( )T 1−M  exists, so we can write 

 ( ) ( )T 1 T T 1 T T T− −= = =      M M M M I I (3.31) 

and 

 ( ) ( )T 1 T T T 1 T T− −= = =      M M M M I I. (3.32) 

Therefore, ( )T 1 T−  M  is the inverse of M.  

 Before proceeding to a method for calculating inverses, we make one more 
observation. 

Theorem 3.11. If F and G are n n×  invertible matrices, then the product FG is 
invertible, and ( ) 1 1 1− − −=FG G F . 

Proof. We can verify this theorem through direct computation using the fact that 
matrix multiplication is associative: 

 ( ) ( )1 1 1 1 1− − − − −= = =G F FG G F F G G G I.  (3.33) 
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 A method similar to that used to transform a matrix into its reduced form (see 
Algorithm 3.6) can also be used to calculate the inverse of a matrix. To find the 
inverse of an n n×  matrix M, we first construct an 2n n×  matrix M  by concatenat-
ing the identity matrix to the right of M, as shown below. 

 

11 12 1

21 22 2

1 2

1 0 0
0 1 0

0 0 1

n

n

n n nn

M M M
M M M

M M M

 
 
 =
 
 
 

M

 
 

       
 

 (3.34) 

Performing elementary row operations on the entire matrix M  until the left side 
n n×  matrix becomes the identity matrix nI  yields the inverse of M in the right 
side n n×  matrix. This process is known as Gauss-Jordan elimination and is illus-
trated in Algorithm 3.12. 

Algorithm 3.12. Gauss-Jordan Elimination. This algorithm calculates the in-
verse of an n n×  matrix M.  
 
 A. Construct the augmented matrix M  given in Equation (3.34). Through- 
  out this algorithm, M  refers to the current state of the augmented ma- 
  trix, not the original state.  
 B. Set the column j equal to 1. We will loop through columns 1 to n.  
 C. Find the row i with i j≥  such that ijM  has the largest absolute value. If 
  no such row exists for which 0ijM ≠ , then M is not invertible.  
 D. If i j≠ , then exchange rows i and j using elementary row operation (a) 
  under Definition 3.3. This is the pivot operation necessary to remove 
  zeros from the main diagonal and to provide numerical stability.  
 E. Multiply row j by 1 jjM . This sets the ( ),j j  entry of M  to 1 using ele- 
  mentary row operation (b).  
 F. For each row r where 1 r n≤ ≤  and r j≠ , add rjM−   times row j to row r. 
  This step clears each entry above and below row j in column j to 0 using 
  elementary row operation (c).  
 G. If j n< , increment j and loop to step C. 

 The implementation of Algorithm 3.12 is straightforward and has the benefit 
that it can determine whether a matrix is invertible. The following example 
demonstrates the inner workings of the algorithm. 
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Example 3.13. Calculate the inverse of the 3 3×  matrix M given by  
 

  
2 3 8
6 0 3
1 3 2

 
 = − 
−  

M .  (3.35) 

Solution. Concatenating the identity matrix to M, we have 

 
2 3 8 1 0 0
6 0 3 0 1 0
1 3 2 0 0 1

 
 = − 
−  

M . (3.36) 

We now apply steps C through F of the algorithm for 1j = . 

 

1
6

1 1
2 6

Exchange rows 1 and 2
Multiply new row 1 by 

1 1
2 6

Add 2  row 1 to row 2 1
3Add row 1 to row 3

3 1
2 6

1 0 0 0
2 3 8 1 0 0
1 3 2 0 0 1

1 0 0 0
0 3 9 1 0
0 3 0 1

− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→  
 − 

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
  

 (3.37) 

Applying the same steps for 2j =  gives us the following. 

 

1
3

1 1
2 6

Multiply row 2 by 1 1
3 9

3 1
2 6

1 1
2 6

Add 3  row 2 to row 3 1 1
3 9

15 1
2 2

1 0 0 0
0 1 3 0
0 3 0 1

1 0 0 0
0 1 3 0
0 0 1 1

− ×

− 
 ⎯⎯⎯⎯⎯⎯→ − 
  

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
 − − 

 (3.38) 

Finally, we apply the algorithm for 3j = . 

 

2
15

1 1
2 6

Multiply row 3 by 1 1
3 9
2 1 2

15 15 15

1 0 0 0
0 1 3 0
0 0 1

−

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
 − −  
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1
2

1 2 1
15 15 15

Add   row 3 to row 1 1 4 2
15 45 5Add 3  row 3 to row 2

2 1 2
15 15 15

1 0 0
0 1 0
0 0 1

×
− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
 − − 

 (3.39) 

The right side 3 3×  matrix is now equal to the inverse of M: 

 1

3 6 3
1 3 4 18
45

6 3 6

−

− 
 = − 

− −  

M .  (3.40) 

 To understand why Algorithm 3.12 supplies the inverse of a matrix, we need 
the following theorem. 

Theorem 3.14. Let ′M  be the n n×  matrix resulting from the performance of an 
elementary row operation on the n n×  matrix M. Then ′ =M EM, where E is 
the n n×  matrix resulting from the same elementary row operation performed 
on the identity matrix. 

Proof. We shall give separate proofs for each of the three elementary row opera-
tions listed in Definition 3.3. 

(a) Let E be equal to the identity matrix after rows r and s have been exchanged. 
Then the entries of E are given by 

 
, if  and ;
, if ;
, if ,

ij

ij sj

rj

δ i r i s
E δ i r

δ i s

≠ ≠
= =
 =

 (3.41) 

 where ijδ  is the Kronecker delta symbol defined by Equation (2.42). The en-
tries of the product EM are then given by 

 ( )
1

, if  and ;
, if ;
, if .

ijn

ij ik kj sj
k

rj

M i r i s
E M M i r

M i s=

≠ ≠
= = =
 =

EM  (3.42) 

 Thus, rows r and s of the matrix M have been exchanged. 
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(b) Let E be equal to the identity matrix after row r has been multiplied by a sca-
lar a. Then the entries of E are given by 

 
, if ;

, if .
ij

ij
ij

δ i r
E

aδ i r
≠=  =

 (3.43) 

 The entries of the product EM are then given by 

 ( )
1

, if ;
, if .

n
ij

ij ik kj
ijk

M i r
E M

aM i r=

≠= =  =
EM  (3.44) 

 Thus, row r of the matrix M has been multiplied by a. 
(c) Let E be equal to the identity matrix after row r has been multiplied by a sca-

lar a and added to row s. Then the entries of E are given by 

 
, if ;

, if .
ij

ij
ij rj

δ i s
E

δ aδ i s
≠=  + =

 (3.45) 

 The entries of the product EM are then given by 

 ( )
1

, if ;
, if .

n
ij

ij ik kj
ij rjk

M i s
E M

M aM i s=

≠= =  + =
EM  (3.46) 

 Thus, row r of the matrix M has been multiplied by a and added to row s.  

 The matrix E that represents the result of an elementary row operation per-
formed on the identity matrix is called an elementary matrix. If we have to apply 
k elementary row operations to transform a matrix M into the identity matrix, 
then 

 1 1k k −=I E E E M , (3.47) 

where the matrices 1 2, , , kE E E  are the elementary matrices corresponding to 
the same k row operations applied to the identity matrix. This actually shows that 
the product 1 1k k −E E E  is equal to the inverse of M, and it is exactly what we 
get when we apply the k row operations to the identity matrix concatenated to the 
matrix M in Equation (3.34). 
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 If a matrix M is singular, then finding elementary matrices 1 2, , , kE E E  that 
satisfy Equation (3.47) is impossible. This is true because singular matrices are 
exactly those whose rows form a linearly dependent set, as the following theorem 
states. 

Theorem 3.15. An n n×  matrix M is invertible if and only if the rows of M 
form a linearly independent set of vectors. 

Proof. Let the rows of M be denoted by T T T
1 2, , , nR R R . We prove this theorem 

in two parts. 

(a) We prove that if M is invertible, then the rows of M form a linearly inde-
pendent set of vectors by proving the contrapositive, which states that if the 
rows of M form a linearly dependent set of vectors, then M must be singular. 
So assume that the rows of M are linearly dependent. Then there exists a row 
r that can be written as a linear combination of k other rows of the matrix as 
follows. 

 1 2

T T T T
1 2 kr s s k sa a a= + + +R R R R  (3.48) 

  The values of ia  are scalars, and the values of is  index k rows in the ma-
trix M other than row r. Let the n n×  matrix iE  be equal to the elementary 
matrix representing the addition of ia  times row is  to row r. Then we can 
write 

 1 1k k− ′=M E E E M , (3.49) 

 where ′M  is equal to M, except that row r has been replaced by all zeros. By 
Theorem 3.9, the matrix ′M  is singular, and thus M is singular. 

(b) Now assume that the rows of M form a linearly independent set of vectors. 
We first observe that performing elementary row operations on a matrix does 
not alter the property of linear independence within the rows. Running 
through Algorithm 3.12, if step C fails, then rows j through n of the matrix at 
that point form a linearly dependent set since the number of columns for 
which the rows T

jR  through T
nR  have at least one nonzero entry is less than the 

number of rows itself. This is a contradiction, so step C of the algorithm can-
not fail, and M must be invertible.  
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 This theorem tells us that every singular matrix can be written as a product of 
elementary matrices and a matrix that has a row of zeros. With the introduction 
of determinants in the next section, this fact allows us to devise a test for 
singularity. 

3.4  Determinants 

The determinant of a square matrix is a scalar quantity derived from the entries of 
the matrix. The determinant of a matrix M is denoted by det M. When displaying 
the entries of a matrix, we replace the brackets on the left and right of the matrix 
with vertical bars to indicate that we are evaluating the determinant. For example, 
the determinant of a 3 3×  matrix M is written as 

 
11 12 13

21 22 23

31 32 33

det
M M M
M M M
M M M

=M . (3.50) 

 The value of the determinant of an n n×  matrix is given by a recursive formu-
la. For notational convenience, let the symbol { },i jM  denote the ( ) ( )1 1n n− × −  
matrix whose entries consist of the original entries of M after deleting the i-th 
row and the j-th column. For example, suppose that M is the following 3 3×  
matrix. 

 
1 2 3
4 5 6
7 8 9

 
 =  
  

M  (3.51) 

Then { }2,3M  is the following 2 2×  matrix. 

 { }2,3 1 2
7 8
 =   

M  (3.52) 

The formula for the determinant is recursive and can be expressed in terms of the 
following definition. 

Definition 3.16. Let M be an n n×  matrix. We define the cofactor ( )ijC M  of the 
matrix entry ijM  as follows.  
 
  ( ) ( ) { },1 det i ji j

ijC +≡ −M M  (3.53) 
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 Using cofactors, a method for calculating the determinant of an n n×  matrix 
can be expressed as follows. First, define the determinant of a 1 1×  matrix to be 
the entry of the matrix itself. Then the determinant of an n n×  matrix M is given 
by both the formula 

 ( )
1

det
n

ik ik
i

M C
=

=M M  (3.54) 

and the formula 

 ( )
1

det
n

kj kj
j

M C
=

=M M , (3.55) 

where k is an arbitrarily chosen constant such that 1 k n≤ ≤ . Remarkably, both 
formulas give the same value for the determinant regardless of the choice of k. 
The determinant of M is given by the sum along any row or column of products 
of entries of M and their cofactors. 
 An explicit formula for the determinant of a 2 2×  matrix is easy to extract 
from Equations (3.54) and (3.55): 

 
a b

ad bc
c d

= − . (3.56) 

We also give an explicit formula for the determinant of a 3 3×  matrix. The fol-
lowing is written as one would evaluate Equation (3.55) with 1k = . 

 
( ) ( )

( )

11 12 13
22 23 21 23 21 22

21 22 23 11 12 13
32 33 31 33 31 32

31 32 33

11 22 33 23 32 12 21 33 23 31

13 21 32 22 31

a a a
a a a a a a

a a a a a a
a a a a a a

a a a
a a a a a a a a a a

a a a a a

= − +

= − − −
+ −  (3.57) 

 Clearly, the determinant of the identity matrix nI  is 1 for any n since choos-
ing 1k =  reduces Equation (3.55) to 11 1det detn nI −=I I . 
 We can derive some useful information from studying how elementary row 
operations (see Definition 3.3) affect the determinant of a matrix. This provides a 
way of evaluating determinants that is usually more efficient than direct applica-
tion of Equations (3.54) and (3.55). 



3.4  Determinants 49 
 

Theorem 3.17. Performing elementary row operations on a matrix has the fol-
lowing effects on the determinant of that matrix.  
 
 (a) Exchanging two rows negates the determinant.  
 (b) Multiplying a row by a scalar a multiplies the determinant by a.  
 (c) Adding a multiple of one row to another row has no effect on the 
  determinant. 

Proof. 

(a) We prove this by induction. The operation does not apply to 1 1×  matrices, 
but for a 2 2×  matrix, we can observe the result through direct computation. 

 ( )
c d a b

cb ad ad cb
a b c d

= − = − − = −  (3.58) 

  Now, for an n n×  matrix, we can assume that the result is true for all ma-
trices up to size ( ) ( )1 1n n− × − . Let G represent the result of exchanging 
rows r and s of a matrix F. Choosing another row k such that k r≠  and k s≠ , 
evaluation of Equation (3.55) gives us 

 ( ) ( ) { },

1 1

det 1 det
n n

k jk j
kj kj kj

j j
G C G+

= =

= = − G G G . (3.59) 

 Since { },k jG  is an ( ) ( )1 1n n− × −  matrix, we know by induction that { },det k jG  
{ },det k j= − F  for each j. Thus, det det= −G F. 

(b) Let G represent the result of multiplying row k of a matrix F by the scalar a. 
Then evaluation of Equation (3.55) gives us 

 

( )

( )

1

1

det
n

kj kj
j

n

kj kj
j

G C

aF C

=

=

=

=





G G

F . (3.60) 

 Thus, det deta=G F.  

Before we can prove part (c), we need the following corollary to part (a). 
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Corollary 3.18. The determinant of a matrix having two identical rows is zero. 

Proof. Suppose the matrix M has two identical rows. If we exchange these rows, 
then no change has been made to the matrix, but the determinant has been negat-
ed. So det det= −M M, and we must therefore have det 0=M .  

Proof of Theorem 3.17(c). Let G represent the result of adding the scalar a times 
row r of a matrix F to row k of F. Then evaluating Equation (3.55) gives us 

 

( )

( ) ( )

( )

1

1

1

det

det

n

kj kj
j

n

kj rj kj
j

n

rj kj
j

G C

F aF C

a F C

=

=

=

=

= +

= +







G G

F

F F . (3.61) 

The sum ( )1Σ k
j rj kjF C= F  is equivalent to the determinant of the matrix F with the 

entries in row k replaced by the entries of row r. Since this matrix has two identi-
cal rows, its determinant is zero by Corollary 3.18. Therefore, det det=G F.  

 Since elementary matrices are representative of elementary row operations 
performed on the identity matrix, we can deduce their determinants from Theo-
rem 3.17. An elementary matrix that represents an exchange of rows has a deter-
minant of 1− , an elementary matrix that represents a row multiplied by a scalar a 
has a determinant of a, and an elementary matrix that represents a multiple of one 
row added to another row has a determinant of 1. These are the exact numbers by 
which the determinant of any matrix is multiplied when the corresponding ele-
mentary row operations are performed on them. We can therefore conclude that 
if E is an n n×  elementary matrix, then det det det=EM E M  for any n n×  matrix 
M since multiplication by E performs the elementary row operation on M. This 
result leads us to the following two important theorems. 

Theorem 3.19. An n n×  matrix M is invertible if and only if det 0≠M . 

Proof. Suppose that M is invertible. Then M can be written as a product of ele-
mentary matrices, each having a nonzero determinant. Since the determinant of a 
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product of elementary matrices is equal to the product of the determinants of 
those matrices, the determinant of M cannot be zero. Now suppose that M is sin-
gular. Then M can be written as a product of elementary matrices and a matrix 
having a row of zeros because the rows of M must be linearly dependent. Since 
the determinant of a matrix possessing a row of zeros is zero, the determinant of 
the product is also zero.  

Theorem 3.20. For any two n n×  matrices F and G, det det det=FG F G. 

Proof. If either F or G is singular, then FG is singular and the equation holds 
since both sides are zero. Otherwise, both F and G can be factored completely 
into elementary matrices. Since the determinant of a product of elementary ma-
trices is the product of the determinants, the equation holds.  

 Theorem 3.19 gives us a test for singularity. Once we know that the determi-
nant of an n n×  matrix M is not zero, we can use the following formula to calcu-
late the entries of 1−M . 

Theorem 3.21. Let F be an n n×  matrix and define the entries of an n n×  matrix 
G using the formula  
 

  ( )
det

ji
ij

C
=

F
G

F
, (3.62) 

 
where ( )jiC F  is the cofactor of ( )T

ijF . Then 1−=G F . 

Proof. Using the multiplication formula for FG, we have 

 

( )

( )

( )

1

1

1

det
1

det

n

ij ik kj
k
n

jk
ik

k
n

ik jk
k

F G

CF

F C

=

=

=

=

=

=







FG

F

F

F
F

. (3.63) 

If i j= , then the summation gives the determinant of F equivalently to Equation 
(3.54), so multiplying by 1 det F gives us ( ) 1ij =FG . If i j≠ , then the summation 
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gives the determinant of a matrix equal to F except that row j has been replaced 
by the entries in row i. Since the matrix has two identical rows, its determinant is 
zero, and thus ( ) 0ij =FG . Since the main diagonal entries of FG are 1 and all the 
remaining entries are 0, FG is the identity matrix. A similar argument proves that 
GF is the identity matrix, so 1−=G F .  

 Using Equation (3.62), we can derive explicit formulas for the inverses of 
matrices having sizes that are commonly used in computer graphics. The inverse 
of a 2 2×  matrix A is given by 

 22 121

21 11

1
det

A A
A A

− − =  − 
A

A
. (3.64) 

The inverse of a 3 3×  matrix B is given by 

 
22 33 23 32 13 32 12 33 12 23 13 22

1
23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

1
det

B B B B B B B B B B B B
B B B B B B B B B B B B
B B B B B B B B B B B B

−

− − − 
 = − − − 

− − −  

B
B

. (3.65) 

 The inverse of a matrix M can be expressed as C detM M , where the nota-
tion CM  is used to denote the matrix of cofactors of the entries of TM . That is, 
( ) ( )C T

ij ijC=M M . Since calculating det M also requires that we calculate the 
cofactor of every entry of M, we can use the entries of the matrix CM  to evaluate 
the determinant of M more efficiently. Equation (3.55) can be written as 

 

( )

( )

( )

1

T

1

C

1

det

.

n

kj kj
j

n

kj jk
j

n

kj jk
j

M C

M C

M

=

=

=

=

=

=







M M

M

M  (3.66) 

Thus, the determinant can be evaluated by choosing any row k of the matrix M 
and summing the products with the entries of the k-th column of the matrix CM . 
For the 3 3×  matrix B, we have the following expression for 1−B  in which we 
have chosen 1k = . 
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( )

22 33 23 32 13 32 12 33 12 23 13 22
C

23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

C
1

C
1 1

1

n

j j
j

B B B B B B B B B B B B
B B B B B B B B B B B B
B B B B B B B B B B B B

B

−

=

− − − 
 = − − − 

− − −  

=


B

B
B

B
 (3.67) 

 One final observation that we make in this section concerns linear systems of 
the form =Mx r, where x is a vector of n unknowns and r is a vector of n con-
stants. If the matrix M is invertible, then the solution to this system is given by 

1−=x M r. Again using the notation CM  to denote the matrix of cofactors of the 
entries of TM , we can write 

 
C

det
= M

x r
M

. (3.68) 

The k-th component of x is thus given by the formula 

 

( )

( )

C

1

1

1
det

1
det

n

k ki i
i
n

ik i
i

x r

C r

=

=

=

=





M
M

M
M

. (3.69) 

By the definition given in Equation (3.53), the quantity ( )ikC M  does not depend 
on any entries in the k-th column of the matrix M. Comparing the summation 

( )1Σ n
i ik iC r= M  to Equation (3.54), we see that it is equal to the determinant of the 

matrix whose k-th column is equal to the vector r and whose other columns are 
equal to those of the matrix M. Defining the notation 

 ( ) [ ]1 1 1k k k n− +≡M r M M r M M  , (3.70) 

where jM  represents the j-th column of M, we can write Equation (3.69) as 

 ( )det
det

k
kx = M r

M
. (3.71) 

 Equation (3.71) is known as Cramer’s rule. Since it requires a determinant 
calculation for each unknown in a linear system, using Cramer’s rule is far less 
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efficient than simply inverting the coefficient matrix and multiplying it by the 
constant vector. Cramer’s rule does, however, tell us that if the coefficients and 
constants in a linear system are all integers and det 1= ±M , then the unknowns 
must all be integers. 

3.5  Eigenvalues and Eigenvectors 

For every invertible square matrix, there exist vectors that, when multiplied by 
the matrix, are changed only in magnitude and not in direction. That is, for an 
n n×  matrix M, there exist nonzero n-dimensional vectors 1 2, , , nV V V  such that 

 i i iλ=MV V . (3.72) 

The scalars iλ  are called the eigenvalues of the matrix M, and the vectors iV  are 
called the eigenvectors that correspond to those eigenvalues. 
 The eigenvalues of a matrix can be determined by first rearranging Equation 
(3.72) to read 

 ( )i iλ− =M I V 0, (3.73) 

where I is the n n×  identity matrix. For this equation to be true for nonzero vec-
tors iV , the matrix iλ−M I must be singular. This is necessary because otherwise 
we could invert iλ−M I and write 

 ( ) 1
i iλ −= − =V M I 0 0, (3.74) 

contradicting the assumption that i ≠V 0. Since iλ−M I is singular, its determi-
nant must be zero, so we can calculate the eigenvalues iλ  by solving the equation 

 ( )det 0λ− =M I . (3.75) 

 The degree n polynomial in λ given by Equation (3.75) is called the charac-
teristic polynomial of the matrix M. The roots of this polynomial yield the eigen-
values of the matrix M. 

Example 3.22. Calculate the eigenvalues of the matrix  
 

  
1 1
3 1
 =  − 

M .  (3.76) 
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Solution. The matrix λ−M I is given by 

 
1 1

3 1
λ

λ
λ

− − =  − − 
M I . 

Evaluating the determinant of λ−M I produces the characteristic polynomial 

 ( )( )1 1 3λ λ− − − − . (3.77) 

Simplifying this polynomial and setting it equal to zero gives us 

 2 4 0λ − = , (3.78) 

from which it follows that the eigenvalues of M are 1 2λ =  and 2 2λ = − .  

 Once the eigenvalues have been determined, the corresponding eigenvectors 
are calculated by solving the homogeneous system given by Equation (3.73). 
Since the matrix iλ−M I is singular, its reduced form has at least one row of ze-
ros, so there are infinitely many solutions. An obvious property of Equation 
(3.72) is that if iV  is an eigenvector corresponding to the eigenvalue iλ , then any 
scalar multiple iaV  is also an eigenvector. Thus, eigenvectors are always written 
in terms of an arbitrary constant, which if desired, may be chosen so that the ei-
genvector has unit length. 

Example 3.23. Calculate the eigenvectors of the matrix  
 

  
1 1
3 1
 =  − 

M .  (3.79) 

Solution. In Example 3.22, we found that the matrix M has the eigenvalues 
1 2λ =  and 2 2λ = − . Corresponding eigenvectors are found by solving the linear 

system ( )i iλ− =M I V 0. For the eigenvalue 1 2λ =  we have 

 1
1 1 0

3 3 0
−   =   −   

V , (3.80) 

and for the eigenvalue 2 2λ = −  we have 
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 2
3 1 0
3 1 0
   =      

V . (3.81) 

These systems yield the solutions 

 

1

2

1
1
1
3

a

b

 =   
 =  − 

V

V , (3.82) 

where the scalars a and b are arbitrary nonzero constants.  

 In general, the eigenvalues of a matrix, given by the roots of its characteristic 
polynomial, are complex numbers. This means that the corresponding eigen-
vectors can also have complex entries. A type of matrix that is guaranteed to 
have real eigenvalues and therefore real eigenvectors, however, is the symmetric 
matrix. 

Definition 3.24. An n n×  matrix M is symmetric if and only if ij jiM M=  for all 
i and j. That is, a matrix whose entries are symmetric about the main diagonal 
is called symmetric. 

 The eigenvalues and eigenvectors of symmetric matrices possess the proper-
ties given by the following two theorems. 

Theorem 3.25. The eigenvalues of a symmetric matrix M having real entries 
are real numbers. 

Proof. Let λ be an eigenvalue of the matrix M, and let V be a corresponding ei-
genvector such that λ=MV V. Multiplying both sides of this equation on the left 
by the row vector TV  gives us 

 T T Tλ λ= =V MV V V V V, (3.83) 

where the overbar denotes complex conjugation, which for vectors and matrices 
is performed componentwise. Since the product of a complex number a bi+  and 
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its conjugate a bi−  is equal to the real number 2 2a b+ , the product TV V is a real 
number. By showing that the product TV MV is also a real number, we can con-
clude that λ is real. We can examine the conjugate of TV MV to get 

 T T=V MV V MV, (3.84) 

where we have used the fact that =M M because the matrix M has real entries. 
Since the quantity TV MV is a 1 1×  matrix, it is equal to its own transpose. We 
may thus write 

 ( )T T T T T= =V MV V MV V M V. (3.85) 

Because the matrix M is symmetric, T =M M, so we now have 

 T T=V MV V MV, (3.86) 

showing that the quantity TV MV is equal to its own conjugate and is therefore a 
real number. This proves that the eigenvalue λ must be real.  

Theorem 3.26. Any two eigenvectors associated with distinct eigenvalues of a 
symmetric matrix M are orthogonal. 

Proof. Let 1λ  and 2λ  be distinct eigenvalues of the matrix M, and let 1V  and 2V  be 
the associated eigenvectors. Then we have the equations 1 1 1λ=MV V  and 

2 2 2λ=MV V . We can show that T T
1 1 2 2 1 2λ λ=V V V V  by writing 

 

( )
( )

T T
1 1 2 1 1 2

T
1 2

T
1 2

T
2 1 2 ,

λ λ

λ

=

=

=
=

V V V V

MV V

V MV

V V  (3.87) 

where we have used the fact that T =M M. This tells us that 

 ( ) T
1 2 1 2 0λ λ− =V V , (3.88) 

but the eigenvalues 1λ  and 2λ  are distinct, so we must have T
1 2 0=V V . Since this 

quantity is simply the dot product 1 2⋅V V , the eigenvectors are orthogonal.  
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3.6  Diagonalization 

Recall that a diagonal matrix is one that has nonzero entries only along the main 
diagonal. That is, an n n×  matrix M is a diagonal matrix if 0ijM =  whenever 
i j≠ . Given a square matrix M, if we can find a matrix A such that 1−A MA  is a 
diagonal matrix, then we say that A diagonalizes M. Although not true in gen-
eral, the following theorem states that any n n×  matrix for which we can find n 
linearly independent eigenvectors can be diagonalized. 

Theorem 3.27. Let M be an n n×  matrix having eigenvalues 1 2, , , nλ λ λ , and 
suppose that there exist corresponding eigenvectors 1 2, , , nV V V  that form a 
linearly independent set. Then the matrix A given by  
 
   [ ]1 2 n=A V V V   (3.89) 
 
(i.e., the columns of the matrix A are the eigenvectors 1 2, , , nV V V ) diago-
nalizes M, and the main diagonal entries of the product 1−A MA  are the eigen-
values of M:  
 

   

1

21

0 0
0 0

0 0 n

λ
λ

λ

−

 
 
 =
 
 
 

A MA




   


.  (3.90) 

 
Conversely, if there exists an invertible matrix A such that 1−A MA  is a diago-
nal matrix, then the columns of A must be eigenvectors of M, and the main di-
agonal entries of 1−A MA  are the corresponding eigenvalues of M. 

Proof. We first examine the product MA. Since the j-th column of A is the ei-
genvector jV , the j-th column of MA is equal to jMV . Since jV  is an eigenvector, 
we have j j jλ=MV V , so the product MA can be written as 

 

[ ]

[ ]

1 1 2 2

1

2
1 2

0 0
0 0

0 0

n n

n

n

λ λ λ
λ

λ

λ

=

 
 
 =
 
 
 

MA V V V

V V V






   


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1

2

0 0
0 0

.

0 0 n

λ
λ

λ

 
 
 =
 
 
 

A




   


 (3.91) 

Since the eigenvectors jV  are linearly independent, the matrix A is invertible, and 
the product 1−A MA  can be written as 

 

1 1

2 21 1

0 0 0 0
0 0 0 0

0 0 0 0n n

λ λ
λ λ

λ λ

− −

   
   
   = =
   
   
   

A MA A A

 
 

       
 

. (3.92) 

Now we prove the converse assertion that any invertible matrix A that diag-
onalizes M must be composed of the eigenvectors of M. Suppose that D is an 
n n×  diagonal matrix such that 1−=D A MA for some n n×  matrix A. Then we 
may write 

 =AD MA. (3.93) 

Let jV  denote the j-th column of A, and let 1 2, , , nd d d  be the main diagonal en-
tries of D. The product AD is given by 

 

[ ]

[ ]

1

2
1 2

1 1 2 2

0 0
0 0

0 0
,

n

n

n n

d
d

d
d d d

 
 
 =
 
 
 

=

AD V V V

V V V





   


  (3.94) 

and the product MA is given by 

 [ ]1 2 n=MA MV MV MV . (3.95) 

Equating the j-th column of AD with the j-th column of MA demonstrates that 
j j jd=MV V , and thus each jV  is an eigenvector of M corresponding to the ei-

genvalue jd .  
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 Since the eigenvectors of a symmetric matrix M are orthogonal, the matrix A 
whose columns are composed of unit-length eigenvectors of M is an orthogonal 
matrix and therefore satisfies 1 T− =A A . The diagonal matrix D consisting of the 
eigenvalues of a symmetric matrix M can thus be expressed as 

 T=D A MA. (3.96) 

Example 3.28. Find a matrix that diagonalizes the matrix  
 

  
2 1 0
1 1 0
0 0 1

 
 =  

−  

M .  (3.97) 

Solution. The characteristic polynomial for M is 

 
( )

( )( )
3 2

2

det 2 2 1

1 3 1

λ λ λ λ
λ λ λ

− = − + + −

= − + − +

M I

. (3.98) 

The roots of this polynomial give us the eigenvalues 

 

1

2

3

1

3 5
2

3 5
2

λ

λ

λ

= −

+=

−= . (3.99) 

The eigenvector 1V  corresponding to the eigenvalue 1λ  is given by the solution to 
the homogeneous linear system 

 1

3 1 0 0
1 2 0 0
0 0 0 0

   
   =   
      

V . (3.100) 

Reducing the coefficient matrix gives us 

 1

1 0 0 0
0 1 0 0
0 0 0 0

   
   =   
      

V , (3.101) 
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and the solution is thus given by 

 1

0
0
1

a
 
 =  
  

V . (3.102) 

For the eigenvalue 2λ , we need to solve the system 

 2

1 5 1 0
2 0

1 51 0 0
2

0
5 50 0

2

 −
 
    − −  =        − −
 
 

V . (3.103) 

This reduces to 

 2

1 51 0
2 0

0 0 1 0
0

0 0 0

 − −
 
      =        
 
 

V , (3.104) 

and our second eigenvector is given by 

 2

1 5
2
1
0

b

 +
 
 

=  
  

V . (3.105) 

Similarly, the eigenvector 3V  is equal to 

 3

1 5
2
1
0

c

 −
 
 

=  
  

V . (3.106) 
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We choose the constants a, b, and c so that the eigenvectors have unit length. A 
quick test verifies that the eigenvectors are orthogonal as expected since the ma-
trix M is symmetric. Define the matrix A as 

 

1 2 3

1 2 3

0 0.851 0.526
0 0.526 0.851
1 0 0

 =  
 

− 
 ≈  
  

V V V
A

V V V

. (3.107) 

A is an orthogonal matrix that diagonalizes M: 

 1 T

1 0 0

3 50 0
2

3 50 0
2

−

 
− 
 
 += =  
 
 −
  

A MA A MA .  (3.108) 

Chapter 3 Summary 

Matrix Products 

If F is an n m×  matrix and G is an m p×  matrix, then the product FG is an n p×  
matrix whose ( ),i j  entry is given by 

 ( )
1

m

ij ik kj
k

F G
=

=FG . 

Determinants 

The determinant of an n n×  matrix M is given by the formulas 

 ( )
1

det
n

ik ik
i

M C
=

=M M  

and 
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 ( )
1

det
n

kj kj
j

M C
=

=M M , 

where ( )ijC M  is the cofactor of ijM  defined by ( ) ( ) { },1 det i ji j
ijC += −M M . 

The determinant of a 2 2×  matrix is given by 

 
a b

ad bc
c d

= − , 

and the determinant of a 3 3×  matrix is given by 

 ( ) ( )
( )

11 12 13

21 22 23 11 22 33 23 32 12 21 33 23 31

31 32 33 13 21 32 22 31 .

a a a
a a a a a a a a a a a a a
a a a a a a a a

= − − −
+ −

 

Matrix Inverses 

An n n×  matrix M is invertible if and only if the columns of M form a linearly 
independent set. Equivalently, M is invertible if and only if det 0≠M . 

The entries of the inverse G of an n n×  matrix F can be calculated by using the 
explicit formula 

 ( )
det

ji
ij

C
=

F
G

F
. 

Using this formula, the inverse of a 2 2×  matrix A is given by 

 22 121

21 11

1
det

A A
A A

− − =  − 
A

A
, 

and the inverse of a 3 3×  matrix B is given by 

 
22 33 23 32 13 32 12 33 12 23 13 22

1
23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

1
det

B B B B B B B B B B B B
B B B B B B B B B B B B
B B B B B B B B B B B B

−

− − − 
 = − − − 

− − −  

B
B

. 

Eigenvalues and Eigenvectors 

The eigenvalues of an n n×  matrix M are equal to the roots of the characteristic 
polynomial given by 
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 ( )det λ−M I . 

An eigenvector V associated with the eigenvalue λ of the matrix M is given by 
the solution to the homogeneous linear system 

 ( )λ− =M I V 0. 

The eigenvalues of a real symmetric matrix are real, and the eigenvectors corre-
sponding to distinct eigenvalues of a real symmetric matrix are orthogonal. 

Diagonalization 

If 1 2, , , nV V V  are linearly independent eigenvectors of an n n×  matrix M, then 
the matrix A given by 

 [ ]1 2 n=A V V V  

diagonalizes M, meaning that 

 

1

21

0 0
0 0

0 0 n

λ
λ

λ

−

 
 
 =
 
 
 

A MA




   


, 

where 1 2, , , nλ λ λ  are the eigenvalues of M. 

Exercises for Chapter 3 

1. Calculate the determinants of the following matrices. 

(a) 1
2

2 7
3

 
 − 

 (b) 
0 0 1
0 1 0
1 0 0

 
 
 
  

 

(c) 

31
2 2

3 1
2 2

0
0

0 0 1

 
 − 
  

 (d) 
5 7 1

17 2 64
10 14 2

 
 
 
   

2. Calculate the inverses of the following matrices. 
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(a) 
2 0 0
0 3 0
0 0 4

 
 
 
  

 (b) 
1 0 0
0 2 2
3 0 8

 
 
 
  

 

(c) 
cos 0 sin

0 1 0
sin 0 cos

θ θ

θ θ

− 
 
 
  

 (d) 

1 0 0 4
0 1 0 3
0 0 1 7
0 0 0 1

 
 
 
 
 
 

 

3. Solve the following homogeneous linear system. 

 
4 3 2 0

3 0
2 3 4 0

x y z
x y z

x y z

+ + =
− − =

+ + =
 

4. Calculate the eigenvalues of the following matrix. 

 
2 0 0
5 2 3
4 3 2

 
 
 
−  

 

5. Let M be an n n×  matrix whose rows are given by the vectors 
T T T
1 2, , , nR R R . Prove that if the rows of M form a linearly independent set, 

then the rows of the matrix EM, where E is an elementary matrix, also form 
a linearly independent set. 

6. An upper triangular matrix M is one for which 0ijM =  whenever i j> . That 
is, all the entries below the main diagonal are zero. Prove that the determi-
nant of an upper triangular matrix is equal to the product of the entries on 
the main diagonal. 

7. Let D be an n n×  diagonal matrix whose main diagonal entries are 
1 2, , , nd d d  as shown below. Show that the inverse of D is also a diagonal 

matrix, and that its main diagonal entries are given by 1 21 ,1 , ,1 nd d d . 

 

1

2

0 0
0 0

0 0 n

d
d

d

 
 
 =
 
 
 

D




   

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Chapter 4 
Transforms 

Throughout any 3D graphics engine architecture, it is often necessary to trans-
form a set of vectors from one coordinate space to another. For instance, vertex 
coordinates for a model may be stored in object space, but need to be trans-
formed to camera space before the model can be rendered. In this chapter, we 
concern ourselves with linear transformations among different Cartesian coordi-
nate frames. Such transformations include simple scales and translations, as well 
as arbitrary rotations. 

4.1  Linear Transformations 

Suppose that we have established a 3D coordinate system C consisting of an 
origin and three coordinate axes, in which a point P has the coordinates , ,x y z . 
The values x, y, and z can be thought of as the distances that one must travel 
along each of the coordinate axes from the origin in order to reach the point P. 
Suppose now that we introduce a second coordinate system C′ in which coordi-
nates , ,x y z′ ′ ′  can be expressed as linear functions of coordinates , ,x y z  in C. 
That is, suppose we can write 

 

( )
( )
( )

1 1 1 1

2 2 2 2

3 3 3 3

, ,
, ,
, ,

x x y z U x V y W z T
y x y z U x V y W z T
z x y z U x V y W z T

′ = + + +
′ = + + +
′ = + + + . (4.1) 

This constitutes a linear transformation from C to C′ and can be written in matrix 
form as follows. 

 
1 1 1 1

2 2 2 2

3 3 3 3

x U V W x T
y U V W y T
z U V W z T

′       
       ′ = +       

′              

 (4.2) 
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The coordinates x′, y′, and z′ can be thought of as the distances that one must 
travel along the axes in C′ to reach the point P. The vector T represents the trans-
lation from the origin of C to the origin of C′, and the matrix whose columns are 
the vectors U, V, and W represents how the orientation of the coordinate axes is 
changed when transforming from C to C′. Assuming the transformation is invert-
ible, the linear transformation from C′ to C is given by 

 

1
1 1 1 1

2 2 2 2

3 3 3 3

x U V W x T
y U V W y T
z U V W z T

− ′         
        ′= −         ′                

. (4.3) 

 In Section 4.4, we will combine the 3 3×  matrix and translation vector T into 
a single 4 4×  transformation matrix. Before we reach that point, we will focus 
solely on linear transformations for which ≡T 0, in which case the vectors U, V, 
and W represent the images in C′ of the basis vectors 1,0,0 , 0,1,0 , and 0,0,1  
in C. 
 Multiple linear transformations can be concatenated and represented by a 
single matrix and translation. For example, vertex coordinates may need to be 
transformed from object space to world space and then from world space to cam-
era space. The two transformations are combined into a single transformation that 
maps object-space coordinates directly to camera-space coordinates. 

4.1.1  Orthogonal Matrices 

Most 3 3×  matrices arising in computer graphics applications are orthogonal. An 
orthogonal matrix is simply one whose inverse is equal to its transpose. 

Definition 4.1. An invertible n n×  matrix M is called orthogonal if and only if 
1 T− =M M . 

As the following theorem demonstrates, any matrix whose columns form an or-
thonormal set of vectors is orthogonal. 

Theorem 4.2. If the vectors 1 2, , , nV V V  form an orthonormal set, then the 
n n×  matrix constructed by setting the j-th column equal to jV  for all 1 j n≤ ≤  is 
orthogonal. 
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Proof. Suppose that the vectors 1 2, , , nV V V  form an orthonormal set, and let M 
be the n n×  matrix whose columns are given by the jV ’s. Since the jV ’s are or-
thonormal, i j ijδ⋅ =V V  where ijδ  is the Kronecker delta symbol. Since the ( ),i j  
entry of the matrix product TM M  is equal to the dot product i j⋅V V , we have 

T =M M I. Therefore, T 1−=M M .  

Orthogonal matrices also possess the property that they preserve lengths and an-
gles when they are used to transform vectors. A matrix M preserves length if for 
any vector P we have 

 =MP P . (4.4) 

A matrix that preserves lengths also preserves angles if for any two vectors 1P  
and 2P  we have 

 ( ) ( )1 2 1 2⋅ = ⋅MP MP P P . (4.5) 

The following theorem proves that an orthogonal matrix satisfies Equations (4.4) 
and (4.5). 

Theorem 4.3. If the n n×  matrix M is orthogonal, then M preserves lengths and 
angles. 

Proof. Let M be orthogonal. We will first show that the dot product between two 
vectors 1P  and 2P  is preserved by a transformation by M, and then use that result 
to show that M preserves lengths. Examining the dot product between the trans-
formed vectors gives us 

 ( ) ( ) ( ) T T T
1 2 1 2 1 2⋅ = =MP MP MP MP P M MP . (4.6) 

Since M is orthogonal, 1 T− =M M , so 

 T T T
1 2 1 2 1 2= = ⋅P M MP P P P P . (4.7) 

This also implies that the length of a vector P is preserved when transformed by 
the matrix M since 2 = ⋅P P P.  

 Since orthogonal matrices preserve lengths and angles, they preserve the 
overall structure of a coordinate system. Orthogonal matrices can thus represent 
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only combinations of rotations and reflections. Rotations are discussed in detail 
in Section 4.3. A reflection transform (also called an inversion transformation) 
refers to the operation performed when points are mirrored in a certain direction. 
For example, the matrix 

 
1 0 0
0 1 0
0 0 1

 
 
 

−  

 (4.8) 

reflects the z coordinate of a point across the x-y plane. 

4.1.2  Handedness 

In three dimensions, a basis  for a coordinate system given by the 3D vectors 
1V , 2V , and 3V  possesses a property called handedness. A right-handed basis is 

one for which ( )1 2 3 0× ⋅ >V V V . That is, in a right-handed coordinate system, the 
direction in which the cross product between 1V  and 2V  points (which follows the 
right hand rule) forms an acute angle with the direction in which 3V  points. If  
is an orthonormal right-handed basis, we have 1 2 3× =V V V . If ( )1 2 3 0× ⋅ <V V V , 
then the basis  is left-handed. 
 Performing an odd number of reflections reverses handedness. An even 
number of reflections is always equivalent to a rotation, so any series of reflec-
tions can always be regarded as a single rotation followed by at most one reflec-
tion. The existence of a reflection within a 3 3×  matrix can be detected by exam-
ining the determinant. If the determinant of a 3 3×  matrix M is negative, then a 
reflection is present, and M reverses the handedness of any set of basis vectors 
transformed by it. If the determinant is positive, then M preserves handedness. 
 An orthogonal matrix M can only have a determinant of 1 or 1− . If det 1=M , 
the matrix M represents a pure rotation. If det 1= −M , then the matrix M repre-
sents a rotation followed by a reflection. 

4.2  Scaling Transforms 

To scale a vector P by a factor of a, we simply calculate a′ =P P. In three dimen-
sions, this operation can also be expressed as the matrix product 

 
0 0

0 0
0 0

x

y

z

a P
a P

a P

   
   ′ =    
      

P . (4.9) 
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Figure 4.1. Nonuniform scaling. 

This is called a uniform scale. If we wish to scale a vector by different amounts 
along the x, y, and z axes, as shown in Figure 4.1, then we can use a matrix that is 
similar to the uniform scale matrix, but whose diagonal entries are not necessari-
ly all equal. This is called a nonuniform scale and can be expressed as the matrix 
product 

 
0 0

0 0
0 0

x

y

z

a P
b P

c P

   
   ′ =    
      

P . (4.10) 

 A slightly more complex scaling operation that one may wish to perform is a 
nonuniform scale that is applied along three arbitrary axes. Suppose that we want 
to scale by a factor a along the axis U, by a factor b along the axis V, and by a 
factor c along the axis W. Then we can transform from the ( ), ,U V W  coordinate 
system to the ( ), ,i j k  coordinate system, apply the scaling operation in this sys-
tem using Equation (4.10), and then transform back into the ( ), ,U V W  coordinate 
system. This gives us the following matrix product. 

 

10 0
0 0
0 0

x x x x x x x

y y y y y y y

z z z z z z z

U V W a U V W P
U V W b U V W P
U V W c U V W P

−
       
       ′ =        
              

P  (4.11) 

4.3  Rotation Transforms 

We can find 3 3×  matrices that rotate a coordinate system through an angle θ  
about the x, y, or z axis without much difficulty. We consider a rotation by a posi-
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tive angle about the axis A to be that which performs a counterclockwise rotation 
when the axis A is pointing toward us. 

 First, we will find a general formula for rotations in two dimensions. As 
shown in Figure 4.2, we can perform a 90-degree counterclockwise rotation of a 
2D vector P in the x-y plane by exchanging the x and y coordinates and negating 
the new x coordinate. Calling the rotated vector Q, we have ,y xP P= −Q . The 
vectors P and Q form an orthogonal basis for the x-y plane. We can therefore 
express any vector in the x-y plane as a linear combination of these two vectors. 
In particular, as shown in Figure 4.3, any 2D vector ′P  that results from the rota-
tion of the vector P through an angle θ  can be expressed in terms of its compo-
nents that are parallel to P and Q. Basic trigonometry lets us write 

 cos sinθ θ′ = +P P Q . (4.12) 

This gives us the following expressions for the components of ′P . 

 
cos sin
cos sin

x x y

y y x

P P θ P θ
P P θ P θ

′ = −
′ = +  (4.13) 

We can rewrite this in matrix form as follows. 

 
cos sin
sin cos

θ θ
θ θ

− ′ =   
P P (4.14) 

 The 2D rotation matrix in Equation (4.14) can be extended to a rotation about 
the z axis in three dimensions by taking the third row and column from the identi-
ty matrix. This ensures that the z coordinate of a vector remains fixed during a 
rotation about the z axis, as we would expect. The matrix ( )z θR  that performs a 
rotation through the angle θ  about the z axis is thus given by 

 ( )
cos sin 0
sin cos 0

0 0 1
z

θ θ
θ θ θ

− 
 =  
  

R . (4.15) 

 Similarly, we can derive the following 3 3×  matrices ( )x θR  and ( )y θR  that 
perform rotations through an angle θ  about the x and y axes, respectively: 
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( )

( )

1 0 0
0 cos sin
0 sin cos

cos 0 sin
0 1 0

sin 0 cos

x

y

θ θ θ
θ θ

θ θ
θ

θ θ

 
 = − 
  

 
 =  
−  

R

R . (4.16) 

x

y

,x y

,y x−

 

Figure 4.2. Rotation by 90 degrees in the x-y plane. 

θ

P

Q ′P
y

x

cosθ
P

sinθ
Q

 

Figure 4.3. A rotated vector ′P  can be expressed as the linear combination of the original 
vector P and the 90-degree counterclockwise rotation Q of the original vector. 
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4.3.1  Rotation About an Arbitrary Axis 

Suppose that we wish to rotate a vector P through an angle θ  about an arbitrary 
axis whose direction is represented by a unit vector A. We can decompose the 
vector P into components that are parallel to A and perpendicular to A as shown 
in Figure 4.4. Since the parallel component (the projection of P onto A) remains 
unchanged during the rotation, we can reduce the problem to that of rotating the 
perpendicular component of P about A. 
 Since A is a unit vector, we have the following simplified formula for the 
projection of P onto A. 

 ( )proj = ⋅A P A P A (4.17) 

The component of P that is perpendicular to A is then given by 

 ( )perp = − ⋅A P P A P A. (4.18) 

Once we rotate this perpendicular component about A, we will add the constant 
parallel component given by Equation (4.17) to arrive at our final answer. 
 The rotation of the perpendicular component takes place in the plane perpen-
dicular to the axis A. As before, we express the rotated vector as a linear combi-
nation of perp A P and the vector that results from a 90-degree counterclockwise 
rotation of perp A P about A. Fortunately, such an expression is easy to find. Let α 

P

A

( )⋅A P A

( )− ⋅P A P A

α

 
Figure 4.4. Rotation about an arbitrary axis. 
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be the angle between the original vector P and the axis A. Note that the length of 
perp A P is equal to sinαP  because it forms the side opposite the angle α shown 
in Figure 4.4. A vector of the same length that points in the direction that we 
want is given by ×A P. 
 We can now express the rotation of perp A P through an angle θ  as 

 ( )[ ] ( )cos sinθ θ− ⋅ + ×P A P A A P . (4.19) 

Adding projA P to this gives us the following expression for the rotation of the 
original vector P about the axis A. 

 ( ) ( )( )cos sin 1 cosθ θ θ′ = + × + ⋅ −P P A P A A P  (4.20) 

Replacing ×A P and ( )⋅A A P  in Equation (4.20) with their matrix equivalents 
given by Equations (2.25) and (2.20) respectively, we have 

 ( )

2

2

2

1 0 0 0
0 1 0 cos 0 sin
0 0 1 0

1 cos .

z y

z x

y x

x x y x z

x y y y z

x z y z z

A A
θ A A θ

A A

A A A A A
A A A A A θ
A A A A A

−   
   ′ = + −   
  −   
 
 + − 
  

P P P

P  (4.21) 

Combining these terms and setting cosc θ=  and sins θ=  gives us the following 
formula for the matrix ( )θAR  that rotates a vector through an angle θ  about the 
axis A. 

 ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2

2

2

1 1 1
1 1 1
1 1 1

x x y z x z y

x y z y y z x

x z y y z x z

c c A c A A sA c A A sA
θ c A A sA c c A c A A sA

c A A sA c A A sA c c A

+ − − − − + 
 = − + + − − − 
 − − − + + − 

AR  (4.22) 

4.4  Homogeneous Coordinates 

Up to this point, we have dealt only with transforms that can be expressed as the 
operation of a 3 3×  matrix on a three-dimensional vector. A series of such trans-
forms could be represented by a single 3 3×  matrix equal to the product of the 
matrices corresponding to the individual transforms. An important transform that 
has been left out is the translation operation. A coordinate system is translated in 
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space without otherwise affecting the orientation or scale of the axes by simply 
adding an offset vector. This operation cannot be expressed in terms of a 3 3×  
matrix. Thus, to transform a point P from one coordinate system to another, we 
usually find ourselves performing the operation 

 ′ = +P MP T, (4.23) 

where M is some invertible 3 3×  matrix and T is a 3D translation vector. Per-
forming two operations of the type shown in Equation (4.23) results in the rather 
messy equation 

 
( )

( )
2 1 1 2

2 1 2 1 2

′ = + +
= + +

P M M P T T

M M P M T T , (4.24) 

requiring that we keep track of the matrix component 1n n−M M  as well as the 
translation component 1n n n− +M T T  at each stage when concatenating n trans-
forms. 

4.4.1  Four-Dimensional Transforms 

Fortunately, there is a compact and elegant way to represent these transforms 
within a single mathematical entity. We can do this by extending our vectors to 
four-dimensional homogeneous coordinates and using 4 4×  matrices to transform 
them. A 3D point P is extended to four dimensions by setting its fourth coordi-
nate, which we call the w coordinate, equal to 1. We construct a 4 4×  transfor-
mation matrix F corresponding to the 3 3×  matrix M and the 3D translation T as 
follows. 

 

11 12 13

21 22 23

31 32 33

1 0 0 0 1

x

y

z

M M M T
M M M T
M M M T

   
   
   = =
   
   
   

M T
F

0

 (4.25) 

Multiplying this matrix by the vector , , ,1x y zP P P  transforms the x, y, and z co-
ordinates of the vector in exactly the same way as Equation (4.23) and leaves a 1 
in the w coordinate. Furthermore, multiplying two transformation matrices of the 
form shown in Equation (4.25) yields another matrix of the same form that is 
equivalent to the pair of transforms performed in Equation (4.24). 
 If we solve Equation (4.23) for P, we have 
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 1 1− −′= −P M P M T. (4.26) 

We would therefore expect the inverse of the 4 4×  matrix F from Equation (4.25) 
to be 

 

( )
( )
( )

1 1 1 1
11 12 13

1 1 1 1 1 1
21 22 231

1 1 1 1
31 32 33

1 0 0 0 1

x

y

z

M M M
M M M
M M M

− − − −

− − − − − −
−

− − − −

−   
   − −   = =   −
   
      

M T

M M T M T
F

M T

0

, (4.27) 

and the following computation verifies that this is true. 

 

( )

1 1
1

1 1

3
4

1 1

1

1

− −
−

− −

   
   −   =
   
   
   
 
 − + =
 
 
 
 
 
 = =
 
 
 

M T M M T
FF

0 0

MM M M T T

0

I 0
I

0

 (4.28) 

4.4.2  Points and Directions 

We have now come to a point where it is necessary to make a distinction between 
vectors that represent points in three-dimensional space and vectors that represent 
directions in three-dimensional space. Unlike points, direction vectors should 
remain invariant under translation. 
 To transform direction vectors using the same 4 4×  transformation matrices 
that we use to transform points, we extend direction vectors to four dimensions 
by setting the w coordinate to 0. This nullifies the fourth column of the matrix F 
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in Equation (4.25), leaving only the upper left 3 3×  portion of the matrix to affect 
the direction vector. 
 The difference between two points P and Q having a w coordinate of 1 re-
sults in a direction vector −Q P having a w coordinate of 0. This makes sense 
because −Q P represents the direction pointing from P to Q, which we would 
expect not to be affected by a translation. 

4.4.3  Geometrical Interpretation of the w Coordinate 

The w coordinates of the four-dimensional vectors with which we have been 
working so far have a meaning that goes beyond their utility during transfor-
mations using 4 4×  matrices. Before, we extended a three-dimensional point to 
four-dimensional space by adding a 1 in the w coordinate position. Now, we de-
fine a mapping that works in the reverse direction. Suppose we have a 4D point 

, , ,x y z w=P  whose w coordinate is not 0. Then we define the image of P in 
three-dimensional space, which we denote by P , as the projection of P into the 
three-dimensional space in which 1w =  using the formula 

 , ,x y z
w w w

=P . (4.29) 

As shown in Figure 4.5 (but without the z axis to make visualization easier), the 
3D point P  corresponds to the point where the line connecting the point P to the 
origin intersects the space where 1w = . Thus, any scalar multiple of the 4D vector 
P represents the same point in three-dimensional space. The importance of this 
projection in 3D graphics is discussed in detail in Section 5.5. 

4.5  Transforming Normal Vectors 

In addition to its position in space, a vertex belonging to a polygonal model usu-
ally carries additional information about how it fits into the surrounding surface. 
In particular, a vertex may have a tangent vector and a normal vector associated 
with it. When we transform a model, we need to transform not only the vertex 
positions, but these vectors as well. 
 Tangent vectors can often be calculated by taking the difference between one 
vertex and another, and thus we would expect that a transformed tangent vector 
could be expressed as the difference between two transformed points. If M is a 
3 3×  matrix with which we transform a vertex position, then the same matrix M 
can be used to correctly transform the tangent vector at that vertex. (We limit 
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, , ,x y z w=P

y

x

w

wPP 1w =

 

Figure 4.5. A 4D point P is projected into three-dimensional space by calculating the 
point where the line connecting the point to the origin intersects the space where 1w = . 

ourselves to 3 3×  matrices in this section since tangent and normal directions are 
unaffected by translations.) Some care must be taken when transforming normal 
vectors, however. Figure 4.6 shows what can happen when a nonorthogonal ma-
trix M is used to transform a normal vector. The transformed normal can often 
end up pointing in a direction that is not perpendicular to the transformed surface. 
 Since tangents and normals are perpendicular, the tangent vector T and the 
normal vector N associated with a vertex must satisfy the equation 0⋅ =N T . We 
must also require that this equation be satisfied by the transformed tangent vector 

′T  and the transformed normal vector ′N . Given a transformation matrix M, we 
know that ′ =T MT. We would like to find the transformation matrix G with 
which the vector N should be transformed so that 

 ( ) ( ) 0′ ′⋅ = ⋅ =N T GN MT . (4.30) 

A little algebraic manipulation gives us 
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Figure 4.6. Transforming a normal vector N with a nonorthogonal matrix M. 

 
( ) ( ) ( ) ( )T

T T .

⋅ =

=

GN MT GN MT

N G MT  (4.31) 

Since T 0=N T , the equation T T 0=N G MT  is satisfied if T =G M I. We therefore 
conclude that ( )1 T−=G M . This tells us that a normal vector is correctly trans-
formed using the inverse transpose of the matrix used to transform points. Vec-
tors that must be transformed in this way are called covariant vectors, and vec-
tors that are transformed in the ordinary fashion using the matrix M (such as 
points and tangent vectors) are called contravariant vectors. 
 If the matrix M is orthogonal, then 1 T− =M M , and thus ( )1 T− =M M. There-
fore, the inverse transpose operation required to transform normal vectors can be 
avoided when M is known to be orthogonal, as is the case when M is equal to 
one of the rotation matrices xR , yR , zR , or AR  presented earlier in this chapter. 

4.6  Quaternions 

A quaternion is an alternative mathematical entity that 3D graphics programmers 
use to represent rotations. The use of quaternions has advantages over the use of 
rotation matrices in many situations because quaternions require less storage 
space, concatenation of quaternions requires fewer arithmetic operations, and 
quaternions are more easily interpolated for producing smooth animation. 

4.6.1  Quaternion Mathematics 

The set of quaternions, known by mathematicians as the ring of Hamiltonian qua-
ternions and denoted by , can be thought of as a four-dimensional vector space 
for which an element q has the form 
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 , , ,w x y z w xi yj zk= = + + +q . (4.32) 

A quaternion is often written as s= +q v, where s represents the scalar part cor-
responding to the w-component of q, and v represents the vector part correspond-
ing to the x, y, and z components of q. 
 The set of quaternions is a natural extension of the set of complex numbers. 
Multiplication of quaternions is defined using the ordinary distributive law and 
adhering to the following rules when multiplying the “imaginary” components i, 
j, and k. 

 

2 2 2 1i j k
ij ji k
jk kj i
ki ik j

= = = −
= − =
= − =
= − =

 (4.33) 

Multiplication of quaternions is not commutative, and so we must be careful to 
multiply terms in the correct order. For two quaternions 1 1 1 1 1w x i y j z k= + + +q  
and 2 2 2 2 2w x i y j z k= + + +q , the product 1 2q q  is given by 

 

( )
( )
( )
( )

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

w w x x y y z z
w x x w y z z y i
w y x z y w z x j
w z x y y x z w k

= − − −
+ + + −
+ − + +
+ + − +

q q

. (4.34) 

When written in scalar-vector form, the product of two quaternions 1 1 1s= +q v  
and 2 2 2s= +q v  can be written as 

 1 2 1 2 1 2 1 2 2 1 1 2s s s s= − ⋅ + + + ×q q v v v v v v . (4.35) 

 Like complex numbers (see Appendix A), quaternions have conjugates, and 
they are defined as follows. 

Definition 4.4. The conjugate of a quaternion s= +q v, denoted by q, is given 
by s= −q v. 

A short calculation reveals that the product of a quaternion q and its conjugate q 
is equal to the dot product of q with itself, which is also equal to the square of the 
magnitude of q. That is, 
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 2 2q= = ⋅ = =qq qq q q q . (4.36) 

This leads us to a formula for the multiplicative inverse of a quaternion. 

Theorem 4.5. The inverse of a nonzero quaternion q, denoted by 1−q , is given 
by  
 

  1
2q

− = q
q . (4.37) 

Proof. Applying Equation (4.36), we have 

 
2

1
2 2 1q

q q
− = = =qq

qq  (4.38) 

and 

 
2

1
2 2 1q

q q
− = = =qq

q q , (4.39) 

thus proving the theorem.  

4.6.2  Rotations with Quaternions 

A rotation in three dimensions can be thought of as a function φ that maps 3  
onto itself. For φ to represent a rotation, it must preserve lengths, angles, and 
handedness. Length preservation is satisfied if 

 ( )φ =P P . (4.40) 

The angle between the line segments connecting the origin to any two points 1P  
and 2P  is preserved if 

 ( ) ( )1 2 1 2φ φ⋅ = ⋅P P P P . (4.41) 

Finally, handedness is preserved if 

 ( ) ( ) ( )1 2 1 2φ φ φ× = ×P P P P . (4.42) 

Extending the function φ to a mapping from  onto itself by requiring that 
( ) ( )φ s s φ+ = +v v  allows us to rewrite Equation (4.41) as 
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 ( ) ( ) ( )1 2 1 2φ φ φ⋅ = ⋅P P P P . (4.43) 

Treating 1P  and 2P  as quaternions with zero scalar part enables us to combine 
Equations (4.42) and (4.43) since 1 2 1 2 1 2= − ⋅ + ×P P P P P P . We can therefore 
write the angle preservation and handedness preservation requirements as the 
single equation 

 ( ) ( ) ( )1 2 1 2φ φ φ=P P P P . (4.44) 

A function φ that satisfies this equation is called a homomorphism. 
 The class of functions given by 

 ( ) 1φ −=q P qPq , (4.45) 

where q is a nonzero quaternion, satisfies the requirements stated in Equations 
(4.40) and (4.44), and thus represents a set of rotations. This fact can be proven 
by first observing that the function φq preserves lengths because 

 ( ) 1 1
2φ

q
− −= = = =q

q q
P qPq q P q P P . (4.46) 

Furthermore, φq is a homomorphism since 

 ( ) ( ) ( )1 1 1
1 2 1 2 1 2 1 2φ φ φ− − −= = =q q qP P qP q qP q qP P q P P . (4.47) 

 We now need to find a formula for the quaternion q corresponding to a rota-
tion through the angle θ  about the axis A. A quick calculation shows that aφ φ=q q 
for any nonzero scalar a, so to keep things as simple as possible, we will concern 
ourselves only with unit quaternions. 
 Let s= +q v be a unit quaternion. Then 1 s− = −q v, and given a point P, we 
have 

 

( ) ( )
( )( )

( ) ( )
( )

1

2

2 2 .

s s
s s

s s s s
s s

− = + −
= − ⋅ + + × −

= − ⋅ + + × + ⋅ − − ×

= + × + ⋅ − × ×

qPq v P v

v P P v P v

v P P v P v P v Pv v P v

P v P v P v v P v  (4.48) 

After applying Theorem 2.9(f) to the cross product × ×v P v, this becomes 

 ( ) ( )1 2 2 2 2s s− = − + × + ⋅qPq v P v P v P v. (4.49) 
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Setting t=v A, where A is a unit vector, lets us rewrite this equation as 

 ( ) ( )1 2 2 22 2s t st t− = − + × + ⋅qPq P A P A P A. (4.50) 

When we compare this to the formula for rotation about an arbitrary axis given in 
Equation (4.20), we can infer the following equalities. 

 

2 2

2

cos
2 sin
2 1 cos

s t θ
st θ
t θ

− =
=
= −  (4.51) 

The third equality gives us 

 1 cos sin
2 2
θ θt −= = . (4.52) 

The first and third equalities together tell us that 2 2 1s t+ = , so we must have 
( )cos 2s θ= . (The fact that sin 2 2sin cosθ θ θ=  verifies that the second equality 

is satisfied by these values for s and t.) 
 We have now determined that the unit quaternion q corresponding to a rota-
tion through the angle θ  about the axis A is given by 

 cos sin
2 2
θ θ= +q A . (4.53) 

It should be noted that any scalar multiple of the quaternion q (in particular, −q) 
also represents the same rotation since 

 ( ) ( )
1

1 1a a a
a

−
− −= =q

q P q qP qPq . (4.54) 

 The product of two quaternions 1q  and 2q  also represents a rotation. Specifi-
cally, the product 1 2q q  represents the rotation resulting from first rotating by 2q  
and then by 1q . Since 

 ( ) ( ) ( ) 11 1
1 2 2 1 1 2 1 2

−− − =q q Pq q q q P q q , (4.55) 

we can concatenate as many quaternions as we want to produce a single quater-
nion representing the entire series of rotations. Multiplying two quaternions to-
gether requires 16 multiply-add operations, whereas multiplying two 3 3×  matri-
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ces together requires 27. Thus, some computational efficiency can be gained by 
using quaternions in situations in which many rotations may be applied to an 
object. 
 It is often necessary to convert a quaternion into the equivalent 3 3×  rotation 
matrix, for instance, to pass the transform for an object to a 3D graphics library. 
We can determine the formula for the matrix corresponding to the quaternion 

s t= +q A by using Equations (2.25) and (2.20) to write Equation (4.50) in matrix 
form. (This is nearly identical to the technique used in Section 4.3.1.) This gives 
us 

 

2 2

1 2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

0 0 0 2 2
0 0 2 0 2
0 0 2 2 0

2 2 2
2 2 2 .
2 2 2

z y

z x

y x

x x y x z

x y y y z

x z y z z

s t stA stA
s t stA stA

s t stA stA

t A t A A t A A
t A A t A t A A
t A A t A A t A

−

− −   
   = − + −   
   − −   

 
 +  
  

qPq P P

P  (4.56) 

Writing the quaternion q as the four-dimensional vector , , ,w x y z=q , we have 
w s= , xx tA= , yy tA= , and zz tA= . Since A is a unit vector,  

 2 2 2 2 2 2x y z t A t+ + = = . (4.57) 

Rewriting Equation (4.56) in terms of the components w, x, y, and z gives us 

 

2 2 2 2

1 2 2 2 2

2 2 2 2

2

2

2

0 0
0 0
0 0

0 2 2 2 2 2
2 0 2 2 2 2 .
2 2 0 2 2 2

w x y z
w x y z

w x y z

wz wy x xy xz
wz wx xy y yz
wy wx xz yz z

−

− − − 
 = − − − 
 − − − 

−   
   + − +   
   −   

qPq P

P P  (4.58) 

Since q is a unit quaternion, we know that 2 2 2 2 1w x y z+ + + = , so we can write 

 2 2 2 2 2 2 21 2 2 2w x y z x y z− − − = − − − . (4.59) 

Using this equation and combining the three matrices gives us the following for-
mula for the matrix qR , the rotation matrix corresponding to the quaternion q: 
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2 2

2 2

2 2

1 2 2 2 2 2 2
2 2 1 2 2 2 2
2 2 2 2 1 2 2

y z xy wz xz wy
xy wz x z yz wx
xz wy yz wx x y

− − − + 
 = + − − − 
 − + − − 

qR . (4.60) 

4.6.3  Spherical Linear Interpolation 

Because quaternions are represented by vectors, they are well suited for interpo-
lation. When an object is being animated, interpolation is useful for generating 
intermediate orientations that fall between precalculated key frames. 
 The simplest type of interpolation is linear interpolation. For two unit qua-
ternions 1q  and 2q , the linearly interpolated quaternion ( )tq  is given by 

 ( ) ( ) 1 21t t t= − +q q q . (4.61) 

The function ( )tq  changes smoothly along the line segment connecting 1q  and 2q  
as t varies from 0 to 1. As shown in Figure 4.7, ( )tq  does not maintain the unit 
length of 1q  and 2q , but we can renormalize at each point by instead using the 
function 

 ( ) ( )
( )

1 2

1 2

1
1

t tt
t t

− +
=

− +
q q

q
q q

. (4.62) 

( )tq

1q

2q

( )
( )
t
t

q
q

 
Figure 4.7. Linear interpolation of quaternions. 
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t

θ

( )( )1
1cos t− ⋅q q

 
Figure 4.8. Graph of ( )( )1

1cos t− ⋅q q , where ( )tq  is the normalized linear interpolation 
function given by Equation (4.62). 

Now we have a function that traces out the arc between 1q  and 2q , shown in Fig-
ure 4.7 as a two-dimensional cross-section of what is actually occurring on the 
surface of the four-dimensional unit hypersphere. 
 Although linear interpolation is efficient, it has the drawback that the func-
tion ( )tq  given by Equation (4.62) does not trace out the arc between 1q  and 2q  at 
a constant rate. The graph of ( )( )1

1cos t− ⋅q q  shown in Figure 4.8 demonstrates 
that the rate at which the angle between ( )tq  and 1q  changes is relatively slow at 
the endpoints where 0t =  and 1t = , and is the fastest where 1

2t = . 
 We would like to find a function ( )tq  that interpolates the quaternions 1q  and 

2q , preserves unit length, and sweeps through the angle between 1q  and 2q  at a 
constant rate. If 1q  and 2q  are separated by an angle θ , then such a function would 
generate quaternions forming the angle θt  between ( )tq  and 1q  as t varies from 0 
to 1. 
 Figure 4.9 shows the quaternion ( )tq  lying on the arc connecting 1q  and 2q , 
forming the angle θt  with 1q , and forming the angle ( )1θ t−  with 2q . We can 
write ( )tq  as 

 ( ) ( ) ( )1 2t a t b t= +q q q  (4.63) 

by letting ( )a t  and ( )b t  represent the lengths of the components of ( )tq  lying 
along the directions 1q  and 2q . As shown in Figure 4.9(a), we can determine the 
length ( )a t  by constructing similar triangles. The perpendicular distance from 1q  
to the line segment connecting the origin to 2q  is equal to 1 sinθq . The perpen-
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dicular distance from ( )tq  to this line segment is equal to ( ) ( )sin 1t θ t−q . Using 
similar triangles, we have the relation 

 ( ) ( ) ( )
1 1

sin 1
sin

a t t θ t
θ

−
=

q

q q
. (4.64) 

Since 1 1=q  and ( ) 1t =q , we can simplify this to 

 ( ) ( )sin 1
sin
θ ta t
θ
−

= . (4.65) 

θt
( )1θ t−

( )a t

sinθ

( )sin 1θ t−

1q

2q

( )tq

O

θt
( )1θ t−

1q

2q

( )tq

O ( )b t

sinθ

sinθt

(a)

(b)

 
Figure 4.9. Similar triangles can be used to determine the length of (a) the component of 

( )tq  that lies along the direction of 1q  and (b) the component of ( )tq  that lies along the 
direction of 2q . 
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Figure 4.9(b) shows the same procedure used to find the length ( )b t , which is 
given by 

 ( ) sin
sin
θtb t
θ

= . (4.66) 

 We can now define the spherical linear interpolation function ( )tq  as 
follows. 

 ( ) ( )
1 2

sin 1 sin
sin sin
θ t θtt
θ θ
−= +q q q  (4.67) 

The angle θ  is given by 

 ( )1
1 2cosθ −= ⋅q q , (4.68) 

and thus, sinθ  can be replaced by 

 ( ) 2
1 2sin 1θ = − ⋅q q  (4.69) 

if desired. Since the quaternions q and −q represent the same rotation, the signs 
of the quaternions 1q  and 2q  are usually chosen such that 1 2 0⋅ ≥q q . This also 
ensures that the interpolation takes place over the shortest path. 

Chapter 4 Summary 

Orthogonal Matrices 

An invertible n n×  matrix M is called orthogonal if and only if 1 T− =M M . A ma-
trix whose columns form an orthonormal set of vectors is orthogonal. Orthogonal 
matrices preserve lengths and angles, and thus perform only rotations and 
reflections. 

Scaling Transforms 

A scaling operation in three dimensions is performed using the transformation 
matrix 

 
0 0

0 0 .
0 0

a
b

c

 
 
 
  
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If a b c= = , then this matrix represents a uniform scale, which can also be per-
formed using scalar multiplication. 

Rotation Transforms 

Rotations through an angle θ  about the x, y, and z axes are performed using the 
following transformation matrices. 

 

( )

( )

( )

1 0 0
0 cos sin
0 sin cos
cos 0 sin

0 1 0
sin 0 cos

cos sin 0
sin cos 0

0 0 1

x

y

z

θ θ θ
θ θ

θ θ
θ

θ θ
θ θ

θ θ θ

 
 = − 
  
 
 =  
−  

− 
 =  
  

R

R

R

 

A rotation through an angle θ  about an arbitrary axis A is performed using the 
transformation matrix 

 ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2

2

2

1 1 1
1 1 1
1 1 1

x x y z x z y

x y z y y z x

x z y y z x z

c c A c A A sA c A A sA
θ c A A sA c c A c A A sA

c A A sA c A A sA c c A

+ − − − − + 
 = − + + − − − 
 − − − + + − 

AR , 

where cosc θ=  and sins θ= . 

Homogeneous Coordinates 

A vector P representing a three-dimensional point is extended to four-
dimensional homogeneous coordinates by setting the w coordinate to 1. A vector 
D representing a three-dimensional direction is extended to homogeneous coor-
dinates by setting the w coordinate to 0. 

A 3 3×  transformation matrix M and a 3D translation vector T can be combined 
using the 4 4×  transformation matrix 
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11 12 13

21 22 23

31 32 33

0 0 0 1

x

y

z

M M M T
M M M T
M M M T

 
 
 =
 
 
 

F . 

Normal vectors must be transformed using the inverse transpose of the matrix 
used to transform points. 

Quaternions 

The unit quaternion corresponding to a rotation through an angle θ  about the unit 
axis A is given by 

 cos sin
2 2
θ θ= +q A . 

A quaternion q applies a rotation transformation to a point P using the homo-
morphism 1−′ =P qPq . The transformation performed by the quaternion 

, , ,w x y z=q  is equivalent to the transformation performed by the 3 3×  matrix 

 

2 2

2 2

2 2

1 2 2 2 2 2 2
2 2 1 2 2 2 2
2 2 2 2 1 2 2

y z xy wz xz wy
xy wz x z yz wx
xz wy yz wx x y

− − − + 
 = + − − − 
 − + − − 

qR . 

Spherical Linear Interpolation 

Two quaternions 1q  and 2q  are spherically interpolated using the formula 

 ( ) ( )
1 2

sin 1 sin
sin sin
θ t θtt
θ θ
−= +q q q , 

where 0 1t≤ ≤ . 

Exercises for Chapter 4 

1. Calculate the 3 3×  rotation matrices that perform a rotation of 30 degrees 
about the x, y, and z axes. 

2. Exhibit a unit quaternion that performs a rotation of 60 degrees about the 
axis 0,3,4 . 
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3. Prove Equation (4.35). 

4. Let N be the normal vector to a surface at a point P, and let S and T be tan-
gent vectors at the point P such that × =S T N. Given an invertible 3 3×  ma-
trix M, show that ( ) ( ) ( )( ) ( )1 Tdet −× = ×MS MT M M S T , supporting the fact 
that normals are correctly transformed by the inverse transpose of the matrix 
M. [Hint. Use Equation (2.25) to write the cross product ( ) ( )×MS MT  as 

 ( ) ( )
( ) ( )

( ) ( )
( ) ( )

0
0

0

z y

z x

y x

− 
 × = − 
−  

MS MS

MS MT MS MS MT

MS MS

. 

Then find a matrix G such that 

 
( ) ( )

( ) ( )
( ) ( )

0 0
0 0

0 0

z y z y

z x z x

y x y x

S S
S S
S S

− −   
   − = −   
− −      

MS MS

G MS MS M

MS MS

, 

and finally use Equation (3.65) to show that ( )( )1 Tdet −=G M M .] 
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Chapter 5 

Geometry for 3D Engines 

This chapter develops the mathematics that describe lines and planes in three-
dimensional space, and it discusses topics such as finding the intersection of two 
such entities and calculating the distance between them. We then introduce the 
view frustum and examine some of the important mathematics governing the vir-
tual camera through which we see our game universe. 

5.1  Lines in 3D Space 

Given two 3D points 1P  and 2P , we can define the line that passes through these 
points parametrically as 

 ( ) ( ) 1 21t t t= − +P P P , (5.1) 

where the parameter t ranges over all real numbers. The line segment connecting 
1P  and 2P  corresponds to values of t between 0 and 1. 

 A ray is a line having a single endpoint S and extending to infinity in a given 
direction V. Rays are typically expressed by the parametric equation 

 ( )t t= +P S V, (5.2) 

where t is allowed to be greater than or equal to zero. This equation is often used 
to represent lines as well. Note that this equation is equivalent to Equation (5.1) if 
we let 1=S P  and 2 1= −V P P . 

5.1.1  Distance Between a Point and a Line 

The distance d from a point Q to a line defined by the endpoint S and the direc-
tion V can be found by calculating the magnitude of the component of −Q S that 
is perpendicular to the line, as shown in Figure 5.1. Using the Pythagorean theo- 
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d

S V

Q

−Q S

( )proj −V Q S  
Figure 5.1. The distance d from a point Q to the line t+S V is found by calculating the 
length of the perpendicular component of −Q S with respect to the line. 

rem, the squared distance between the point Q and the line can be obtained by 
subtracting the square of the projection of −Q S onto the direction V from the 
square of −Q S. This gives us 

 

( ) ( )[ ]

( ) ( )

2 2 2

2
2

2

projd

V

= − − −

− ⋅ = − −   

VQ S Q S

Q S V
Q S V . (5.3) 

Simplifying a bit and taking the square root gives us the distance d that we 
desire: 

 ( ) ( )[ ] 2
2

2d
V

− ⋅
= − −

Q S V
Q S . (5.4) 

5.1.2  Distance Between Two Lines 

In two dimensions, two lines are either parallel or they intersect at a single point. 
In three dimensions, there are more possibilities. Two lines that are not parallel 
and do not intersect are called skew. A formula giving the minimum distance be-
tween points on skew lines can be found by using a little calculus. 
 Suppose that we have two lines, as shown in Figure 5.2, defined by the par-
ametric functions 

 
( )1 1 1 1 1

2 2 2 2 2( )
t t
t t

= +
= +

P S V

P S V , (5.5) 
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( )1 1tP

( )2 2tP

( ) ( )1 1 2 2t t−P P

 
Figure 5.2. The distance between skew lines ( )1 1tP  and ( )2 2tP  is calculated by finding 
the parameters 1t  and 2t  minimizing ( ) ( )1 1 2 2t t−P P . 

where 1t  and 2t  range over all real numbers. Then the squared distance between a 
point on the line ( )1 1tP  and a point on the line ( )2 2tP  can be written as the fol-
lowing function of the parameters 1t  and 2t . 

 ( ) ( ) ( ) 2
1 2 1 1 2 2,f t t t t= −P P  (5.6) 

Expanding the square and substituting the definitions of the functions ( )1 1tP  and 
( )2 2tP  gives us 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

( )

2 2
1 2 1 1 2 2 1 1 2 2

2 2
1 1 1 2 2 2

1 2 1 1 2 2 2 1 1 2 1 2

2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 1 2 2 2 1 1 2 1 2

, 2

2

2 2
2

f t t t t t t
t t

t t t t
S t V t S t V t

t t t t

= + − ⋅

= + + +
− ⋅ + ⋅ + ⋅ + ⋅

= + + ⋅ + + + ⋅
− ⋅ + ⋅ + ⋅ + ⋅

P P P P

S V S V

S S V S V S V V

S V S V

S S V S V S V V . (5.7) 

The minimum value attained by the function f can be found by setting partial 
derivatives with respect to 1t  and 2t  equal to zero. This provides us with the 
equations 

 2
1 1 1 1 1 2 2 1 2

1
2 2 2 2 0f t V t

t
∂ = + ⋅ − ⋅ − ⋅ =
∂

S V V S V V  (5.8) 

and 

 2
2 2 2 2 2 1 1 1 2

2
2 2 2 2 0f t V t

t
∂ = + ⋅ − ⋅ − ⋅ =
∂

S V V S V V . (5.9) 
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After removing a factor of two, we can write these equations in matrix form as 
follows. 

 
( )
( )

2
2 11 1 2 1 1

2
2 11 2 2 2 2

V t
V t

− ⋅− ⋅     
=      − ⋅⋅ −     

S S VV V

S S VV V
 (5.10) 

Solving this equation for 1t  and 2t  gives us 

 

( )
( )

( )
( )
( )

12
2 11 1 1 2 1

2
2 12 1 2 2 2

2
2 12 1 2 1

2 2 2 2
2 11 2 1 2 1 2 1 2

1

t V
t V

V
V V V

− − ⋅− ⋅     
=      − ⋅⋅ −     

− ⋅− ⋅   
=    − ⋅⋅ − − ⋅   

S S VV V

S S VV V

S S VV V

S S VV V V V
. (5.11) 

Plugging these values of 1t  and 2t  back into the function f gives us the minimum 
squared distance between the two lines. Taking a square root gives us the actual 
distance that we want. If the direction vectors 1V  and 2V  have unit length, then 
Equation (5.11) simplifies a bit since 2

1 1V =  and 2
2 1V = . 

 If the quantity ( ) 2 2 2
1 2 1 2V V⋅ −V V  is zero, then the lines are parallel, in which 

case the distance between the two lines is equal to the distance between any point 
on one of the lines and the other line. This is illustrated in Figure 5.3. In particu-
lar, we can use Equation (5.3) to measure the distance from the point 1S  to the 
line ( )2 2tP  or the distance from the point 2S  to the line ( )1 1tP . 

1S

( )1 1tP

( )2 2tP

 
Figure 5.3. The distance between parallel lines is given by the distance from a point on 
one line to the other line. 
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5.2  Planes in 3D Space 

Given a 3D point P and a normal vector N, the plane passing through the point P 
and perpendicular to the direction N can be defined as the set of points Q such 
that ( ) 0⋅ − =N Q P . As shown in Figure 5.4, this is the set of points whose differ-
ence with P is perpendicular to the normal direction N. The equation for a plane 
is commonly written as 

 0Ax By Cz D+ + + = , (5.12) 

where A, B, and C are the x, y, and z components of the normal vector N, and 
D = − ⋅N P. As shown in Figure 5.5, the value D N  is the distance by which 
the plane is offset from a parallel plane that passes through the origin. 
 The normal vector N is often normalized to unit length because in that case 
the equation 

 d D= ⋅ +N Q  (5.13) 

gives the signed distance from the plane to an arbitrary point Q. If 0d = , then the 
point Q lies in the plane. If 0d > , we say that the point Q lies on the positive side 
of the plane since Q would be on the side in which the normal vector points. 
Otherwise, if 0d < , we say that the point Q lies on the negative side of the plane. 
 It is convenient to represent a plane using a four-dimensional vector. The 
shorthand notation , DN  is used to denote the plane consisting of points Q satis-
fying 0D⋅ + =N Q . If we treat our three-dimensional points instead as four- 

N

Q
P

 
Figure 5.4. A plane is defined by the set of points Q whose difference with a point P, 
known to lie in the plane, is perpendicular to the normal direction N. 
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N

O

D N

 
Figure 5.5. The value of D in Equation (5.12) is proportional to the perpendicular dis-
tance from the origin to the plane. 

dimensional homogeneous points having a w coordinate of 1, then Equation 
(5.13) can be rewritten as d = ⋅L Q, where , D=L N . A point Q lies in the plane 
if 0⋅ =L Q . 

5.2.1  Intersection of a Line and a Plane 

Finding the point where a line intersects a plane is a common calculation per-
formed by 3D engines. In particular, it is used extensively during polygon clip-
ping, which is discussed in detail in Sections 8.4.1 and 9.2.2. 
 Let ( )t t= +P S V represent a line containing the point S and running parallel 
to the direction V. For a plane defined by the normal direction N and the signed 
distance D from the origin, we can find the point where the line intersects the 
plane by solving the equation 

 ( ) 0t D⋅ + =N P  (5.14) 
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for t. Substituting t+S V for ( )tP  gives us 

 ( ) 0t D⋅ + ⋅ + =N S N V , (5.15) 

and after solving this for t, we arrive at 

 ( )Dt − ⋅ +=
⋅

N S

N V
. (5.16) 

Plugging this value of t back into the line equation ( )t t= +P S V produces the 
point of intersection. If 0⋅ =N V , then the line is parallel to the plane (the plane 
normal N is perpendicular to the line direction V). In this case, the line lies in the 
plane itself if 0D⋅ + =N S ; otherwise, there is no intersection. 
 We may also express the value of t given in Equation (5.16) in terms of the 
four-dimensional representation of a plane. Given a plane , D=L N , we have 

 t ⋅= −
⋅

L S

L V
. (5.17) 

Since S is a point, its w coordinate is 1. However, since V is a direction vector, 
its extension to homogeneous coordinates requires that we assign it a w coordi-
nate of 0 (as discussed in Section 4.4.2). This confirms that Equation (5.17) is 
equivalent to Equation (5.16). 

5.2.2  Intersection of Three Planes 

Regions of space are often defined by a list of planes that form the boundary of a 
convex polyhedron. The edges and vertices belonging to this polyhedron can be 
found by performing a series of calculations that determine the points at which 
sets of three planes intersect. 
 Let 1 1 1, D=L N , 2 2 2, D=L N , and 3 3 3, D=L N  be three arbitrary planes. 
We can find a point Q that lies in all three planes by solving the following 
system. 

 

1

2

3

0
0
0

⋅ =
⋅ =
⋅ =

L Q

L Q

L Q  (5.18) 

This can be written in matrix form as 
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1

2

3

D
D
D

− 
 = − 
−  

MQ , (5.19) 

where the matrix M is given by 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

3 3 3

x y z

x y z

x y z

 
 =  
  

N N N

M N N N

N N N

. (5.20) 

Assuming that the matrix M is invertible, solving for the point Q as follows pro-
duces the unique point where the three planes intersect. 

 
1

1
2

3

D
D
D

−

− 
 = − 
−  

Q M  (5.21) 

If M is singular (i.e., det 0=M ), then the three planes do not intersect at a point. 
This happens when the three normal vectors all lie in the same plane, an example 
of which is shown in Figure 5.6. 

 
Figure 5.6. Three planes do not necessarily intersect at a point. 
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1N
2N

V
1 2= ×V N N

O
 

Figure 5.7. Two planes having normal vectors 1N  and 2N  intersect at a line running in the 
direction V. A point on this line can be found by finding the intersection point with a 
third plane passing through the origin and having normal V. 

 When two nonparallel planes 1 1 1, D=L N  and 2 2 2, D=L N  intersect, they 
do so at a line. As shown in Figure 5.7, the direction V in which the line of inter-
section runs is perpendicular to the normals of both planes and can thus be ex-
pressed by 1 2= ×V N N . To form a complete description of a line, we also need to 
provide a point that lies on the line. This can be accomplished by constructing a 
third plane 3 ,0=L V  that passes through the origin and whose normal direction 
is V. We can then solve for the point where all three planes intersect, which is 
guaranteed to exist in this situation. 
 Using Equation (5.21), we can compute a point Q that lies on the line of in-
tersection as follows. 

 
( ) ( ) ( )
( ) ( ) ( )

1
1 1 1 1

2 2 2 2

0

x y z

x y z

x y z

D
D

V V V

− −   
   = −   
      

N N N

Q N N N  (5.22) 

The line where the two planes 1L  and 2L  intersect is given by ( )t t= +P Q V. 

5.2.3  Transforming Planes 

Suppose that we wish to transform a plane using a 3 3×  matrix M and a 3D trans-
lation vector T. We know that we can transform the normal direction N using the 
inverse transpose of M, but we also have the signed distance from the origin D to 
worry about. If we know that a point P lies in the original plane, then we can cal-
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culate the signed distance D′ from the transformed plane to the origin using the 
equation 

 

( )( ) ( )
( )( ) ( )( )

1 T

1 T T 1 T T

T 1 T 1

1 .

D

D

−

− −

− −

−

′ = − ⋅ +

= − −

= − −
= − ⋅

M N MP T

M N MP M N T

N M MP N M T

N M T  (5.23) 

 Recall from Equation (4.27) that the inverse of the 4 4×  matrix F constructed 
from the 3 3×  matrix M and the 3D translation vector T is given by 

 
1 1

1

1

− −
−

 
 − =
 
 
 

M M T
F

0

. (5.24) 

We therefore have for the transpose of 1−F  

 ( ) ( )1 T
1 T

1 1

−
−

−

 
 
 =
 
 − 

M 0
F

M T

. (5.25) 

The quantity 1D −− ⋅N M T is exactly the dot product between the fourth row of 
( )1 T−F  and the 4D vector , , ,x y z DN N N . This shows that we may treat planes as 
four-dimensional vectors that transform in the same manner as three-dimensional 
normal vectors, except that we use the inverse transpose of the 4 4×  transfor-
mation matrix. Thus, the plane , D=L N  transforms using the 4 4×  matrix F as 

 ( )1 T−′ =L F L. (5.26) 

5.3  The View Frustum 

Figure 5.8 shows the view frustum, the volume of space containing everything 
that is visible in a three-dimensional scene. The view frustum is shaped like a 
pyramid whose apex lies at the camera position. It has this shape because it rep-
resents the exact volume that would be visible to a camera that is looking through 
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C
n

f

 
Figure 5.8. The view frustum encloses the space bounded by the near plane lying at a 
distance n from the camera, the far plane lying at a distance f from the camera, and four 
side planes that pass through the camera position C. 

a rectangular window—the computer screen. The view frustum is bounded by six 
planes, four of which correspond to the edges of the screen and are called the left, 
right, bottom, and top frustum planes. The remaining two planes are called the 
near and far frustum planes, and define the minimum and maximum distances at 
which objects in a scene are visible to the camera. 
 The view frustum is aligned to camera space. Camera space, also called eye 
space, is the coordinate system in which the camera lies at the origin, the x axis 
points to the right, and the y axis points upward. The direction in which the z axis 
points depends on the 3D graphics library being used. Within the OpenGL li-
brary, the z axis points in the direction opposite that in which the camera points. 
This forms a right-handed coordinate system and is shown in Figure 5.9. (Under 
Direct3D, the z axis points in the same direction that the camera points and forms 
a left-handed coordinate system.) 

5.3.1  Field of View 

The projection plane, shown in Figure 5.10, is a plane that is perpendicular to the 
camera’s viewing direction and lies at the distance e from the camera where the 
left and right frustum planes intersect it at 1x = −  and 1x = . The distance e, which 
is sometimes called the focal length of the camera, depends on the angle α 
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Figure 5.9. Camera space in OpenGL. 
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1x = − 1x =

e

 
Figure 5.10. The distance e from the camera to the projection plane depends on the hori-
zontal field of view angle α. 
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formed between the left and right frustum plane. The angle α is called the hori-
zontal field of view angle. 
 For a desired horizontal field of view α, the distance e to the projection plane 
is given by the trigonometric relation 

 
( )
1

tan 2
e

α
= . (5.27) 

Larger fields of view are equivalent to shorter focal lengths. A camera can be 
made to “zoom in” by diminishing the field of view angle, thus causing a longer 
focal length. 
 The aspect ratio of a display screen is equal to its height divided by its width. 
For example, a 640 480×  pixel display has an aspect ratio of 0.75. Since most 
displays are not square, but rectangular, the vertical field of view is not equal to 
the horizontal field of view. The bottom and top frustum planes intersect the pro-
jection plane at y a= ± , where a is the aspect ratio of the display. This forms the 
triangle shown in Figure 5.11, and thus the vertical field of view angle β is given 
by 

 ( )12 tanβ a e−= . (5.28) 

 The four side planes of the view frustum carve a rectangle out of the projec-
tion plane at a distance e from the camera whose edges lie at 1x = ±  and y a= ± . 

z

y

e

y a=

y a= −

2
β

2
β

 
Figure 5.11. The vertical field of view angle β depends on the aspect ratio a. 
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Figure 5.12. View frustum plane normal directions in OpenGL camera space. 

The OpenGL function glFrustum() requires that we specify a rectangle at the 
distance n from the camera, where n is the near plane distance. Scaling our rec-
tangle by a factor of n e, we place the left edge at x n e= − , the right edge at 
x n e= , the bottom edge at y an e= − , and the top edge at y an e= . 

5.3.2  Frustum Planes 

The camera-space normal directions for the six view frustum planes are shown in 
Figure 5.12. The inward-pointing normal directions for the four side planes are 
found by rotating the directions along which the sides point 90 degrees toward 
the center of the frustum. The four side planes each pass through the origin, so 
they each have 0D = . The near plane lies at a distance n from the origin in the 
same direction in which its normal points, so it has D n= − . The far plane lies at a 
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distance f from the origin in the opposite direction in which its normal points, so 
it has D f= . The four-dimensional plane vectors corresponding to the six sides 
of the view frustum are summarized in Table 5.1. In this table, the normal direc-
tions for the four side planes have been normalized to unit length. 
 
 

Plane , DN

Near 0,0, 1, n− −

Far 0,0,1, f

Left 
2 2

1,0, ,0
1 1

e
e e

−
+ +

 

Right 
2 2

1,0, ,0
1 1

e
e e

− −
+ +

 

Bottom 
2 2 2 2

0, , ,0e a
e a e a

−
+ +

 

Top 
2 2 2 2

0, , ,0e a
e a e a

− −
+ +

 

Table 5.1. View frustum plane vectors in OpenGL camera space in terms of the focal 
length e, the aspect ratio a, the near plane distance n, and the far plane distance f. 

5.4  Perspective-Correct Interpolation 

When a 3D graphics processor renders a triangle on the screen, it rasterizes it one 
scanline at a time. The vertices of a triangle, in addition to their positions in cam-
era space, carry information such as lighting colors and texture mapping coordi-
nates, which must be interpolated across the face of the triangle. When a single 
scanline of a triangle is drawn, the information at each pixel is an interpolated 
value derived from the values known at the left and right endpoints. 
 As shown in Figure 5.13, correct interpolation across the face of a triangle is 
not linear since equally spaced steps taken on the projection plane correspond to 
larger steps taken on the face of a triangle as the distance from the camera in-
creases. Graphics processors must use a nonlinear method of interpolation for 
texture-mapping coordinates to avoid distortion of the texture map. Although 
modern hardware now interpolates other types of information associated with a 



108 5. Geometry for 3D Engines 
 

 
Figure 5.13. Equally spaced steps taken on the projection plane correspond to larger 
steps taken on the face of a triangle as the distance from the camera increases. Thus, cor-
rect interpolation across the face of a triangle is not linear. 

vertex, such as lighting colors, older graphics cards simply use linear interpola-
tion since the difference is not as noticeable as it is with texture maps. 

5.4.1  Depth Interpolation 

It is important to note that the z coordinates (representing the depth) of points on 
the face of a triangle are interpolated linearly by 3D graphics hardware, contrary 
to the perspective-correct method presented in this section. An explanation for 
this follows in Section 5.5.1, which discusses the perspective projection matrix. 
 Figure 5.14 shows a line segment lying in the x-z plane that corresponds to a 
single scanline of a triangle. During rasterization, points on this line segment are 
sampled by casting rays through equally spaced points on the projection plane, 
which represent pixels on the display screen. Assuming that the segment does not 
belong to a line that passes through the origin (in which case the triangle would 
be viewed edge-on and would thus not be visible), we can describe the line with 
the equation 

 ax bz c+ = , (5.29) 

where 0c ≠ . 
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Figure 5.14. The line segment corresponding to a single scanline of a triangle is sampled 
by casting rays through equally spaced points on the projection plane. 

 Given a point ,x z  that lies on the line, we can cast a ray from the origin (the 
camera position) to the point ,x z  and determine where it intersects the projec-
tion plane. The z coordinate at the projection plane is always equal to e− . We can 
find the x coordinate p on the projection plane corresponding to the point ,x z  by 
using the following relationship derived from the similar triangles shown in 
Figure 5.14. 

 p e
x z

−=  (5.30) 

Solving this for x and it plugging back into Equation (5.29) lets us rewrite our 
line equation as follows. 

 ap b z c
e

 − + = 
 

 (5.31) 

It is convenient for us to manipulate this equation further by writing it in such a 
way that 1 z appears on one side: 

 1 ap b
z ce c

= − + . (5.32) 
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 Let us call the endpoints of the line segment 1 1,x z  and 2 2,x z , and their 
images on the projection plane 1,p e−  and 2 ,p e− . Let ( )3 1 21p t p tp= − + , for 
some t satisfying 0 1t≤ ≤ , be the x coordinate of an interpolated point on the pro-
jection plane. We would like to find the z coordinate of the point 3 3,x z  where 
the ray cast through the point 3 ,p e−  intersects the face of the triangle. Plugging 

( )3 1 21p t p tp= − +  and 3z  into Equation (5.32) gives us 

 

( )

( )

( )

3

3

1 2

1 2

1 2

1

1

1

1 11 .

ap b
z ce c

ap ap bt t
ce ce c
ap b ap bt t
ce c ce c

t t
z z

= − +

= − − − +

   = − + − + − +   
   

= − +  (5.33) 

This result demonstrates that the reciprocal of the z coordinate is correctly inter-
polated in a linear manner across the face of a triangle. 

5.4.2  Vertex Attribute Interpolation 

Vertices carry information such as lighting colors and texture mapping coordi-
nates that from here on are collectively referred to as vertex attributes. Each ver-
tex attribute must be interpolated across the face of a triangle when it is raster-
ized. Suppose that the endpoints of a scanline have depth values of 1z  and 2z , and 
possess scalar attributes 1b  and 2b , respectively. We would expect the interpolated 
attribute value 3b  to form the same proportion with the total difference along the 
line segment as does the interpolated depth value 3z . That is, the equation 

 3 1 3 1

2 1 2 1

b b z z
b b z z

− −=
− −

 (5.34) 

should be satisfied. Substituting the value 

 
( )

3

1 2

1
1 11

z
t t

z z

=
− +

 (5.35) 

given by Equation (5.33) and solving for 3b  gives us 
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 ( )
( )

1 2 2 1
3

2 1

1
1

b z t b z tb
z t z t

− +
=

− +
. (5.36) 

Multiplying the numerator and denominator by 1 21 z z  allows us to extract a fac-
tor of 3z  from the right-hand side of the equation as follows. 

 

( )

( )

( )

1 2

1 2
3

1 2

1 2
3

1 2

1

1 11

1

b bt t
z zb

t t
z z

b bz t t
z z

− +
=

− +

 = − +  
 (5.37) 

This demonstrates that the value b z can be linearly interpolated across the face 
of a triangle. Graphics processors first calculate the linearly interpolated value of 
1 z when rasterizing a scanline. The reciprocal is then calculated and multiplied 
by the linearly interpolated value of b z to obtain the perspective-correct interpo-
lated value of any vertex attribute b. 

5.5  Projections 

To render a three-dimensional scene on a two-dimensional display screen, we 
need to determine where on the screen each vertex in the scene should be drawn. 
As we have already seen, we can determine where a vertex located at a position P 
falls on the projection plane by calculating where the ray cast from the origin 
toward the point P intersects it. The x and y coordinates of the projected point are 
given by the formulas 

 x
z

ex P
P

= −   and  y
z

ey P
P

= − . (5.38) 

(Remember that the value of zP  is negative since the camera points in the nega-
tive z direction.) 
 Applying the above formula to the z coordinate would always result in a pro-
jected depth of e− . Useful depth information is needed, however, to perform hid-
den surface removal, so 3D graphics systems instead use homogeneous coordi-
nates to project vertices in four-dimensional space. 
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5.5.1  Perspective Projections 

A perspective projection that maps x and y coordinates to the correct place on the 
projection plane while maintaining depth information is achieved by mapping the 
view frustum to a cube, as shown in Figure 5.15. This cube is the projection into 
3D space of what is called homogeneous clip space. It is centered at the origin in 
OpenGL and extends from negative one to positive one on each of the x, y, and z 
axes. The mapping to homogenous clip space is performed by first using a 4 4×  
projection matrix that, among other actions, places the negative z coordinate of a 
camera-space point into the w coordinate of the transformed point. Subsequent 
division by the w coordinate produces a three-dimensional point having normal-
ized device coordinates. 
 Let , , ,1x y zP P P=P  be a homogeneous point in camera space that lies inside 
the view frustum. The OpenGL function glFrustum() takes as parameters the 
left edge x l= , the right edge x r= , the bottom edge y b= , and the top edge y t=  
of the rectangle carved out of the near plane by the four side planes of the view 
frustum. The near plane lies at z n= − , so we can calculate the projected x and y 
coordinates of the point P on the near plane using the equations 

 x
z

nx P
P

= −   and  y
z

ny P
P

= − . (5.39) 

Any point in lying in the view frustum satisfies l x r≤ ≤  and b y t≤ ≤  on the near 
plane. We want to map these ranges to the [ ]1,1−  range needed to fit the view 

 
Figure 5.15. The perspective projection maps the view frustum to the cube representing 
homogeneous clip space. 
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frustum into homogeneous clip space. This can be accomplished using the simple 
linear functions 

 ( ) 2 1x x l
r l

′ = − −
−

 (5.40) 

and 

 ( ) 2 1y y b
t b

′ = − −
−

. (5.41) 

Substituting the values of x and y given in Equation (5.39) and simplifying yields 

 2 x

z

n P r lx
r l P r l

+ ′ = − − − − 
 (5.42) 

and 

 2 y

z

Pn t by
t b P t b

+ ′ = − − − − 
. (5.43) 

 Mapping the projected z coordinate to the range [ ]1,1−  involves somewhat 
more complex computation. Since the point P lies inside the view frustum, its z 
coordinate must satisfy zf P n− ≤ ≤ − , where n and f are the distances from the 
camera to the near and far planes, respectively. We wish to find a function that 
maps 1n− → −  and 1f− → . (Note that such a mapping reflects the z axis; there-
fore, homogeneous clip space is left-handed.) Since z coordinates must have their 
reciprocals interpolated during rasterization, we construct this mapping function 
so that it is a function of 1 z, consequently allowing projected depth values to be 
interpolated linearly. Our mapping function thus has the form 

 Az B
z

′ = + . (5.44) 

We can solve for the unknowns A and B by plugging in the known mappings 
1n− → −  and 1f− →  to get 

 1 A B
n

− = +
−

  and  1 A B
f

= +
−

. (5.45) 

A little algebra yields the following values for A and B: 
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 2nfA
f n

=
−

  and  f nB
f n

+=
−

. (5.46) 

The z coordinate is thus mapped to the range [ ]1,1−  by the function 

 2 1
z

nf f nz
f n P f n

+ ′ = − − + − − 
. (5.47) 

 Equations (5.42), (5.43), and (5.47) each contain a division by zP− . The 3D 
point , ,x y z′ ′ ′ ′=P  is equivalent to the 4D homogeneous point 

 , , ,z z z zx P y P z P P′ ′ ′ ′= − − − −P  (5.48) 

after division by the w coordinate. Since the values of zx P′− , zy P′− , and zz P′−  giv-
en by the equations 

 2
z x z

n r lx P P P
r l r l

+′− = +
− −

, (5.49) 

 2
z y z

n t by P P P
t b t b

+′− = +
− −

, (5.50) 

and 

 2
z z

f n nfz P P
f n f n

+′− = − −
− −

 (5.51) 

are linear functions of the coordinates of the point P, we can use a 4 4×  matrix 
frustumM  to calculate the point ′P  as follows. 

 frustum

2 0 0

20 0

20 0
1

0 0 1 0

x

y

z

n r l
r l r l

Pn t b
Pt b t b

f n nf P
f n f n

+ 
 − −
 

+   
  − −   ′ = =

+   − −   − −   
 −  

P M P  (5.52) 
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 The matrix frustumM  in Equation (5.52) is the OpenGL perspective projection 
matrix generated by the glFrustum() function. Camera-space points are trans-
formed by this matrix into homogeneous clip space in such a way that the w co-
ordinate holds the negation of the original camera-space z coordinate. When in-
terpolating vertex attributes (see Section 5.4.2), it is actually this w coordinate 
whose reciprocal is interpolated, serving as the value of z in Equation (5.37). 
 Figure 5.16 illustrates how the depth in the z coordinate is mapped from 
camera space to normalized device coordinates (NDC) by the standard projection 
matrix given by Equation (5.52) and the division by the projected w coordinate. 
The z coordinates inside the view frustum (i.e., points between the near and far 
planes) in camera space are mapped to the range [ ]1,1−  in NDC. Interestingly, the 
infinite range of z coordinates beyond the far plane in camera space is com-
pressed into the finite range ( )1, f n

f n
+
−  in NDC, and the finite range of z coordinates 

closer to the camera than the near plane in camera space is expanded to the infi-
nite range ( ), 1−∞ −  in NDC. All of the points behind the camera actually get 
moved, counterintuitively, to the range ( ),f n

f n
+
− ∞  in front of the camera in NDC. 

n−

2 fn
f n

−
+

f−

0

f n
f n
+
−

0

1

1−

∞

−∞

Behind
Camera

Behind
Camera

Camera Space
Normalized

Device Coordinates

View
Frustum

View
Frustum

Beyond
Far Plane

Beyond
Far Plane

Closer Than
Near Plane

z+

z+

 
Figure 5.16. This diagram illustrates how z coordinates are mapped from camera space to 
normalized device coordinates by the standard perspective projection matrix. 
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 It is possible to construct a view frustum that is not bounded in depth by al-
lowing the far plane distance f to tend to infinity. The resulting projection matrix 

infiniteM  is given by 

 infinite frustum

2 0 0

20 0lim

0 0 1 2
0 0 1 0

f

n r l
r l r l

n t b
t b t b

n
→∞

+ 
 − −
 + = =  − −
 − − 
 − 

M M . (5.53) 

This is a perfectly valid projection matrix that allows objects to be rendered at 
any depth greater than or equal to n. Furthermore, it allows vertices having a w 
coordinate of 0 to be rendered correctly. The interpretation of a camera-space 
point , , ,0x y zQ Q Q=Q  is that of a point that lies infinitely far from the camera 
in the direction , ,x y zQ Q Q . Transforming Q with the matrix infiniteM  gives us 

 infinite

2 20 0

2 20 0

0 0 1 2 0
0 0 1 0

x z
x

y
y z

z

z

z

n r l n r lQ QQr l r l r l r l
n t b Q n t bQ Q

t b t b t b t bQ
n Q

Q

+ +   +    − − − −
    + +     += =   − − − − 
    − − −    
   − −   

M Q , (5.54) 

which produces a projected point having the maximum z coordinate of 1 after 
division by its w coordinate. This ability to project points lying at infinity is re-
quired by the shadow-rendering technique described in Chapter 10. 

5.5.2  Orthographic Projections 

An orthographic projection, also known as a parallel projection, is one in which 
no perspective distortion occurs. As shown in Figure 5.17, camera-space points 
are always mapped to the projection plane by casting rays that are parallel to the 
camera’s viewing direction. 
 The view volume for an orthographic projection is defined by a rectangle 
lying in the x-y plane and near and far plane distances. Since there is no perspec-
tive distortion, depth values for a triangle in an orthographic projection can be 
interpolated linearly. Thus, our mapping to normalized device coordinates can be 
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x

z

x l= x r=
z f= −

z n= −  
Figure 5.17. In an orthographic projection, points are simply moved to the projection 
plane along the camera’s viewing axis. 

performed linearly on all three axes. The functions mapping the x and y coordi-
nates from the ranges [ ],l r  and [ ],b t  to the range [ ]1,1−  are given by 

 2 r lx x
r l r l

+′ = −
− −

 (5.55) 

and 

 2 t by y
t b t b

+′ = −
− −

. (5.56) 

In a similar manner, but negating z so that 1n− → −  and 1f− → , we can map the 
z coordinate from the range [ ],f n− −  to the range [ ]1,1−  using the function 

 2 f nz z
f n f n
− +′ = −
− −

. (5.57) 

Writing these three functions in matrix form gives us 
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 ortho

2 0 0

20 0

20 0
1

0 0 0 1

x

y

z

r l
r l r l

Pt b
Pt b t b

f n P
f n f n

+ − − −
 

+   −   − −   ′ = =
− +   −   − −   

 
  

P M P . (5.58) 

 The matrix orthoM  in Equation (5.58) is the OpenGL orthographic projection 
matrix generated by the glOrtho() function. Note that the w coordinate re-
mains 1 after the transformation, and thus no perspective projection takes place. 

5.5.3  Extracting Frustum Planes 

It is remarkably simple to extract the four-dimensional vectors corresponding to 
the six camera-space view frustum planes from an arbitrary projection matrix M. 
The technique presented here derives from the fact that the planes are always the 
same in clip space. They are actually rather trivial since, as shown in Figure 5.18, 
each plane’s normal is parallel to one of the principal axes. 

1x = − 1x =

1z = −

1z =

0,0, 1−

0,0,1

1,0,0 1,0,0−

 
Figure 5.18. These are the normal vectors for the left, right, near, and far planes bound-
ing the cube-shaped homogeneous clip space. The normal vectors for the top and bottom 
planes point in and out of the page. 
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 Let ′L  be one of the six planes that bound clip space. The inverse of the ma-
trix M transforms from clip space into camera space. Since planes are trans-
formed by the inverse transpose of a matrix, the camera-space plane L corre-
sponding to the clip space plane ′L  is given by 

 ( )1 1 T T− − ′ ′= =  L M L M L . (5.59) 

The clip-space plane vectors are listed in Table 5.2. Since each plane vector con-
tains two nonzero entries, and these entries are all 1± , we can write each camera-
space view frustum plane as a sum or difference of two columns of the matrix 

TM , which is equivalent to the sum or difference of two rows of the matrix M. 

Plane , DN  

Near 0,0,1,1  

Far 0,0, 1,1−  

Left 1,0,0,1  

Right 1,0,0,1−  

Bottom 0,1,0,1  

Top 0, 1,0,1−  

Table 5.2. Clip-space plane vectors. 

 Using the notation iM  to represent row i of the matrix M, we have the fol-
lowing formulas for the camera-space view frustum planes. These do not produce 
plane vectors having unit normals, so they need to be rescaled. 

 

4 3

4 3

4 1

4 1

4 2

4 2

near
far
left

right
bottom

top

= +
= −
= +
= −
= +
= −

M M

M M

M M

M M

M M

M M  (5.60) 

These equations are valid for any projection matrix, with the exception of the far 
plane for the infinite projection matrix given by Equation (5.53). It should be 
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noted, however, that if the focal length and aspect ratio are known for a particular 
view frustum, then the formulas in Table 5.1 provide a significantly more effi-
cient way of calculating normalized frustum planes. 

5.6  Reflections and Oblique Clipping 

Many scenes contain a reflective surface such as a mirror or a body of water for 
which a reflection image needs to be rendered. The typical way in which reflec-
tions are shown in a scene is to establish a separate image buffer called the re-
flection buffer to hold the result of rendering the objects in the scene that are vis-
ible in the reflection. The reflected scene is first rendered into the reflection buff-
er, and then the main scene is rendered into the main image buffer. When the ge-
ometry representing the reflective surface is rendered, colors from the corre-
sponding pixels in the reflection buffer are read and used to contribute to the final 
image. 
 The reflected scene is rendered through a virtual camera that is the reflection 
of the main camera through the plane of the reflection, as shown in Figure 5.19. 

y

z

z

y

Reflection plane

 
Figure 5.19. The upper view frustum represents the actual camera rendering a scene that 
contains a reflection plane. The virtual camera used to render the reflection is represented 
by the lower view frustum, and it is itself a reflection of the upper view frustum. The x 
axis points out of the page for both view frustums, and consequently, the camera-space 
coordinate system for the camera rendering the reflection is left-handed. 
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Since this virtual camera is a reflection, the coordinate system changes from 
right-handed to left-handed, and some steps need to be taken in order to account 
for this. In OpenGL, it is convenient to call the glFrontFace() function to re-
verse the winding order of front-facing triangles for culling purposes. 
 In the process of rendering from a virtual camera, it is possible that geometry 
lies closer to the camera than the plane representing the reflective surface. This 
typically happens when an object straddles the reflection plane and parts on the 
opposite side of the plane are flipped backwards in the reflection. If such geome-
try is rendered in the reflection, it can lead to unwanted artifacts in the final im-
age, as shown in Figure 5.20. 
 The simplest solution to this problem is to enable a user-defined clipping 
plane to truncate all geometry at the reflective surface. Unfortunately, even 
though most GPUs support generalized user-defined clipping operations, using 
them requires that the vertex or fragment programs be modified—a task that may 
not be convenient since it necessitates two versions of each program be kept 
around to render a particular geometry. Furthermore, the necessary modifications 
tend to be slightly different across various GPUs. 

A B C

 
Figure 5.20. In this scene, a reflection is rendered about a plane coincident with the water surface. 
In the left image, no clipping is performed at the reflection plane, and multiple artifacts appear. At 
locations A and B, the portions of the posts that extend below the water surface are seen extending 
upwards in the reflection. At location C, some polygons belonging to submerged terrain are visible 
in the reflection. As shown in the right image, clipping at the reflection plane removes these 
unwanted artifacts. (Image from the C4 Engine, courtesy of Terathon Software LLC.) 
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 In this section, we describe a trick that exploits the view frustum clipping 
planes that already exist for every rendered scene.1 Normally, every geometric 
primitive is clipped to the six sides of the view frustum by the graphics hardware. 
Adding a seventh clipping plane that represents the reflective surface almost al-
ways results in a redundancy with the near plane, since we are now clipping 
against a plane that slices through the view frustum further away from the cam-
era. Instead, we look for a way to modify the projection matrix so that the con-
ventional near plane is repositioned to coincide with the reflective surface, which 
is generally oblique to the ordinary view frustum. Since we are still clipping only 
against six planes, such a modification gives us our desired result at absolutely no 
performance cost. 
 Let , , ,x y z wC C C C=C  be the plane shown in Figure 5.21, having coordi-
nates specified in camera space, to which we would like to clip our geometry. 
The camera should lie on the negative side of this clipping plane, so we can as-
sume that 0wC < . The plane C will replace the ordinary near plane of the view 
frustum. As shown in Table 5.2, the camera-space near plane is given by the sum 
of the last two rows of the projection matrix M, so we must somehow satisfy 

 4 3= +C M M . (5.61) 

We cannot modify the fourth row of the projection matrix because perspective 
projections use it to move the negation of the z coordinate into the w coordinate, 

Near plane

Far plane

O

C

 
Figure 5.21. The near plane of the view frustum is replaced with the arbitrary plane C. 

                                                      
1 For a more detailed analysis, see Eric Lengyel, “Oblique Depth Projection and View 
Frustum Clipping”, Journal of Game Development, Vol. 1, No. 2 (Mar 2005), pp. 5–16. 
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and this is necessary for perspective-correct interpolation of vertex attributes. 
Thus, we are left with no choice but to replace the third row of the projection ma-
trix with 

 3 4′ = −M C M . (5.62) 

 After making the replacement shown in Equation (5.62), the far plane F of 
the view frustum becomes 

 
4 3

42
′= −

= −
F M M

M C . (5.63) 

This fact presents a significant problem for perspective projections because the 
near plane and far plane are no longer parallel if either xC  or yC  is nonzero. This 
is extremely unintuitive and results in a view frustum having a very undesirable 
shape. By observing that any point , ,0,x y w=P  for which 0⋅ =C P  implies that 
we also have 0⋅ =F P , we can conclude that the intersection of the near and far 
planes occurs in the x-y plane, as shown in Figure 5.22(a). 
 Since the maximum projected depth of a point is achieved at the far plane, 
projected depth no longer represents the distance along the z axis, but rather a 
value corresponding to the position between the new near and far planes. This 
has a severe impact on depth-buffer precision along different directions in the 
view frustum. Fortunately, we have a recourse for minimizing this effect, and it is 
to make the angle between the near and far planes as small as possible. The plane 
C possesses an implicit scale factor that we have not yet restricted in any way. 
Changing the scale of C causes the orientation of the far plane F to change, so we 
need to calculate the appropriate scale that minimizes the angle between C and F 
without clipping any part of the original view frustum, as shown in Figure 
5.22(b). 
 Let ( )1 T−′ =C M C be the projection of the new near plane into clip space (us-
ing the original projection matrix M). The corner ′Q  of the view frustum lying 
opposite the plane ′C  is given by 

 ( ) ( )sgn ,sgn ,1,1x yC C′ ′ ′=Q . (5.64) 

(For most perspective projections, it is safe to assume that the signs of xC′ and yC′ 
are the same as xC  and yC , so the projection of C into clip space can be avoided.) 
Once we have determined the components of ′Q , we obtain its camera-space 
counterpart Q by computing 1− ′=Q M Q . For a standard view frustum, Q coin- 
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C

F

uC

Q

F

(a)

(b)

x

x
 

Figure 5.22. (a) The modified far plane F given by Equation (5.63) intersects the modi-
fied near plane C in the x-y plane. (b) Scaling the near plane C by the value u given by 
Equation (5.66) adjusts the far plane so that the angle between the near and far planes is 
as small as possible without clipping any part of the original view frustum. The shaded 
area represents the volume of space that is not clipped by the modified view frustum. 

cides with the point furthest from the plane C where two side planes meet the far 
plane. 
 To force the far plane to contain the point Q, we must require that 0⋅ =F Q . 
The only part of Equation (5.63) that we can modify is the scale of the plane C, 
so we introduce a factor u as follows: 

 42 u= −F M C. (5.65) 
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Solving the equation 0⋅ =F Q  for u yields 

 42u ⋅=
⋅

M Q

C Q
. (5.66) 

Replacing C with uC in Equation (5.62) gives us 

 3 4u′ = −M C M , (5.67) 

and this produces the optimal far plane orientation shown in Figure 5.22(b). For 
perspective projection matrices, we have 4 0,0, 1,0= −M , so Equation (5.67) 
simplifies to 

 3
2 0,0,1,0zQ−′ = +
⋅

M C
C Q

. (5.68) 

 Equation (5.68) is implemented in Listing 5.1. It should be noted that this 
technique for optimizing the far plane also works correctly in the case that M is 
the infinite projection matrix given by Equation (5.53) by forcing the new far 
plane to be parallel to one of the edges of the view frustum where two side planes 
meet. (See Exercise 7.) 

Listing 5.1. The ModifyProjectionMatrix() function modifies the standard OpenGL per-
spective projection matrix so that the near plane of the view frustum is moved to coincide with a 
given arbitrary plane specified by the clipPlane parameter. 

inline float sgn(float x) 

{ 

 if (x > 0.0F) return (1.0F); 

 if (x < 0.0F) return (-1.0F); 

 return (0.0F); 

} 

 

void ModifyProjectionMatrix(const Vector4D& clipPlane) 

{ 

 float   matrix[16]; 

 Vector4D  q; 

 

 // Grab the current projection matrix from OpenGL. 

 glGetFloatv(GL_PROJECTION_MATRIX, matrix); 
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 // Calculate the clip-space corner point opposite the clipping plane 

 // using Equation (5.64) and transform it into camera space by 

 // multiplying it by the inverse of the projection matrix. 

 q.x = (sgn(clipPlane.x) + matrix[8]) / matrix[0]; 

 q.y = (sgn(clipPlane.y) + matrix[9]) / matrix[5]; 

 q.z = -1.0F; 

 q.w = (1.0F + matrix[10]) / matrix[14]; 

 

 // Calculate the scaled plane vector using Equation (5.68) 

 // and replace the third row of the projection matrix. 

 Vector4D c = clipPlane * (2.0F / Dot(clipPlane, q)); 

 matrix[2] = c.x; 

 matrix[6] = c.y; 

 matrix[10] = c.z + 1.0F; 

 matrix[14] = c.w; 

 

 // Load it back into OpenGL. 

 glMatrixMode(GL_PROJECTION); 

 glLoadMatrix(matrix); 

} 

Chapter 5 Summary 

Lines 

A line passing through the point 0P  and running parallel to the direction V is ex-
pressed as 

 ( ) 0t t= +P P V. 

The distance from a point Q to the line ( )tP  is given by 

 ( ) ( )[ ] 2
2 0

0 2d
V

− ⋅
= − −

Q P V
Q P . 

Planes 

A plane having normal direction N and containing the point 0P  is expressed as 

 0D⋅ + =N P , 
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where 0D = − ⋅N P  . This can also be expressed as 0⋅ =L P , where L is the 4D 
vector , DN  and P is a homogeneous point with a w coordinate of 1. The dis-
tance from a point Q to a plane L is simply ⋅L Q. 

Planes must be transformed using the inverse transpose of a matrix used to trans-
form points. 

Intersection of a Line and a Plane 

The parameter t where a line ( )t t= +P Q V intersects a plane L is given by 

 t ⋅= −
⋅

L Q

L V
. 

The View Frustum 

The focal length e of a view frustum having a horizontal field of view angle α is 
given by 

 
( )
1

tan 2
e

α
= . 

For a display having an aspect ratio a, the rectangle carved out of the near plane 
at a distance n from the camera is bounded by x n e= ±  and y an e= ± . 

Perspective-Correct Interpolation 

In a perspective projection, depth values 1z  and 2z  are correctly interpolated by 
linearly interpolating their reciprocals: 

 ( )
3 1 2

1 1 11 t t
z z z

= − + . 

Perspective-correct vertex attribute interpolation uses the similar formula 

 ( )3 1 2

3 1 2
1b b bt t

z z z
 = − +  

, 

where 1b  and 2b  are vertex attribute values. 

Perspective Projections 

The perspective projection matrix frustumM  that transforms points from camera 
space into clip space is given by 



128 5. Geometry for 3D Engines 
 

 frustum

2 0 0

20 0

20 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f n nf
f n f n

+ 
 − −
 

+ 
 − − =

+ − − − − 
 −  

M , 

where n and f are the distances from the camera to the near and far planes, and l, 
r, b, and t are the left, right, bottom, and top edges of the viewing rectangle 
carved out of the near plane. 

An infinite view frustum can be constructed by allowing the far plane distance f 
to tend to infinity. The corresponding projection matrix infiniteM  is given by 

 infinite frustum

2 0 0

20 0lim

0 0 1 2
0 0 1 0

f

n r l
r l r l

n t b
t b t b

n
→∞

+ 
 − −
 + = =  − −
 − − 
 − 

M M . 

Oblique Near-Plane Clipping 

A perspective projection matrix M can be modified so that the near plane is re-
placed by any camera-space clipping plane C, with 0wC < , by constructing a new 
projection matrix ′M  as follows, 

 

1

2

4

2 0,0,1,0zQ

 
 
 

′ = − + ⋅ 
  

M

M

M
C

C Q

M

, 

where 1− ′=Q M Q , and ′Q  is given by Equation (5.64). 
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Exercises for Chapter 5 

1. Determine a 4D vector , DN  corresponding to the plane that passes through 
the three points 1,2,0 , 2,0, 1− , and 3, 2, 1− − . 

2. Find an expression for the parameter t representing the point on the line 
( )t t= +P S V that is closest to another point Q. 

3. Show that the distance d from a point Q to the line ( )t t= +P S V can be ex-
pressed as 

 ( )d − ×
=

Q S V

V
. 

4. The horizontal field of view angle for a particular view frustum is 75 de-
grees. Calculate the corresponding vertical field of view angle for a 
1280 1024×  pixel display. 

5. Calculate the left, right, bottom, and top planes for a view frustum having a 
horizontal field of view of 90 degrees and an aspect ratio of 0.75. 

6. Suppose that z coordinates in homogeneous clip space occupied the range 
[ ]0,1  instead of [ ]1,1− . In a manner similar to that used to derive the matrix in 
Equation (5.52), derive a perspective projection matrix that maps 0n− →  
and 1f− → . 

7. Suppose that the third row of the infinite projection matrix given by Equa-
tion (5.53) is modified so that the view frustum has the oblique near plane 

1,0, 1, 1= − −C . Show that the optimal far plane given by Equations (5.65) 
and (5.66) is parallel to the right frustum plane. 
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Chapter 6 

Ray Tracing 

The term ray tracing refers to any algorithm that follows beams of light to de-
termine with which objects they interact in the world. Applications include light 
map generation, visibility determination, collision detection, and line-of-sight 
testing. This chapter describes how the points of intersection where a ray strikes 
an object can be found and how to alter the path of a ray when it strikes a reflec-
tive or refractive surface. 

6.1  Root Finding 

The problem of finding the points at which a line defined by the equation 

 ( )t t= +P S V (6.1) 

intersects a surface generally requires finding the roots of a degree n polynomial 
in t. For planar surfaces, the degree of the polynomial is one, and a solution is 
easily found. For quadric surfaces, such as a sphere or cylinder, the degree of the 
polynomial is two, and a solution can be found using the quadratic equation. For 
more complex surfaces, such as splines and tori, the degree of the polynomial is 
three or four, in which case we can still find solutions analytically, but at much 
greater computational expense. 
 Analytic solutions to polynomials of degrees two, three, and four are present-
ed in this section. Complete derivations of the solutions to cubic and quartic 
equations are beyond the scope of this book, however. We also examine a numer-
ical root-finding technique known as Newton’s method. 

6.1.1  Quadratic Polynomials 

The roots of a quadratic polynomial in t can be found by using a little algebraic 
manipulation to solve the equation 
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 2 0at bt c+ + = . (6.2) 

Subtracting c from both sides and then dividing by a gives us 

 2 b ct t
a a

+ = − . (6.3) 

We can complete the square on the left side of the equation by adding 2 24b a  to 
both sides as follows. 

 
2 2

2
2 24 4

b b c bt t
a a a a

+ + = − +  (6.4) 

Writing the left side of the equation as a square and using a common denomina-
tor on the right side gives us 

 
2 2

2

4
2 4
b b act
a a

− + = 
 

. (6.5) 

Taking square roots and then subtracting 2b a from both sides yields 

 
2 4

2
b b act

a
− ± −= . (6.6) 

This is the well-known quadratic formula. The quantity 2 4D b ac= −  is called the 
discriminant of the polynomial and reveals how many real roots it has. If 0D > , 
then there are two real roots. If 0D = , then there is one real root, and it is given 
by 2t b a= − . For the remaining case in which 0D < , there are no real roots. 
Evaluating the discriminant allows us to determine whether a ray intersects an 
object without actually calculating the points of intersection. 

6.1.2  Cubic Polynomials 

A cubic equation having the form 

 3 2 0t at bt c+ + + =  (6.7) 

(where we have performed any necessary division to produce a leading co-
efficient of 1) can be shifted to eliminate the quadratic term by making the 
substitution 
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3
at x= − . (6.8) 

This gives us the equation 

 3 0x px q+ + = , (6.9) 

where 

 

2

3

1
3

2 1
27 3

p a b

q a ab c

= − +

= − + . (6.10) 

Once a solution x to Equation (6.9) is found, we subtract 3a  to obtain the solu-
tion t to Equation (6.7). 
 The discriminant D of a cubic polynomial is given by 

 3 24 27D p q= − − . (6.11) 

By setting 

 

3

3

1 1
2 108

1 1
2 108

r q D

s q D

= − + −

= − − − , (6.12) 

we can express the three complex roots of Equation (6.9) as 

 

1

2
2

2
3

x r s
x ρr ρ s
x ρ r ρs

= +
= +
= + , (6.13) 

where ρ is the primitive cube root of unity given by 31
2 2ρ i= − + . (Note that 

2 31
2 2ρ i= − − .) 

 We can simplify our arithmetic significantly by making the substitutions 

 

2

3

1 1
3 9 3

1 1 1
2 27 6 2

pp a b

qq a ab c

′ = = − +

′ = = − + . (6.14) 
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The discriminant is then given by 

 ( )3 2108D p q′ ′= − + . (6.15) 

Setting 

 ( )3 2

108
DD p q′ ′ ′= = − +  (6.16) 

lets us express r and s as 

 

3

3

r q D

s q D

′ ′= − + −

′ ′= − − − . (6.17) 

 As with quadratic equations, the discriminant gives us information about how 
many real roots exist. In the case that 0D′ < , the value of 1x  given in Equation 
(6.13) represents the only real solution of Equation (6.9). 
 In the case that 0D′ = , we have r s= , so there are two real solutions, one of 
which is a double root: 

 ( )
1

2
2 3

2
,
x r

x x ρ ρ r r
=
= + = − . (6.18) 

 In the remaining case that 0D′ > , Equation (6.13) yields three distinct real 
solutions. Unfortunately, we still have to use complex numbers to calculate these 
solutions. An alternative method can be applied in this case that does not require 
complex arithmetic. The method relies on the trigonometric identity 

 34cos 3cos cos3θ θ θ− = , (6.19) 

which can be verified using the Euler formula (see Exercise 1 at the end of this 
chapter). Making the substitution 2 cosx m θ=  in Equation (6.9) with 3m p= − , 
gives us 

 3 38 cos 2 cos 0m θ pm θ q+ + = . (6.20) 

(Note that p must be negative in order for D′ to be positive.) Replacing p with 
23m−  and factoring 32m  out of the first two terms yields 

 ( )3 32 4cos 3cos 0m θ θ q− + = . (6.21) 
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Applying Equation (6.19) and solving for cos3θ gives us 

 3 3 3

2cos3
2 27

q q qθ
m p p

′− − −= = =
′− −

. (6.22) 

Since 0D′ > , Equation (6.16) implies that 2 3q p′ ′< − , thereby guaranteeing that 
the right side of Equation (6.22) is always less than 1 in absolute value. The in-
verse cosine is thus defined, and we can solve for θ  to arrive at 

 1

3

1 cos
3

qθ
p

−  ′−=   ′− 
. (6.23) 

Therefore, one solution to Equation (6.9) is given by 

 1 2 cos 2 cosx m θ p θ′= = − . (6.24) 

Since ( ) ( )cos 3 2 cos 3θ πk θ+ =  for any integer k, we can write 

 1

3

1 2cos
3 3k

q πθ k
p

−  ′−= −  ′− 
. (6.25) 

Distinct values of cos kθ  are generated by choosing three values for k that are 
congruent to 0, 1, and 2 modulo 3. Using 1k = ± , we can express the remaining 
two solutions to Equation (6.9) as 

 

2

3

22 cos
3

22 cos
3

πx p θ

πx p θ

 ′= − + 
 
 ′= − − 
 

. (6.26) 

6.1.3  Quartic Polynomials 

A quartic equation having the form 

 4 3 2 0t at bt ct d+ + + + =  (6.27) 

(where again we have performed any necessary division to produce a leading 
coefficient of 1) can be shifted to eliminate the cubic term by making the 
substitution 
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4
at x= − . (6.28) 

This gives us the equation 

 4 2 0x px qx r+ + + = , (6.29) 

where 

 

2

3

4 2

3
8

1 1
8 2

3 1 1
256 16 4

p a b

q a ab c

r a a b ac d

= − +

= − +

= − + − + . (6.30) 

Once a solution x to Equation (6.29) is found, we subtract 4a  to obtain the solu-
tion t to Equation (6.27). 
 The roots of the quartic equation are found by first finding a solution to the 
cubic equation 

 
2

3 2 4 0
2 8
p rp qy y ry −− − + = . (6.31) 

Let y be any real solution to this equation. If 0q ≥ , then the solutions to the quar-
tic equation are equal to the solutions to the two quadratic equations 

 

2 2

2 2

2 0

2 0

x x y p y y r

x x y p y y r

+ − + − − =

− − + + − = . (6.32) 

If 0q < , then the solutions to the quartic equation are equal to the solutions to the 
two quadratic equations 

 

2 2

2 2

2 0

2 0

x x y p y y r

x x y p y y r

+ − + + − =

− − + − − = . (6.33) 

6.1.4  Newton’s Method 

The Newton-Raphson iteration method, usually just called Newton’s method, is a 
numerical technique that can find roots of an arbitrary continuous function by 
iterating a formula that depends on the function and its derivative. 
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x

y

nx1nx +

( )f x

( ),n nx f x

 

Figure 6.1. The tangent to a function tends to intersect the x axis closer to a root of the 
function. 

 Suppose that we wish to find the root of the function f graphed in Figure 6.1. 
For now, let us assume that we have an initial guess 0x  for the root of the function 
(more is said about how to choose this value shortly). The slope of the tangent 
line to the curve at the point ( )( )0 0,x f x  is given by the derivative ( )0f x′ . We 
can write the equation for this tangent line as follows. 

 ( ) ( )( )0 0 0y f x f x x x′− = −  (6.34) 

Notice that this line intersects the x axis at a point that is much closer to the actu-
al root of f than our initial guess 0x . Solving Equation (6.34) for x when 0y =  
gives us the refinement formula 

 ( )
( )1

i
i i

i

f xx x
f x+ = −

′
, (6.35) 

where we have relabeled x with 1ix +  and 0x  with ix . Applying this formula multi-
ple times produces a sequence 0 1 2, , ,x x x  whose values, under the right condi-
tions, approach the root of f. 
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 Newton’s method converges extremely quickly and thus requires very few 
iterations to exceed any desired precision. We can in fact show that Newton’s 
method converges quadratically, which means that with each iteration, the num-
ber of significant digits in an approximated root roughly doubles. We prove this 
claim by first setting 

 ( ) ( )
( )

f xg x
f x

=
′

. (6.36) 

Let r be the actual root of the function f to which we are converging. We define iε  
to be the error between the i-th approximation ix  and the root r: 

 i iε x r= − . (6.37) 

Using this in Equation (6.35) allows us to write 

 ( )1i i iε ε g x+ = − . (6.38) 

We can approximate the function ( )ig x  with the first three terms of its Taylor 
series (see Appendix D) as follows. 

 ( ) ( ) ( ) ( ) ( )
2

2
i

i i i
εg x g r ε g r ε g r g r′ ′′= + ≈ + +  (6.39) 

The first and second derivatives of ( )g x  are given by 

 

( ) ( ) ( )
( )[ ]

( ) ( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ]
( )[ ]

2

2 2

4

1

2

f x f xg x
f x

f x f x f x f x f x f x f x f xg x
f x

′′
′ = −

′

′ ′′ ′ ′′′ ′ ′′− +′′ =
′

. (6.40) 

Since ( ) 0f r = , these expressions simplify greatly when evaluated at r. The func-
tion g and its first two derivatives produce the following values at r. 

 

( )
( )

( ) ( )
( )

0
1

g r
g r

f rg r
f r

=
′ =

′′
′′ = −

′
 (6.41) 
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Plugging these into Equation (6.39) gives us 

 ( ) ( )
( )

2

2
i

i i
f rεg x ε
f r
′′

≈ −
′

. (6.42) 

Finally, substituting this into Equation (6.38) yields 

 ( )
( )

2

1 2
i

i
f rεε
f r+
′′

≈
′

. (6.43) 

 Newton’s method is not guaranteed to converge to a solution. In particular, if 
the initial guess is chosen at a point where the derivative of the function is zero, 
then the tangent line is horizontal and does not intersect the x axis, preventing us 
from proceeding any further. The initial guess has to be somewhat close to the 
actual root to guarantee a convergence. When searching for the intersection of a 
ray with a complex object, we can usually find a good initial guess by first inter-
secting the ray with the surface of a relatively simple bounding volume. For ex-
ample, to find where a ray defined by ( )t t= +P S V intersects a torus, we can first 
find a value of t where the ray intersects a box bounding the torus, and then use 
this value of t as our initial guess for the torus intersection. 

6.1.5  Refinement of Reciprocals and Square Roots 

Most modern CPUs, as well as most graphics hardware, have instructions that 
can approximate the reciprocal of a number and the reciprocal square root of a 
number to at least a few bits of precision. The results produced by these instruc-
tions can be refined to greater precision using Newton’s method. 
 The reciprocal of a number r can be found by calculating the root of the 
function 

 ( ) 1f x x r−= −  (6.44) 

since ( )1 0f r = . Plugging this function into Equation (6.35) gives us 

 ( )

1

1 2

2 .

n
n n

n

n n

x rx x
x

x rx

−

+ −

−= −
−

= −  (6.45) 

This formula can be iterated to produce a high-precision reciprocal of the number 
r, provided that each 0ix > . This is due to the fact that the function ( )f x  attains a 
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singularity at 0x = . Enforcing this condition on the first refinement 1x  allows us 
to determine the interval inside which our initial approximation 0x  must fall. 
Since 1x  must be greater than zero, we have 

 ( )0 02 0x rx− > , (6.46) 

which yields the following restriction on 0x . 

 0
20 x
r

< <  (6.47) 

Thus, the initial approximation cannot be worse than double the reciprocal of r. 
 The reciprocal of the square root of a number r can be found by calculating 
the positive root of the function 

 ( ) 2f x x r−= − . (6.48) 

Plugging this function into Equation (6.35) gives us 

 ( )

2

1 3

2

2
1 3
2

n
n n

n

n n

x rx x
x

x rx

−

+ −

−= −
−

= − . (6.49) 

This sequence converges as long as each 0ix > , so our initial approximation 0x  
must satisfy 

 0
30 x
r

< < . (6.50) 

Once the reciprocal square root has been calculated to acceptable precision, the 
square root of r can be calculated using a single multiplication because 

( )1r r r= ⋅ . 

6.2  Surface Intersections 

Computing the point at which a ray intersects a surface is central to ray tracing. 
We define a ray ( )tP  using the equation 

 ( )t t= +P S V, (6.51) 
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where S represents the ray’s starting position and V represents the direction in 
which the ray points. In this section, we present specific solutions for the inter-
section of a ray with a few common types of objects (additional objects are left as 
exercises). With the exception of the triangle, intersections are computed in ob-
ject space, the space in which the natural center of an object coincides with the 
origin and the object’s natural axes are aligned to the coordinate axes. Intersec-
tions with arbitrarily oriented objects are performed by first transforming the ray 
into object space. Once an intersection is detected, information such as the point 
of intersection and the normal vector at that point can be transformed back into 
world space. 

6.2.1  Intersection of a Ray and a Triangle 

A triangle is described by the position in space of its three vertices 0P , 1P , and 2P . 
We determine the plane in which the triangle lies by first calculating the normal 
vector N as follows. 

 ( ) ( )1 0 2 0= − × −N P P P P  (6.52) 

The signed distance d to the origin is given by the negative dot product of N with 
any point in the plane, so we choose the vertex 0P  to construct the 4D plane vec-
tor 0,= − ⋅L N N P . As discussed in Section 5.2.1, the value of t corresponding to 
the point where the ray in Equation (6.51) intersects the plane L is given by 

 t ⋅= −
⋅

L S

L V
. (6.53) 

If 0⋅ =L V , then no intersection occurs. Otherwise, plugging this value of t back 
into Equation (6.51) produces the point P where the ray intersects the plane of 
the triangle. 
 We now have the problem of determining whether the point P lies inside the 
triangle’s edges. We do so by calculating the barycentric coordinates of P with 
respect to the triangle’s vertices 0P , 1P , and 2P . The barycentric coordinates repre-
sent a weighted average of the triangle’s vertices and are expressed as the scalars 

0w , 1w , and 2w  such that 

 0 0 1 1 2 2w w w= + +P P P P , (6.54) 

where 0 1 2 1w w w+ + = . Replacing 0w  with 1 21 w w− − , we can write 
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( )

( ) ( )
1 2 0 1 1 2 2

0 1 1 0 2 2 0

1 w w w w
w w

= − − + +
= + − + −

P P P P

P P P P P . (6.55) 

We perform the remainder of our calculations relative to the point 0P  by defining 

 

0

1 1 0

2 2 0

= −
= −
= −

R P P

Q P P

Q P P . (6.56) 

Equation (6.55) now becomes 

 1 1 2 2w w= +R Q Q . (6.57) 

Taking the dot product of both sides of Equation (6.57) first with 1Q  and then 
with 2Q  gives us the two equations 

 
( )

( )

2
1 1 1 2 1 2

2
2 1 1 2 2 2

w Q w

w w Q

⋅ = + ⋅

⋅ = ⋅ +

R Q Q Q

R Q Q Q , (6.58) 

which are written in matrix form as 

 
2

1 1 2 1 1
2

1 2 2 2 2

Q w
Q w
⋅ ⋅     =     ⋅ ⋅     

Q Q R Q

Q Q R Q
. (6.59) 

We can now easily solve for 1w  and 2w  as follows. 

 
( )

12
1 1 21 1

2
1 2 22 2

2
2 1 2 1

2 2 2 2
1 2 1 2 1 2 1 2

1

w Q
w Q

Q
Q Q Q

−⋅ ⋅     =     ⋅ ⋅     
− ⋅ ⋅   =    − ⋅ − ⋅ ⋅   

Q Q R Q

Q Q R Q

Q Q R Q

Q Q Q Q R Q
 (6.60) 

The point R lies inside the triangle if and only if all three weights 0w , 1w , and 2w  
are nonnegative. Since 0 1 21w w w= − − , this implies that 1 2 1w w+ ≤ . 
 If the vertices 0P , 1P , and 2P  have any associated attributes, such as a color or 
texture coordinate set, then the interpolated value of those attributes at the point 
R can be calculated using the weights 0w , 1w , and 2w . For instance, if the texture 
coordinates 0 0,s t , 1 1,s t , and 2 2,s t  are associated with the vertices 0P , 1P , and 

2P , then the texture coordinates ,s t  at the point R are given by 
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0 0 1 1 2 2

0 0 1 1 2 2 .
s w s w s w s
t w t w t w t

= + +
= + +  (6.61) 

6.2.2  Intersection of a Ray and a Box 

A box is described by the six plane equations 

 

0
0
0 ,

x

y

z

x x r
y y r
z z r

= =
= =
= =  (6.62) 

where xr , yr , and zr  represent the dimensions of the box. At most three of these 
planes need to be considered for intersection by the ray since at least three planes 
must face away from the ray’s direction V. We can determine which planes need 
to be tested by examining the components of V one at a time. For instance, if 

0xV = , then we know that the ray cannot intersect either of the planes 0x =  or 
xx r=  because V is parallel to them. If 0xV > , then we do not need to test for an 

intersection with the plane xx r=  since it represents a back side of the box from 
the ray’s perspective. Similarly, if 0xV < , then we do not need to test for an inter-
section with the plane 0x = . The same principle applies to the y and z compo-
nents of V. 
 Once we have found the point where a ray intersects a plane, we must check 
that the point falls within the face of the box by examining the two coordinates 
corresponding to the directions parallel to the plane. For instance, the value of t 
corresponding to the point where the ray given by Equation (6.51) intersects the 
plane xx r=  is given by 

 x x

x

r St
V
−= . (6.63) 

To lie within the corresponding face of the box, the y and z coordinates of the 
point ( )tP  must satisfy 

 
( )[ ]
( )[ ]

0
0

y y

z z

t r
t r

≤ ≤
≤ ≤

P

P . (6.64) 

If either of these conditions fails, then no intersection takes place within the face. 
If both conditions pass, then an intersection has been found, in which case there 
is no need to test any other planes since no closer intersection can occur. 
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6.2.3  Intersection of a Ray and a Sphere 

A sphere of radius r centered at the origin is described by the equation 

 2 2 2 2x y z r+ + = . (6.65) 

Substituting the components of the ray ( )tP  in Equation (6.51) for x, y, and z 
gives us 

 ( ) ( ) ( )2 2 2 2
x x y y z zS tV S tV S tV r+ + + + + = . (6.66) 

Expanding the squares and collecting on t yields the following quadratic 
equation. 

 ( ) ( )2 2 2 2 2 2 2 22 0x y z x x y y z z x y zV V V t S V S V S V t S S S r+ + + + + + + + − =  (6.67) 

The coefficients a, b, and c used in Equation (6.2) can be expressed in terms of 
the vectors S and V as follows. 

 
( )

2

2 2

2
a V
b
c S r

=
= ⋅

= −

S V

 (6.68) 

Calculating the discriminant 2 4D b ac= −  tells us whether the ray intersects the 
sphere. As illustrated in Figure 6.2, if 0D < , then no intersection occurs; if 0D = , 
then the ray is tangent to the sphere; and if 0D > , then there are two distinct 
points of intersection. If the ray intersects the sphere at two points, then the point 
closer to the ray’s origin S, which corresponds to the smaller value of t, is always 
given by 

 
2

b Dt
a

− −=  (6.69) 

because a is guaranteed to be positive. 
 The intersection of a ray and an ellipsoid can be determined by replacing 
Equation (6.65) with the equation 

 2 2 2 2 2 2x m y n z r+ + = , (6.70) 

where m is the ratio of the x semiaxis length to the y semiaxis length, and n is the 
ratio of the x semiaxis length to the z semiaxis length. Plugging the components 
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0D <

0D >

0D =

r

 

Figure 6.2. The discriminant D indicates whether a ray intersects a sphere. If 0D < , then 
no intersection occurs. If 0D = , then the ray is tangent to the sphere at a single point. If 

0D > , then the ray intersects the sphere at two distinct points. 

of the ray into this equation yields another quadratic polynomial whose coeffi-
cients are given by 

 

( )
2 2 2 2 2

2 2

2 2 2 2 2 2

2

.

x y z

x x y y z z

x y z

a V m V n V

b S V m S V n S V

c S m S n S r

= + +

= + +

= + + −  (6.71) 

Again, the discriminant indicates whether an intersection occurs. If so, the inter-
section parameter t is given by Equation (6.69). 

6.2.4  Intersection of a Ray and a Cylinder 

The lateral surface of an elliptical cylinder whose radius on the x axis is r, whose 
radius on the y axis is s, whose height is h, and whose base is centered on the 
origin of the x-y plane (see Figure 6.3) is described by the equation 

 

2 2 2 2

0 ,
x m y r

z h
+ =

≤ ≤  (6.72) 
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Figure 6.3. Object space for an elliptical cylinder. 

where m r s= . If r s= , then the cylinder is circular and 1m = . Substituting the 
components of the ray ( )tP  in Equation (6.51) for x and y gives us 

 ( ) ( )2 2 2 2
x x y yS tV m S tV r+ + + = . (6.73) 

Expanding the squares and collecting on t yields the following quadratic 
equation. 

 ( ) ( )2 2 2 2 2 2 2 2 22 0x y x x y y x yV m V t S V m S V t S m S r+ + + + + − =  (6.74) 

As with the sphere, the discriminant indicates whether an intersection occurs. 
Solutions to this equation give the values of t where the ray intersects the infinite 
cylinder centered on the z axis. The z coordinates of the points of intersection 
must be tested so that they satisfy 0 z h≤ ≤ . 
 In the context of collision detection, the problem arises in which we need to 
know whether a moving sphere intersects a line segment representing an edge of 
a polygonal model. The problem is transformed into determining whether a ray 
intersects a cylinder with a given radius and arbitrary endpoints. This situation is 
discussed in Section 12.2. 
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6.2.5  Intersection of a Ray and a Torus 

A cross section of the surface of a circular torus having primary radius 1r  and 
secondary radius 2r  is shown in Figure 6.4. The circle of radius 1r  lying in the x-y 
plane represents the center of another circle of radius 2r  perpendicular to the first, 
which is revolved about the z axis. The equation describing the revolved circle is 

 2 2 2
2s z r+ = , (6.75) 

where the value of s is the distance to the primary circle in the x-y plane: 

 2 2
1s x y r= + − . (6.76) 

Substituting this into Equation (6.75) and expanding the square gives us 

 2 2 2 2 2 2 2
1 2 12 0x y z r r r x y+ + + − − + = . (6.77) 

Isolating the radical and squaring again yields the following equation for a torus. 

 ( ) ( )2 2 2 2 2 2 2 2 2
1 2 14x y z r r r x y+ + + − = +  (6.78) 

Substituting the components of the ray ( )tP  in Equation (6.51) for x, y, and z 
gives us 

 

( ) ( ) ( )
( ) ( )

2 2 2 2 2 2
1 2

2 2 2
14 .

x x y y z z

x x y y

S tV S tV S tV r r

r S tV S tV

+ + + + + + −  
= + + +    (6.79) 

 

z

1r2r

 

Figure 6.4. A torus and its cross section. 
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After considerable algebraic simplification, this can be expressed as the quartic 
equation 

 4 3 2 0at bt ct dt e+ + + + = , (6.80) 

where 

 
( )
( ) ( ) ( )

4

2

2 2 2 2 2 2 2 2
1 2 1

4

2 4 4x y

a V
b V
c V S r r r V V

=
= ⋅

= + − − + + ⋅

S V

S V  

 

( )( )
( )
( ) ( )( )

2 2 2 2
1 1 2

4 4 4 2 2 2
1 2

2 2 2 2 2 2 2 2 2 2
1 2 1 2

8 4

2

z z

x y z

x y z x y z

d r S V S r r

e S S S r r

S S S r r S S S r r

= + ⋅ − −

= + + + −

+ + − + + − −  

S V

. (6.81) 

After dividing by a to obtain a leading coefficient of 1, this equation can be 
solved using the method presented in Section 6.1.3. If the vector V is normalized, 
then the division by a is unnecessary, and the calculations for b and c simplify to 

 
( )
( ) ( ) ( )2 2 2 2 2 2

1 2 1

4

2 4 1 4z

b
c S r r r V

= ⋅

= + − − − + ⋅

S V

S V . (6.82) 

6.3  Normal Vector Calculation 

It is sometimes convenient to represent a surface using an implicit function 
( ), ,f x y z  whose value is zero at any point , ,x y z  on the surface and whose val-

ue is nonzero elsewhere. An example of such a function is that of an ellipsoid: 

 ( )
2 2 2

2 2 2, , 1x y zf x y z
a b c

= + + − . (6.83) 

Using the implicit function representation, it is possible for us to derive a general 
formula for the normal direction at any point on a surface. 
 Suppose that ( ), ,f x y z  represents a surface S, so that ( ), , 0f x y z =  for any 
point on S. Let C be a curve defined by differentiable parametric functions ( )x t , 

( )y t , and ( )z t  which lies on the surface S. Then the tangent vector T to the curve 
C at the point ( ) ( ) ( ), ,x t y t z t  is given by 
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 ( ) ( ) ( ), ,d d dx t y t z t
dt dt dt

=T . (6.84) 

Since the curve C lies on the surface S, T is also tangent to the surface S. Also, 
since ( ) ( ) ( )( ), , 0f x t y t z t =  for any value of t, we know that 0df dt =  every-
where on the curve C. Using the chain rule, we can write 

 0 , ,df f dx f dy f dz f f f
dt x dt y dt z dt x y z

∂ ∂ ∂ ∂ ∂ ∂= = + + = ⋅
∂ ∂ ∂ ∂ ∂ ∂

T. (6.85) 

Because its dot product with T is always zero, the vector , ,f x f y f z∂ ∂ ∂ ∂ ∂ ∂  
must be normal to the surface S. This vector is called the gradient of f at the point 

, ,x y z  and is usually written ( ), ,f x y z∇ , where the symbol ∇  is the del operator 
defined by 

 
x y z

∂ ∂ ∂= + +
∂ ∂ ∂

i j k∇ . (6.86) 

 We can now express the formula for the normal vector N to a surface defined 
by the equation ( ), , 0f x y z =  as 

 ( ), ,f x y z=N ∇ . (6.87) 

Continuing the example given in Equation (6.83), we have the following expres-
sion for the normal to the surface of an ellipsoid. 

 2 2 2

2 2 2, ,x y z
a b c

=N  (6.88) 

6.4  Reflection and Refraction Vectors 

When a beam of light strikes the surface of an object, part of its energy is ab-
sorbed by the surface, part of its energy is reflected away from the surface, and 
part of its energy may be transmitted through the object itself. Chapter 7 discuss-
es this interaction in detail. This section explains how the direction of reflection 
and refraction can be calculated for a ray that intersects a shiny or transparent 
surface. 
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6.4.1  Reflection Vector Calculation 

The direction of the reflection of light on a shiny surface (such as a mirror) fol-
lows the simple rule that the angle of incidence is equal to the angle of reflection. 
As shown in Figure 6.5, this is the same as saying that the angle between the 
normal vector N and the direction L pointing toward the incoming light is equal 
to the angle between the normal vector and the direction R of the reflected light. 
 We assume that the vectors N and L have been normalized to unit length. To 
derive a formula that gives us the reflection direction R in terms of the light di-
rection L and the normal vector N, we first calculate the component of L that is 
perpendicular to the normal direction: 

 ( )perp = − ⋅N L L N L N. (6.89) 

The vector R lies at twice the distance from L as does its projection onto the 
normal vector N. We can thus express R as 

 
( )[ ]

( )

2perp
2

2 .

= −
= − − ⋅
= ⋅ −

NR L L

L L N L N

N L N L  (6.90) 

N

L R( )⋅N L N
( )− ⋅L N L N

α α

 
Figure 6.5. The direction of reflection R forms the same angle with the normal vector N 
as the direction L pointing toward the incoming light. It is found by subtracting twice the 
component of L that is perpendicular to N from L itself. 
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6.4.2  Refraction Vector Calculation 

Transparent surfaces possess a property called the index of refraction. According 
to Snell’s law, the angle of incidence θL and the angle of transmission θT (shown 
in Figure 6.6) are related by the equation 

 sin sinη θ η θ=L L T T, (6.91) 

where ηL is the index of refraction of the material that the light is leaving, and ηT 
is the index of refraction of the material that the light is entering. The index of 
refraction of air is usually taken to be 1.00. Higher indexes of refraction create a 
greater bending effect at the interface between two materials. 
 We assume that the normal vector N and the direction toward the incoming 
light L have been normalized to unit length. We express the direction T in which 
the transmitted light travels in terms of its components parallel and perpendicular 
to the normal vector. As shown in Figure 6.6, the component of T parallel to the 
normal vector is simply given by cosθ− TN . The component of T perpendicular 
to the normal vector can be expressed as sinθ− TG , where the vector G is the unit 
length vector parallel to perp N L. Since L has unit length, perp sinθ=N LL , so 

 ( )perp
sin sinθ θ

− ⋅
= =N

L L

L N L NL
G . (6.92) 

We can now express the refraction vector T as 

 ( )[ ]

cos sin
sincos
sin

θ θ
θθ
θ

= − −

= − − − ⋅

T T

T
T

L

T N G

N L N L N . (6.93) 

Using Equation (6.91), we can replace the quotient of sines with η ηL T : 

 ( )[ ]cos ηθ
η

= − − − ⋅L
T

T

T N L N L N . (6.94) 

Replacing cosθT with 21 sin θ− T  and then using Equation (6.91) again to re-
place sinθT with ( )sinη η θL T L gives us 

 ( )[ ]
2

2
21 sinη ηθ
η η

= − − − − ⋅L L
L

T T

T N L N L N . (6.95) 
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Figure 6.6. The angle of incidence θL and the angle of transmission θT are related by 
Snell’s law, given in Equation (6.91). The refraction vector T is expressed in terms of its 
components parallel and perpendicular to the normal vector N. 

Replacing 2sin θL with ( )2 21 cos 1θ− = − ⋅L N L  finally yields 

 ( )
2

2
21 1η η η

η η η
 

= ⋅ − − − ⋅ −    
 

L L L

T T T

T N L N L N L. (6.96) 

 If η η>L T, then it is possible for the quantity inside the radical in Equation 
(6.96) to be negative. This happens when light inside a medium having a higher 
index of refraction makes a wide angle of incidence with the surface leading to a 
medium having a lower index of refraction. Specifically, Equation (6.96) is only 
valid when sinθ η η≤L T L . If the quantity inside the radical is negative, a phe-
nomenon known as total internal reflection occurs. This means that light is not 
refracted, but is actually reflected inside the medium using Equation (6.90). 
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Chapter 6 Summary 

Analytic Root Finding 

Solutions to the quadratic equation 2 0at bt c+ + =  are given by the quadratic 
formula: 

 
2 4

2
b b act

a
− ± −= . 

Cubic and quartic equations can also be solved analytically. 

Numerical Root Finding 

Roots of a function ( )f x  can be found numerically using Newton’s method, 
which refines an approximate solution nx  using the formula 

 ( )
( )1

n
n n

n

f xx x
f x+ = −

′
. 

The refinement formula for the reciprocal nx  of a number r is 

 ( )1 2n n nx x rx+ = − , 

and the refinement formula for the reciprocal square root nx  of a number r is 

 ( )2
1

1 3
2n n nx x rx+ = − . 

Intersection of a Ray and a Sphere 

The points where a ray ( )t t= +P S V intersect a sphere of radius r are given by 
the solutions of the quadratic equation 

 ( )2 2 2 22 0V t t S r+ ⋅ + − =S V . 

Normal Vector Calculation 

The normal vector at a point , ,x y z  on a surface defined by the function 
( ), , 0f x y z =  is given by ( ), ,f x y z=N ∇ . 

Reflection Vector Calculation 

The reflection R of a vector L across the normal vector N is given by 
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 ( )2= ⋅ −R N L N L. 

Transmission Vector Calculation 

The direction T in which light is transmitted when leaving a medium having in-
dex of refraction ηL and entering a medium having index of refraction ηT is given 
by 

 ( )
2

2
21 1η η η

η η η
 

= ⋅ − − − ⋅ −    
 

L L L

T T T

T N L N L N L, 

where L is the direction pointing toward the incident light, and N is the surface 
normal. 

Exercises for Chapter 6 

1. Use the Euler formula (which states that cos sinαie α i α= + ) to verify the 
trigonometric identity 

 34cos 3cos cos3θ θ θ− = . 

 [Hint. Equate the real components of the equation ( ) ( )33 θ iθie e= .] 

2. Use Newton’s method to approximate the root of the function ( )f x = 
ln 7x x+ − . 

3. Find a general formula that can be used to refine an approximation nx  of the 
p-th root of a number r using Newton’s method. 

4. Let 0P , 1P , and 2P  be the three vertices of the triangle T shown in Figure 6.7. 
Show that each of the barycentric coordinates iw  of a point P lying inside 
the triangle is given by the ratio of the area of the subtriangle iU  formed us-
ing P and the two vertices ( )1 mod 3i+P  and ( )2 mod3i+P  to the area of the triangle T. 

5. Let 1w , 2w , and 3w  be the barycentric coordinates of a point P with respect to 
a triangle whose vertices are 0P , 1P , and 2P . Let N be the direction normal to 
the triangle. Show that the barycentric coordinates of the point r+P N are 
the same as those of the point P for any scalar r. 

6. Calculate the unit length surface normal to the paraboloid defined by 
( ) 2 2, , 2 3 0f x y z x y z= + − =  at the point 1,2,14− . 
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Figure 6.7. The triangle used in Exercise 4. 

7. Derive the polynomial whose roots give the values of t at which the ray 
( )t t= +P S V intersects a cone whose radius (at the base) is r, whose height 

is h, and whose base is centered on the origin of the x-y plane as shown in 
Figure 6.8. 

h

rr

z

x y
 

Figure 6.8. The cone used in Exercise 7. 
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8. The critical angle at the interface between two media is the smallest angle 
of incidence at which total internal reflection occurs. Determine the critical 
angle for a beam of light traveling upward through water toward the surface 
where it meets the air. The index of refraction of water is 1.33, and the index 
of refraction of air is 1.00. 

 



 157 
 

Chapter 7 

Lighting and Shading 

This chapter describes the mathematics used to illuminate and shade a surface. 
The term lighting or illumination is often used to describe the process by which 
the color and intensity of light reaching a surface is determined. The term shad-
ing normally describes the methods used to determine the color and intensity of 
light reflected toward the viewer for each point on a surface. This color depends 
on the properties of the light sources illuminating the surface as well as the re-
flective characteristics of the surface itself. 
 The interaction between light and a surface is a complex physical process. 
Photons can be absorbed, reflected, or transmitted when they strike the surface of 
a material. To model this interaction using the whole of today’s knowledge of 
physics would be far too computationally time-consuming. Instead, we must set-
tle for models that approximate the expected appearance of a surface. We begin 
this chapter with simple models that are widely used because they are computa-
tionally efficient and produce acceptable results, but really are not physically ac-
curate. Later, we examine more costly techniques that more closely model the 
true physical interaction of light with a surface. 

7.1  RGB Color 

A precise model describing the reflection of light by a surface would account for 
every wavelength of light in the visible spectrum. However, the cone cells in the 
human eye are generally sensitive to three different overlapping regions of the 
visible spectrum corresponding to the colors red, green, and blue. Thus, TVs and 
computer displays are able to produce a wide range of colors by combining red, 
green, and blue light in different proportions. For instance, yellow is produced by 
blending equal parts red and green. This system is commonly referred to as RGB 
color. Colors that are made up of more than one wavelength of light, such as 
brown, can also be simulated using RGB color. 
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 The lighting models presented in this chapter utilize the RGB color system. 
The intensity of reflected light at a point on a surface is calculated for red, green, 
and blue wavelengths simultaneously. Since the same operations are performed 
for each of these components, we express our mathematical formulas using a 
three-component entity that we simply call a color. 
 Colors are expressed as triplets of red, green, and blue components whose 
values range from 0 to 1. These colors represent both the spectral composition of 
light, which determines what color the eye perceives, as well as the intensity of 
light. We denote colors by script letters to distinguish them from vectors. A sin-
gle red, green, or blue component of a color  is denoted by using a subscript r, 
g, or b (hence, we can write ( ), ,r g bC C C= ). 
 A color  can be multiplied by a scalar s to produce a new color: 

 ( ), ,r g bs sC sC sC= . (7.1) 

Addition and multiplication of colors are performed componentwise. That is, for 
two colors  and , we have 

 
( )
( )

, ,
, , .

r r g g b b

r r g g b b

C D C D C D
C D C D C D

+ = + + +
=

 

  (7.2) 

 Color multiplication, either by another color or by a scalar, is also called 
modulation. The color of a pixel belonging to a rendered triangle is usually de-
termined through some combination of colors from multiple sources. The color 
of a pixel on the face of a triangle is commonly derived from the product of a 
color looked up in a texture map and another color that is interpolated among the 
triangle’s vertices. In this case, we say that the texture color is modulated by the 
vertex color. 

7.2  Light Sources 

The color that we calculate for any point on a surface is the sum of contributions 
from all the light sources that illuminate the surface. The standard types of light 
sources supported by 3D graphics systems come in four varieties: ambient, direc-
tional, point, and spot. This section describes each of these types of light sources 
and how they contribute to the radiation present at a point in space. 

7.2.1  Ambient Light 

The ambient light present at a certain location is the low-intensity light that arises 
from the many reflections of light on all nearby surfaces in an environment. Us-
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ing ambient light provides a rough approximation of the general brightness of an 
area and replaces the complexities of calculating all the interobject reflections in 
a scene. 
 Ambient light appears to come from every direction with equal intensity, and 
thus illuminates every part of an object uniformly. The color  of the ambient 
light is usually a constant in a scene, but it may also be a function of spatial posi-
tion. For instance, one can use a three-dimensional texture map to store samples 
of the ambient light on a regular grid that permeates a region of the world. 

7.2.2  Directional Light Sources 

A directional light source, also known as an infinite light source, is one that radi-
ates light in a single direction from infinitely far away. Directional lights are typ-
ically used to model light sources such as the sun, whose rays can be considered 
parallel. Since they have no position in space, directional lights have infinite 
range, and the intensity of the light they radiate does not diminish over distance, 
as does the intensity of point lights and spot lights. 

7.2.3  Point Light Sources 

A point light source is one that radiates light equally in every direction from a 
single point in space. The intensity of light naturally decreases with distance ac-
cording to the inverse square law. The fixed-function features of OpenGL and 
Direct3D both provide a generalization of this concept that allows us to control 
the intensity of light radiated by a point light source using the reciprocal of a 
quadratic polynomial. 
 Suppose that a point light source has been placed at a point P. The intensity  
of light reaching a point in space Q is given by 

 02

1
c l qk k d k d

=
+ +

  , (7.3) 

where 0  is the color of the light, d is the distance between the light source and Q 
(i.e., d = −P Q ), and the constants ck , lk , and qk  are called the constant, linear, 
and quadratic attenuation constants. 
 In the newer programmable shading environments provided by OpenGL and 
Direct3D, any kind of fall-off function can be achieved, and it’s often the case 
that a point light’s intensity is intentionally made to become zero beyond a cer-
tain distance from the light. This limits the light’s volume of influence so that 
objects too far from the light to receive significant illumination don’t have to be 
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rendered for that light source. This by itself helps game engines run faster, but an 
even more aggressive optimization for point lights is described in Section 10.4.7. 

7.2.4  Spot Light Sources 

A spot light is similar to a point light but has a preferred direction of radiation. 
The intensity of a spot light is attenuated over distance in the same way that it is 
for a point light and is also attenuated by another factor called the spot light 
effect. 
 Suppose that a spot light source has been placed at a point P and has a spot 
direction R. The intensity  of light reaching a point in space Q is given by 

 { }
02

max ,0 p

c l qk k d k d
− ⋅

=
+ +

R L
  , (7.4) 

where 0  is the color of the light; d is the distance between the light source and 
Q; ck , lk , and qk  are the attenuation constants; and L is the unit length direction 
pointing from Q toward the light source: 

 −=
−

P Q
L

P Q
. (7.5) 

The exponent p controls how concentrated the spot light is. As shown in Figure 
7.1, a large value of p corresponds to a highly focused spot light having a sharp 
falloff, whereas a smaller value of p corresponds to a less concentrated beam. 
The spot light is most intense when = −R L and gradually falls off as the angle 
between R and −L increases. No radiation from a spot light reaches a point for 
which the angle between R and −L is greater than 90 degrees. 

 
Figure 7.1. The spot light exponent p in Equation (7.4) controls how concentrated the 
beam of a spot light is. From left to right, the spot light exponents used to illuminate the 
ground are 2, 10, 50, and 100. 
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7.3  Diffuse Reflection 

A diffuse surface is one for which part of the light incident on a point on the sur-
face is scattered in random directions. The average effect is that a certain color of 
light, the surface’s diffuse reflection color, is reflected uniformly in every direc-
tion. This is called the Lambertian reflection, and because light is reflected equal-
ly in every direction, the appearance of the Lambertian reflection does not de-
pend on the position of the observer. 
 As shown in Figure 7.2, a beam of light having a cross-sectional area A illu-
minates the same area A on a surface only if the surface is perpendicular to the 
direction in which the light is traveling. As the angle between the normal vector 
and the light direction increases, so does the surface area illuminated by the beam 
of light. If the angle between the normal vector and light direction is θ , then the 
surface area illuminated by the beam of light is equal to cosA θ. This results in a 
decrease in the intensity of the light per unit surface area by a factor of cosθ. 
 The value of cosθ is given by the dot product between the normal vector N 
and the unit direction to the light source L. A negative dot product means that the 
surface is facing away from the light source and should not be illuminated at all. 
Thus, we clamp the dot product to zero in our illumination calculations. 
 We can now begin to construct a formula that calculates the color of light  
that is reflected toward the viewer from a given point Q on a surface. This formu-
la is written in terms of the intensity i  of each of n lights illuminating the point 
Q, which is constant for directional light sources and is given by Equations (7.3) 
and (7.4) for point and spot light sources. The reflected light is modulated by the 

L

N
θ

cos
A
θ

A

 
Figure 7.2. The surface area illuminated by a beam of light increases as the angle θ  be-
tween the surface normal and direction to the light increases, decreasing the intensity of 
incident light per unit area. 
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surface’s diffuse reflection color . Adding the contributions from n light 
sources and considering the ambient intensity , we can express the diffuse 
component of our lighting formula as 

 { }diffuse
1

max ,0
n

i i
i=

= + ⋅ N L    , (7.6) 

where the unit vector iL  points from Q toward the i-th light source. 

7.4  Specular Reflection 

In addition to the uniform diffuse reflection, surfaces tend to reflect light strongly 
along the path given by the reflection of the incident direction across the surface 
normal. This results in the appearance of a shiny highlight on a surface called a 
specularity. Unlike the diffuse reflection, the specular reflection visible on a sur-
face depends on the position of the viewer. 
 Figure 7.3 shows the normal vector N at a point Q on a surface, the unit di-
rection to viewer vector V, the unit direction to light vector L, and the direct re-
flection vector R calculated using Equation (6.90). Specular highlights are the 
most intense when the reflection direction R points toward the viewer and de- 

N

V

LR

Q

αα

 
Figure 7.3. The intensity of the specular reflection is related to the angle between the 
direction to viewer vector V and the direct reflection vector R corresponding to the direc-
tion to light vector L. 
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crease in intensity as the angle between R and the direction to the viewer V 
increases. 
 A model that produces a believable (but having almost no real physical basis) 
rendition of specular highlights uses the expression 

 { } ( )max ,0 0m⋅ ⋅ >R V N L  (7.7) 

to calculate the specular contribution from a single light source, where  is the 
surface’s specular reflection color,  is the intensity of the incident light, and m is 
called the specular exponent. The expression ( )0⋅ >N L  is a boolean expression 
that evaluates to 1 if true and 0 otherwise. This prevents specular highlights from 
showing up at points on a surface that face away from the light source. 
 The specular exponent m controls the sharpness of the specular highlight. As 
shown in Figure 7.4, a small value of m produces a dull highlight that fades out 
over a relatively large distance, and a large value of m produces a sharp highlight 
that fades out quickly as the vectors V and R diverge. 
 An alternative formulation of specular highlights that requires less calcula-
tion in some cases makes use of a direction called the halfway vector. Shown in 
Figure 7.5, the halfway vector H is the vector lying exactly halfway between the 
direction to viewer vector V and the direction light vector L. Specular highlights 
are the most intense when H points in the direction of the normal vector N. Using 
this model, we replace the dot product ⋅R V in Equation (7.7) with the dot prod-
uct ⋅N H. This produces different results in terms of the rate at which the specu-
lar highlights diminish, but still retains the general characteristics of our original 
model. 

 
Figure 7.4. The specular exponent m in Equation (7.7) controls the sharpness of the 
specular highlight seen on a surface. From left to right, the specular exponents used to 
shade the tori are 2, 10, 50, and 100. The specular reflection color  is white. 
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Figure 7.5. The angle between the normal vector N and the halfway vector H can also be 
used to determine specular intensity. 

 Adding the contributions from n light sources, we can express the specular 
component of our lighting formula as 

 { } ( )specular
1

max ,0 0
n

m
i i i

i=
= ⋅ ⋅ > N H N L   , (7.8) 

where iH  is the halfway vector for the i-th light source given by 

 i
i

i

+=
+

L V
H

L V
. (7.9) 

7.5  Texture Mapping 

One or more texture maps may be applied to a surface to achieve greater detail, 
as shown in Figure 7.6. At each point on a surface, a texel (texture pixel) is 
looked up in each texture map and combined in some way with the lighting for-
mula. In the simplest case, a sample from a diffuse texture map is looked up and 
used to modulate the diffuse reflection color. More advanced applications are 
discussed later in this chapter. 
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Figure 7.6. Applying a texture map adds detail to a surface. (Image from the game The 
31st, courtesy of Terathon Software LLC.) 

 Let the color  represent a filtered sample from a texture map at a point on a 
surface. Using this color to modulate the diffuse reflection color produces the 
following augmented version of Equation (7.6). 

 { }diffuse
1

max ,0
n

i i
i=

= + ⋅ N L     (7.10) 

 Just as a texture map can be used to modulate the diffuse component of the 
lighting formula, we can also use a texture map to modulate the specular compo-
nent. Such a map is sometimes called a gloss map and determines the intensity of 
the specularity at each point on a surface. Using the color  to represent a filtered 
sample from the gloss map, we can augment the formula for the specular contri-
bution as follows. 

 { } ( )specular
1

max ,0 0
n

m
i i i

i=
= ⋅ ⋅ > N H N L    (7.11) 

 The actual color sampled from the texture map is determined by texture co-
ordinates applied to an object. Texture coordinates are either precomputed and 
stored with each vertex of a triangle mesh or calculated at runtime to produce 
some special effect. The texture coordinates are then interpolated using Equation 
(5.37) across the face of a triangle when it is rendered. There may be from one to 
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four coordinates at each vertex, and they are labeled s, t, p, and q.1 The next few 
sections describe the different varieties of texture maps and how texture coordi-
nates are used to look up a texel in each type. 

7.5.1  Standard Texture Maps 

One, two, or three texture coordinates may be used to look up texels in one-, 
two-, or three-dimensional texture maps. As shown in Figure 7.7, the entire 
width, height, and depth of a texture map corresponds to coordinate values lying 
between 0 and 1 in the s, t, and p directions, respectively. 

0 1
s

0

0
0

0

0
1

1

1

1

1

s

s
t

t

p

(a)

(b)

(c)

 
Figure 7.7. Texture space for (a) 1D texture maps, (b) 2D texture maps, and (c) 3D 
texture maps. 

 A one-dimensional texture map can be thought of as a two-dimensional tex-
ture map that is only a single pixel in height. Likewise, a two-dimensional texture 
map can be thought of as a three-dimensional texture map that is only a single 
pixel in depth. When t and p coordinates are not specified, they are assumed to be 
zero. 

                                                      
1 Originally, texture coordinates were labeled s, t, r, and q in OpenGL. However, the let-
ter r conflicted with the label for the red channel of a color when used as a swizzle or 
mask in a shader program, so the label used for the third texture coordinate was replaced 
with the letter p. (See the OpenGL Shading Language specification, Section 5.5.) 
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7.5.2  Projective Texture Maps 

The fourth texture coordinate is used for projective texture mapping, an applica-
tion of which is described later in this section. The q coordinate behaves in much 
the same way the w coordinate does for homogeneous points and is assumed to 
be one when not specified. The interpolated s, t, and p coordinates are divided by 
the interpolated q coordinate. For a scanline whose endpoints have texture coor-
dinates 1 1 1 1, , ,s t p q  and 2 2 2 2, , ,s t p q , we can use Equation (5.37) to calculate 
interpolated values 3s  and 3q  at some intermediate parameter [ ]0,1u ∈ . The quo-
tient of these two values gives the following expression for the s coordinate used 
to sample the texture map. 

 
( )

( )

1 2

3 1 2

1 23

1 2

1

1

s su u
s z zs q qq u u

z z

− +
= =

− +
 (7.12) 

Similar expressions give the projected t and p texture coordinates. 
 One application of projective texture maps is the simulation of a spot light 
that projects an image onto the environment. As shown in Figure 7.8, the project-
ed image becomes larger as the distance from the spot light increases. The effect 
is achieved by using a 4 4×  texture matrix to map the vertex positions of an ob-
ject to texture coordinates , ,0,s t q  such that division by q produces the correct 
2D texture coordinates ,s t  used to sample the projected image. 
 Suppose that a spot light has been placed at the point P and points in the di-
rection Z. Let the unit vectors S and T lie in the plane perpendicular to Z such 
that they are aligned to the directions in which the s and t axes of the projected 
texture image should be oriented (see Figure 7.8). Each vertex position , , ,1x y z  
belonging to a surface illuminated by the spot light must first be transformed into 
the coordinate system in which the spot light lies at the origin, and the x, y, and z 
axes correspond to the directions S, T, and Z. This can be accomplished using 
the inverse of the matrix whose columns are the vectors S, T, Z, and P. If S and 
T are orthogonal (i.e., the projected image is not skewed), the transformation is 
given by 

 1

0 0 0 1

x y z

x y z

x y z

S S S
T T T
Z Z Z

− ⋅ 
 − ⋅ =

− ⋅ 
 
 

S P

T P
M

Z P
. (7.13) 
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Figure 7.8. A projective texture map can be used to simulate a spot light that projects an 
image onto the environment. 

(Note that this matrix transforms into a left-handed coordinate system since 
× = −S T Z.) 

 Now we need to multiply the matrix in Equation (7.13) by a second matrix 
that performs the projection. Just as we define the focal length of the view frus-
tum, we can define the focal length of the spot light projection in terms of an 
apex angle α. The focal length e is given by 

 
( )
1

tan 2
e

α
= . (7.14) 

Let a be the aspect ratio of the texture map, equal to its height divided by its 
width. Every vertex position should be projected onto the plane lying at a dis-
tance e from the spot light, where we want to map the interval [ ]1,1−  in the x di-
rection to [ ]0,1 , and we want to map the interval [ ],a a−  in the y direction to [ ]0,1 . 
The matrix 

 2

2 0 1 2 0
0 2 1 2 0
0 0 0 0
0 0 1 0

e
e a

 
 
 =
 
 
 

M  (7.15) 
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performs this mapping and causes the projection to occur when the s and t coor-
dinates are divided by the q coordinate of the result. Combining the matrices giv-
en in Equations (7.13) and (7.15), the 4 4×  texture matrix M used to implement a 
projected spot light image is given by 2 1=M M M . 

7.5.3  Cube Texture Maps 

Another method of texturing an object is enabled through the use of a cube tex-
ture map. Cube texture maps are often used to approximate an environmental 
reflection on the surface of a model. Shown in Figure 7.9, a cube texture map 
consists of six two-dimensional components that correspond to the faces of a cu-
be. The s, t, and p coordinates represent a direction vector emanating from the 
center of the cube that points toward the texel to be sampled. 

, ,s t p

 
Figure 7.9. A cube texture map consists of six components that correspond to the faces 
of a cube. 

 Which face to sample is determined by the sign of the coordinate having the 
largest absolute value. The other two coordinates are divided by the largest coor-
dinate and remapped to the range [ ]0,1  using the formulas listed in Table 7.1 to 
produce 2D texture coordinates ,s t′ ′ . These coordinates are then used to sample 
the two-dimensional texture map for the corresponding face of the cube texture 
map. Figure 7.10 shows the orientation of the cube map axes relative to each of 
the six faces. 
 Texture coordinates used in conjunction with cube texture maps are typically 
generated at runtime. For instance, environment mapping can be performed by 
calculating the reflection of the direction to the camera and storing it in the 

, ,s t p  coordinates at each vertex of a triangle mesh. The reflection direction cal-
culation is normally implemented in hardware, so this can be done very 
efficiently. 
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Table 7.1. Formulas used to calculate the 2D coordinates ,s t′ ′  used to sample a texel in 
one of the six faces of a cube texture map. 
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Figure 7.10. Orientation of the cube map axes relative to each of the six faces. 
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 One application of cube texture maps on some graphics hardware is that of 
normalizing vectors. A normalization cube map is a cube texture map that, in-
stead of storing color images in each of its six faces, stores an array of vectors 
that are encoded as RGB colors using the following formulas. 

 

1red
2

1green
2

1blue
2

x

y

z

+=

+=

+=  (7.16) 

The vector stored at each pixel of a face of the cube map is the unit length vector 
, ,s t p  that causes that pixel to be sampled. The use of a normalization cube map 

becomes desirable when performing per-pixel lighting because interpolation of 
surface normals across the face of a triangle inexorably produces normal vectors 
whose length is less than unity. 

7.5.4  Filtering and Mipmaps 

When a model is rendered with a texture map applied to its surface, it is almost 
never the case that the resolution of a texture map matches the resolution of the 
viewport in which it is displayed. As a model moves closer to the camera, the 
relative resolution of the viewport increases compared to that of the texture map. 
Using only one sample from the texture map at each pixel results in a blocky ap-
pearance, so rendering hardware normally fetches four samples from the texture 
map at each pixel and blends them together. In a process called bilinear filtering, 
the four samples are blended using a weighted average that depends on the exact 
texture coordinates corresponding to the pixel being rendered. 
 Suppose a two-dimensional texture map having width w and height h is being 
sampled using the texture coordinates ,s t  and make the following definitions. 
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= −
= −  (7.17) 

The bilinearly filtered texture value  is given by 
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Figure 7.11. These are the largest seven mipmap images for a particular texture map con-
taining dirt and stones. Each smaller image is exactly half the width and half the height of 
the preceding image. Although not shown in its entirety here, the mipmap chain contin-
ues to an image that is only one pixel in size. 
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  

   (7.18) 

where ,i j  represents the value stored in the texture map at the integral texel co-
ordinates ,i j . 
 As a model moves away from the camera and the relative resolution of the 
viewport decreases compared to that of the texture map, the area of a single pixel 
can cover a region enclosing many texels in the texture map. Even if bilinear fil-
tering is applied, the low sampling resolution often leads to severe aliasing arti-
facts. The solution to this problem is to generate prefiltered versions of a texture 
map at lower resolutions. As shown in Figure 7.11, each smaller image is exactly 
half the width and half the height of the image that is one size larger. The array of 
texture images is called a mipmap.2 Since the sum of the infinite series 

 1 1 11
4 16 64

+ + + + (7.19) 

                                                      
2 The term mipmap is derived from the Latin phrase multum in parvo, meaning “much in 
a small place”. 
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is 4
3 , adding mipmap images to a texture map increases the storage requirements 

by only one-third of the texture map’s original size. 
 When using mipmaps and bilinear filtering, rendering hardware chooses a 
mipmap image at each pixel by examining the derivatives x∂ ∂S  and y∂ ∂S , 
where x and y are the viewport coordinates of the pixel, and S represents the in-
terpolated components of the texture coordinate set at the pixel. The largest im-
age in a mipmap is called level 0, and smaller images are numbered sequentially. 
Larger texture coordinate derivatives cause higher-numbered mipmap images 
being used. Let n and m be the base-2 logarithms of the width and height of a 
two-dimensional texture map (whose width and height are thus 2 n and 2 m). Let 

( ),s x y  and ( ),t x y  be functions that map viewport coordinates x and y to texture 
coordinates s and t, and define ( ) ( ), 2 ,nu x y s x y=  and ( ) ( ), 2 ,mv x y t x y= . The 
level-of-detail parameter λ is determined by calculating 
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x y

u vρ
x x
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λ ρ ρ

∂ ∂   = +   ∂ ∂   

∂ ∂   = +   ∂ ∂   

= . (7.20) 

When using bilinear filtering (or no filtering), the value of λ is rounded to the 
nearest integer and clamped to the range ( )[ ]0,max ,n m . Four texture samples are 
then fetched from the corresponding mipmap image level and blended using 
Equation (7.18). 
 As a model moves toward or away from the camera, abrupt changes in the 
mipmap level may be unsightly, so rendering hardware provides a mode called 
trilinear filtering in which two mipmap levels are sampled (using bilinear filter-
ing) and blended together. Texture values 1  and 2  are sampled from mipmap 
levels λ   and 1λ +   , respectively, and blended using the formula 

 ( )( ) ( )1 21 frac fracλ λ= − +    (7.21) 

to arrive at the final texture value . 
 Mipmapping for one-dimensional and three-dimensional texture maps oper-
ates by considering one or three texture coordinates in Equation (7.20). For cube 
texture maps, mipmapping operates independently for each of the six two-
dimensional faces. 
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7.6  Emission 

Some objects may emit light in addition to reflecting it. To give an object the 
appearance of emitting a uniform glow, we add an emission color  to our light-
ing formula. This emission color can also be modulated by an emission map that 
determines the color and intensity of the glow at each point on a surface. Using 
the color  to represent a filtered sample from the emission map, the emission 
component of the lighting formula is given by the simple expression 

 emission = . (7.22) 

Figure 7.12 demonstrates the application of an emission map to the surface of a 
model in addition to an ordinary texture map. 
 
 

(a) 

 

(b) 

 
Figure 7.12. (a) The left image is an ordinary texture map, and the right image is an 
emission map. (b) The model on the left has only the ordinary texture map applied to it. 
The model on the right includes the emission map. Unlike the ordinary texture map, the 
emission map is unaffected by the direction of the surface normal, and it determines 
which parts of the surface appear to give off a glow. (Image from the game The 31st, 
courtesy of Terathon Software LLC.) 
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7.7  Shading Models 

Information about the surface of a model, such as the positions of points on the 
surface and the normal vectors at those points, are stored only for each vertex of 
a triangle mesh. When a single triangle is rendered, information known at each 
vertex is interpolated across the face of the triangle, as discussed in Section 5.4.2. 
Conventional lighting pipelines calculate diffuse and specular illumination only 
at the vertices of a mesh. More modern graphics hardware enables the calculation 
of the entire illumination formula at every individual pixel drawn to the display. 
The manner in which lighting is determined for the surface of a triangle, com-
bined with any number of texture maps, is called shading. 

7.7.1  Calculating Normal Vectors 

To apply the lighting formula to a triangle mesh, we need to have a representa-
tion of the surface normal at each vertex. We can calculate the normal vector for 
a single triangle by using the cross product. The unit-length normal vector N of a 
triangle whose vertices lie at the points 0P , 1P , and 2P  is given by 

 ( ) ( )
( ) ( )

1 0 2 0

1 0 2 0

− × −
=

− × −
P P P P

N
P P P P

. (7.23) 

This assumes that the vertices are oriented in a counterclockwise fashion when 
the normal points toward the viewer, as shown in Figure 7.13. 
 The normal vector at a single vertex is typically calculated by averaging the 
normal vectors of all triangles that share that vertex. Using the formula 

0P 1P

2P

 
Figure 7.13. The vertices of a triangle should be oriented in a counterclockwise fashion 
when the normal vector points toward the viewer. 
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1N

2N

3N

4N  
Figure 7.14. By averaging the unnormalized normal vectors of each triangle sharing a 
vertex, a vertex normal can be calculated that is influenced more strongly by triangles 
with greater area. 
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to calculate the normal vector vertexN  for a vertex shared by k triangles results in a 
vertex normal that is influenced equally by the normal vector iN  of each of the 
triangles surrounding it. 
 An alternative formulation, illustrated in Figure 7.14, makes use of the fact 
that the cross product of two vectors is proportional to the area of the triangle that 
they form. By using the unnormalized triangle normals calculated with the 
equation 

 ( ) ( )1 0 2 0= − × −N P P P P  (7.25) 

instead of Equation (7.23) and then averaging using Equation (7.24), we can cal-
culate a vertex normal that is more strongly influenced by triangles with greater 
area. This method produces more appealing vertex normals for some models. 

7.7.2  Gouraud Shading 

The interpolation of lighting values calculated at each vertex across the face of a 
triangle is known as Gouraud shading. Before the advent of graphics hardware 
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capable of performing per-pixel lighting calculations, diffuse and specular colors 
were calculated only at each vertex of a triangle mesh. This method calculates the 
colors 
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at each vertex and interpolates them across the face of a triangle. The color  of 
a pixel is then calculated using the equation 

 primary 1 2 secondaryk= +        , (7.27) 

where each i  represents a color sampled from one of k texture maps, and the 
operation  is one of several available texture combination operations that include 
modulation and addition. 

7.7.3  Blinn-Phong Shading 

Instead of interpolating lighting values calculated at each vertex, the Blinn-Phong 
shading model interpolates the vertex normal N, the direction to the light source 
L, and the direction to the viewer V across a triangle and evaluates the lighting 
formula at each pixel. The halfway vector H is calculated using Equation (7.9) at 
every pixel. 
 Graphics hardware that can perform complex calculations on a per-pixel ba-
sis (a process called pixel shading or fragment shading) can be configured to 
evaluate the entire expression 
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      (7.28) 

at each pixel composing the face of a triangle. In the interests of simplicity, we 
have omitted the maximum functions here, but it should be noted that the diffuse 
and specular dot products in this equation are clamped to zero. The intensity i  of 
each of the n light sources is still calculated at each vertex and interpolated across 
the face of a triangle. These values and the interpolated normal vector are used to 
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evaluate  at each pixel. Of course, not every component of Equation (7.28) 
needs to be present. 
 An advantage that Blinn-Phong shading possesses over Gouraud shading is 
that it does a far better job of modeling specularity due to the fact that the dot 
product ⋅N H is evaluated at every pixel. When a sharp specular highlight falls in 
the interior of a triangle, Gouraud shading produces poor results because the 
specular component calculated at the triangle’s vertices is unrepresentative of the 
true values existing elsewhere on the face of the triangle. 
 A problem that arises when using Blinn-Phong shading is that interpolated 
normal vectors do not retain the unit length that they have at the vertices. Dense-
ly tessellated models for which the normal vectors belonging to neighboring ver-
tices differ in direction by only a small amount may not produce visually unac-
ceptable artifacts, but most models exhibit a noticeable darkening of the specular-
ity in the interior of each triangle. This problem is solved by explicitly normaliz-
ing the interpolated normal vectors either through direct calculation or by using a 
normalization cube map (see Section 7.5.3). 

7.8  Bump Mapping 

The surface detail that an observer perceives when an object is viewed from any 
direction other than edge-on is generally determined by the way in which its sur-
face is illuminated. The illumination at each pixel rendered is determined by the 
normal vector used during the evaluation of the lighting formula. So far, we have 
been limited to calculating normal vectors only at the vertices of a triangle mesh 
and using a smoothly interpolated normal vector elsewhere. This coarse resolu-
tion prevents us from illuminating any details that are smaller in size than a typi-
cal triangle in a mesh. Bump mapping is a technique that presents the illusion of 
greater detail to the viewer by using a texture map to perturb the normal vector at 
each pixel. 

7.8.1  Bump Map Construction 

High-resolution information about how the normal vector is perturbed is stored in 
a two-dimensional array of three-dimensional vectors called a bump map or nor-
mal map. Each vector in the bump map represents the direction in which the 
normal vector should point relative to the interpolated normal vector at a point 
inside the face of a triangle. The vector 0,0,1  represents an unperturbed normal, 
whereas any other vector represents a modification to the normal that affects the 
result of the lighting formula. 
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 A bump map is typically constructed by extracting normal vectors from a 
height map whose contents represent the height of a flat surface at each pixel. To 
derive the normal vector corresponding to a particular pixel in the height map, we 
first calculate tangents in the s and t directions, which are based on the difference 
in height between adjacent pixels. Using the notation ( ),H i j  to represent the 
value stored at coordinates ,i j  in a w h×  pixel height map, we can express the 
tangent vectors ( ),i jS  and ( ),i jT , aligned to the s and t directions, respectively, 
as follows. 
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The constant a is a scale factor that can be used to vary the range of the height 
values, controlling how pronounced the perturbed normals are. If we let zS  and zT  
denote the z components of ( ),i jS  and ( ),i jT , then the normal vector ( ),i jN  is 
calculated using the cross product 
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. (7.30) 

The components of each normal vector are encoded as an RGB color using the 
relations given in Equation (7.16). Figure 7.15 shows a grayscale height map and 
the corresponding bump map calculated using Equation (7.30). 

     
Figure 7.15. A height map and the corresponding bump map containing perturbed nor-
mal vectors. A pastel purple color is prevalent in the bump map since the unperturbed 
normal vector 0,0,1  corresponds to the RGB color ( )1 1

2 2, ,1 . 
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7.8.2  Tangent Space 

Since the vector 0,0,1  in a bump map represents an unperturbed normal, we 
need it to correspond to the interpolated normal vector that we would ordinarily 
use in the lighting formula. This can be achieved by constructing a coordinate 
system at each vertex in which the vertex normal always points along the positive 
z axis. In addition to the normal vector, we need two vectors that are tangent to 
the surface at each vertex in order to form an orthonormal basis. The resulting 
coordinate system is called tangent space or vertex space and is shown in 
Figure 7.16. 
 Once a tangent-space coordinate system has been established at each vertex 
of a triangle mesh, the direction to light vector L is calculated at each vertex and 
transformed into the tangent space. The tangent-space vector L is then interpolat-
ed across the face of a triangle. Since the vector 0,0,1  in tangent space corre-
sponds to the normal vector, the dot product between the tangent-space direction 
to light L and a sample from a bump map produces a valid Lambertian reflection 
term. 
 The tangent vectors at each vertex must be chosen so that they are aligned to 
the texture space of the bump map. For surfaces generated by parametric func-
tions, tangents can usually be calculated by simply taking derivatives with re-
spect to each of the parameters. Arbitrary triangle meshes, however, can have 
bump maps applied to them in any orientation, which necessitates a more general 
method for determining the tangent directions at each vertex. 

7.8.3  Calculating Tangent Vectors 

Our goal is to find a 3 3×  matrix at each vertex that transforms vectors from ob-
ject space into tangent space. To accomplish this, we consider the more intuitive 
problem of transforming vectors in the reverse direction from tangent space into 
object space. Since the normal vector at a vertex corresponds to 0,0,1  in tangent 
space, we know that the z axis of our tangent space always gets mapped to a ver-
tex's normal vector. 
 We want our tangent space to be aligned such that the x axis corresponds to 
the s direction in the bump map and the y axis corresponds to the t direction in 
the bump map. That is, if Q represents a point inside the triangle, we would like 
to be able to write 

 ( ) ( )0 0 0s s t t− = − + −Q P T B, (7.31) 
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0,0,1=N

1,0,0=T

 
Figure 7.16. Tangent space is aligned to the tangent plane and normal vector at a vertex. 

where T and B are tangent vectors aligned to the texture map, 0P  is the position 
of one of the vertices of the triangle, and 0 0,s t  are the texture coordinates at that 
vertex. The letter B stands for bitangent, and it represents the direction orthogo-
nal to the tangent vector T in the tangent plane to the surface.3 
 Suppose that we have a triangle whose vertex positions are given by the 
points 0P , 1P , and 2P , and whose corresponding texture coordinates are given by 

0 0,s t , 1 1,s t , and 2 2,s t . Our calculations can be made much simpler by work-
ing relative to the vertex 0P , so we let 

 
1 1 0

2 2 0

= −
= −

Q P P

Q P P  (7.32) 

and 

 
1 1 1 0 1 0

2 2 2 0 2 0

, ,
, ,

s t s s t t
s t s s t t

= − −
= − − . (7.33) 

We need to solve the following equations for T and B. 

 
1 1 1

2 2 2

s t
s t

= +
= +

Q T B

Q T B (7.34) 

                                                      
3 In some texts, the term binormal is still used to describe the tangent direction B, but this 
is a misnomer often retained for historical reasons or out of ignorance. As discussed in 
Section 15.8, a binormal forms part of the local coordinate system following a curve in 
which there is a single tangent direction and two orthogonal normal directions. 
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This is a linear system with six unknowns (three for each T and B) and six equa-
tions (the x, y, and z components of the two equations). We can write this in ma-
trix form as follows. 

 
( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

x y z x y z

x y z x y z

s t T T T
s t B B B

     =          

Q Q Q

Q Q Q
 (7.35) 

Multiplying both sides by the inverse of the ,s t  matrix, we have 

 
( ) ( ) ( )
( ) ( ) ( )

2 1 1 1 1

2 1 2 2 21 2 2 1

1x y z x y z

x y z x y z

T T T t t
B B B s ss t s t

−     =     −−     

Q Q Q

Q Q Q
. (7.36) 

This gives us the (unnormalized) T and B tangent vectors for the triangle whose 
vertices are 0P , 1P , and 2P . To find the tangent vectors for a single vertex, we av-
erage the tangents for all triangles sharing that vertex in a manner similar to the 
way in which vertex normals are commonly calculated. In the case that neighbor-
ing triangles have discontinuous texture mapping, vertices along the border are 
generally already duplicated since they have different mapping coordinates any-
way. We do not average tangents from such triangles because the result would 
not accurately represent the orientation of the bump map for either triangle. 
 Once we have the normal vector N and the tangent vectors T and B for a ver-
tex, we can transform from tangent space into object space using the matrix 

 
x x x

y y y

z z z

T B N
T B N
T B N

 
 
 
  

. (7.37) 

To transform in the opposite direction (from object space to tangent space—what 
we want to do to the light direction), we can simply use the inverse of this matrix. 
It is not necessarily true that the tangent vectors are perpendicular to each other 
or to the normal vector, so the inverse of this matrix is not generally equal to its 
transpose. It is safe to assume, however, that the three vectors will at least be 
close to orthogonal, so using the Gram-Schmidt algorithm (see Algorithm 2.16) 
to orthogonalize them should not cause any unacceptable distortions. Using this 
process, new (still unnormalized) tangent vectors ′T  and ′B  are given by 

 
( )
( ) ( )

′ = − ⋅
′ ′ ′= − ⋅ − ⋅

T T N T N

B B N B N T B T . (7.38) 
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Normalizing these vectors and storing them as the tangent and bitangent for a 
vertex lets us use the matrix 

 
x y z

x y z

x y z

T T T
B B B
N N N

′ ′ ′ 
 ′ ′ ′ 
  

 (7.39) 

to transform the direction to light from object space into tangent space. Taking 
the dot product of the transformed light direction with a sample from the bump 
map then produces the correct Lambertian diffuse lighting value. 
 It is not necessary to store an extra array containing the per-vertex bitangent 
since the cross product ′×N T  can be used to obtain m ′B , where 1m = ±  represents 
the handedness of the tangent space. The handedness value must be stored per-
vertex since the bitangent ′B  obtained from ′×N T  may point in the wrong direc-
tion. The value of m is equal to the determinant of the matrix in Equation (7.39). 
One may find it convenient to store the per-vertex tangent vector ′T  as a four-
dimensional entity whose w coordinate holds the value of m. Then the bitangent 

′B  can be computed using the formula 

 ( )wT′ ′ ′= ×B N T , (7.40) 

where the cross product ignores the w coordinate. This works nicely for vertex 
programs by avoiding the need to specify an additional array containing the per-
vertex m values. 
 Code that demonstrates how per-vertex tangent vectors can be calculated for 
an arbitrary mesh is shown in Listing 7.1 This code calculates the tangent and 
bitangent directions for each triangle in a mesh and adds them to a cumulative 
total for each vertex used by the triangle. It then loops over all vertices, or-
thonormalizes the tangent and bitangent for each one, and outputs a single four-
dimensional tangent vector for each vertex whose fourth coordinate contains a 
handedness value. 
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Listing 7.1. This code generates an array of vertex tangents for an arbitrary input mesh. 

void CalculateTangentArray(long vertexCount, const Point3D *vertex, 

  const Vector3D *normal, const Point2D *texcoord, long triangleCount, 

  const Triangle *triangle, Vector4D *tangent) 

{ 

 Vector3D *tan1 = new Vector3D[vertexCount * 2]; 

 Vector3D *tan2 = tan1 + vertexCount; 

 ZeroMemory(tan1, vertexCount * sizeof(Vector3D) * 2); 

 

 for (long a = 0; a < triangleCount; a++) 

 { 

  long i1 = triangle->index[0]; 

  long i2 = triangle->index[1]; 

  long i3 = triangle->index[2]; 

 

  const Point3D& v1 = vertex[i1]; 

  const Point3D& v2 = vertex[i2]; 

  const Point3D& v3 = vertex[i3]; 

  const Point2D& w1 = texcoord[i1]; 

  const Point2D& w2 = texcoord[i2]; 

  const Point2D& w3 = texcoord[i3]; 

 

  float x1 = v2.x - v1.x; 

  float x2 = v3.x - v1.x; 

  float y1 = v2.y - v1.y; 

  float y2 = v3.y - v1.y; 

  float z1 = v2.z - v1.z; 

  float z2 = v3.z - v1.z; 

 

  float s1 = w2.x - w1.x; 

  float s2 = w3.x - w1.x; 

  float t1 = w2.y - w1.y; 

  float t2 = w3.y - w1.y; 

 

  float r = 1.0F / (s1 * t2 - s2 * t1); 

  Vector3D sdir((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, 

   (t2 * z1 - t1 * z2) * r); 

  Vector3D tdir((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, 

   (s1 * z2 - s2 * z1) * r); 
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  tan1[i1] += sdir; 

  tan1[i2] += sdir; 

  tan1[i3] += sdir; 

  tan2[i1] += tdir; 

  tan2[i2] += tdir; 

  tan2[i3] += tdir; 

  triangle++; 

 } 

 

 for (long a = 0; a < vertexCount; a++) 

 { 

  const Vector3D& n = normal[a]; 

  const Vector3D& t = tan1[a]; 

 

  // Gram-Schmidt orthogonalize. 

  tangent[a] = (t - n * Dot(n, t)).Normalize(); 

 

  // Calculate handedness. 

  tangent[a].w = (Dot(Cross(n, t), tan2[a]) < 0.0F) ? -1.0F : 1.0F; 

 } 

 

 delete[] tan1; 

} 

7.8.4  Implementation 

During shading, bump mapping operations can be divided into those calculated 
for each vertex and those calculated for each pixel. At each vertex, we must cal-
culate the direction to the camera V and the direction to the light L and transform 
them into tangent space using the matrix in Equation (7.39). The vertex shader 
shown in Listing 7.2 performs these calculations for a surface illuminated by a 
directional light source (for which L is constant). 
 The tangent-space vectors V and L are interpolated over the face of each tri-
angle. The fragment shader must normalize these and use Equation (7.9) to calcu-
late the normalized halfway vector H. The dot products ⋅N L and ⋅N H are then 
calculated for every fragment, where the normal vector N is sampled from the 
bump map. The results of these dot products are finally used to calculate the dif-
fuse and specular components of the standard shading equation. 
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Listing 7.2. This vertex shader performs the calculations necessary for bump mapping. 

in vec4    vertexPosition; // The object-space vertex position. 

in vec3    normal;    // The object-space vertex normal. 

in vec4    tangent;   // The object-space vertex tangent. 

out vec3   view;    // The tangent-space view direction. 

out vec3   light;    // The tangent-space light direction. 

uniform vec4  mvpMatrix[4];  // The model-view-projection matrix. 

uniform vec3  cameraPosition; // The object-space camera position. 

uniform vec3  lightDirection; // The object-space light direction. 

 

void main() 

{ 

 // Transform the vertex into clip space. 

 gl_Position = vec4(dot(mvpMatrix[0], vertexPosition), 

   dot(mvpMatrix[1], vertexPosition), 

   dot(mvpMatrix[2], vertexPosition), 

   dot(mvpMatrix[3], vertexPosition)); 

 

 // Calculate the bitangent B = (N x T) * T.w. 

 vec3 bitangent = cross(normal, tangent.xyz) * tangent.w; 

 

 // Transform V into tangent space. 

 view = cameraPosition - vertexPosition; 

 view = vec3(dot(tangent, view), dot(bitangent, view), 

   dot(normal, view)); 

 

 // Transform L into tangent space. 

 light = vec3(dot(tangent, lightDirection), 

   dot(bitangent, lightDirection), dot(normal, lightDirection)); 

} 
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7.9  A Physical Reflection Model 

The manner in which we have calculated the reflection of light on a surface be-
fore this point is computationally cheap and produces visually pleasing results in 
many cases, but it is not an accurate model of the physically correct distribution 
of reflected light. Achieving greater realism requires that we use a better model 
of a surface’s microscopic structure and that we apply a little electromagnetic 
theory. 

7.9.1  Bidirectional Reflectance Distribution Functions 

In general, our goal is to model the way in which the radiant energy contained in 
a beam of light is redistributed when it strikes a surface. Some of the energy is 
absorbed by the surface, some may be transmitted through the surface, and what-
ever energy remains is reflected. The reflected energy is usually scattered in eve-
ry direction, but not in a uniform manner. A function that takes the direction L to 
a light source and a reflection direction R, and returns the amount of incident 
light from the direction L that is reflected in the direction R is called a bidirec-
tional reflectance distribution function (BRDF). 
 The precise definition of a BRDF requires that we first introduce some ter-
minology from the field of radiometry, the study of the transfer of energy via 
radiation. The radiant power (energy per unit time) emitted by a light source or 
received by a surface is called flux and is measured in watts (W). The power 
emitted by a light source or received by a surface per unit area is called flux den-
sity and is measured in watts per square meter ( 2W m−⋅ ). The flux density emitted 
by a surface is called the surface’s radiosity, and the flux density incident on a 
surface is called the irradiance of the light. 
 Figure 7.17 illustrates a situation in which a light source is emitting P watts 
of power toward a surface of area A. The power received by the surface is equal 
to the power emitted by the light source, but the flux densities received and emit-
ted are different because of the Lambertian effect. The area of the beam is equal 
to ( )A ⋅N L , where N is the unit surface normal and L is the unit direction-to-light 
vector. The flux density Φ E  emitted by the light source is thus given by 

 
( )

Φ E
P

A
=

⋅N L
. (7.41) 

Since the flux density Φ I incident on the surface is equal to P A, we have the 
relation 
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N L

A

( )A ⋅N L

 
Figure 7.17. The flux density incident on an area A of a surface is equal to the flux densi-
ty of an incident light beam scaled by a factor of ⋅N L. 

l

r r
θ ω

A

 
Figure 7.18. Planar angles are equal to the arc length that they sweep out divided by the 
radius of the circle. Similarly, solid angles are equal to the surface area that subtends 
them divided by the square of the radius of the sphere. 

 ( )Φ ΦI E= ⋅N L . (7.42) 

 The direction from which light illuminates a surface is defined in terms of 
solid angles, the three-dimensional analog of planar angles. As Figure 7.18 illus-
trates, the measure of a planar angle θ  in radians is given by the arc length l 
swept out on a circle divided by the radius r of the circle: θ l r= . Extending this 
to three dimensions, the measure of a solid angle ω corresponding to an area A on 
the surface of a sphere of radius r is defined as 2ω A r= . The unit of solid angle 
measure is the steradian, abbreviated sr. Since the surface area of a sphere of 
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radius r is equal to 24πr , there are 4π steradians in the solid angle representing 
the entire sphere. 
 A differential solid angle dω can be written in terms of the differential azi-
muthal angle dθ and the differential polar angle dφ. As shown in Figure 7.19, the 
circle at the polar angle φ that lies parallel to the x-y plane and passes through the 
point , ,r θ φ  has radius sinr φ. Thus, the differential arc length in the azimuthal 
direction on this circle is equal to sinr φdθ. Multiplying this by the differential 
arc length r dφ in the polar direction gives us the following expression for the 
differential surface area dA. 

 2 sindA r φdθ dφ=  (7.43) 

Dividing by 2r  gives us the expression for the corresponding differential solid 
angle dω: 

 sin .dω φdθ dφ=  (7.44) 

 Radiance is the term used to describe the flux density of radiation per unit 
solid angle and is measured in watts per square meter per steradian 
( 2 1W m sr− −⋅ ⋅ ). The irradiance (flux density) Φ I of the light received by a differ-
ential area dA on a surface is equal to the following integral of the radiance 

( )IC L  received by the area, where the direction to light L ranges over the unit 
hemisphere Ω above the surface. (The angles θ  and φ are the azimuthal and polar 
angles corresponding to the direction L.) 

x

z

rφ

sinr φ
sinr dφ r φdθ×

 
Figure 7.19. The differential surface area at the point , ,r θ φ  on a sphere is equal to 

2 sinr φdθ dφ. 
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( )

( )
Ω

2 2

0 0

Φ

, sin

I I

π π
I

C dω

C θ φ φdφdθ

=

=


 

L

 (7.45) 

For the same reason that the flux density received by a surface and the flux densi-
ty emitted by a light source are related by Equation (7.42), the radiance IC  re-
ceived by a surface and the radiance EC  emitted by a light source are related by 

 ( ) cosI E EC C C φ= ⋅ =N L . (7.46) 

We can therefore rewrite Equation (7.45) as 

 

( )( )

( )
Ω

2 2

0 0

Φ

, cos sin

I E

π π
E

C dω

C θ φ φ φdφdθ

= ⋅

=


 

L N L

. (7.47) 

 The bidirectional reflectivity ( ),ρ V L  at a point on a surface is a function of 
the direction to viewer V and the direction to light L. It is equal to the ratio of the 
differential reflected radiance RdC  to the differential incident irradiance Φ Id : 

 ( )
( )( )

,
Φ

R R

I E

dC dCρ
d C dω

= =
⋅

V L
L N L

. (7.48) 

The function ( ),ρ V L  is the BRDF that we use to calculate the radiance of the 
light reflected in a specific direction from a surface using the equation 

 ( ) ( )( ),R EdC ρ C dω= ⋅V L L N L . (7.49) 

Directional, point, and spot light sources illuminate a point on a surface from a 
single direction. Thus, instead of integrating Equation (7.49) to determine the 
amount of light ( )RC V  from n sources reflected in the direction to viewer V, we 
simply sum over the discrete directions to light iL : 

 ( ) ( ) ( )
1

,
n

R i i i
i

C ρ C
=

= ⋅V V L N L . (7.50) 

 Up to this point in our discussion of BRDFs, we have not said anything about 
color. In addition to the incoming and outgoing light directions, a BRDF should 
be a function of the wavelength of the light. Applications requiring accurate re-
flection models across the entire spectrum typically evaluate a BRDF at several 
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wavelengths and then fit a curve to the resulting numbers. For real-time computer 
graphics, we find it sufficient to treat our BRDFs as functions that take the RGB 
color of the incident light and return the RGB color of the reflected light. From 
this point on, we assume that all operations involving a BRDF take place for each 
of the red, green, and blue components of light. 
 The diffuse and specular reflection formulas given in Equations (7.6) and 
(7.8) can be reproduced by defining the RGB-color BRDF  as 

 ( ) ( ),
m⋅

= +
⋅

N H
V L

N L
   . (7.51) 

The term bidirectional means that the function  should be invariant when the 
directions V and L are exchanged. That is,  should satisfy the reciprocity 
property 

 ( ) ( ), ,=V L L V   (7.52) 

required by the fact that reversing the direction that light travels along a certain 
path should not produce different results. The function  given by Equation 
(7.51) does not satisfy the bidirectional requirement, however, and therefore can-
not be physically correct. 
 Another physical law violated by Equation (7.51) is conservation of energy. 
Any physically correct BRDF must not reflect more light from a point on a sur-
face than is incident at that point. We can divide the reflected energy given by the 
BRDF  into diffuse and specular components by writing 

 ( ) ( ) ( ), 1 ,sk k= + −V L V L   , (7.53) 

where  is the surface’s diffuse reflection color and k represents the fraction of 
the incident light that is diffusely reflected. The remaining fraction 1 k−  of the 
incident light is either absorbed or makes up a specular reflection. These effects 
are modeled by the function s , which is described in the next section. 

7.9.2  Cook-Torrance Illumination 

The Cook-Torrance illumination model4 produces a realistic specular reflection 
by treating a surface as being composed of planar microscopic facets called 

                                                      
4 Robert L. Cook and Kenneth E. Torrance, “A Reflectance Model for Computer 
Graphics,” ACM Transactions on Graphics, Vol. 1, No. 1 (January 1982), pp. 7–24. 
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Figure 7.20. Surface roughness is characterized by how much the slopes of the micro-
facets vary. 

microfacets. Each microfacet is treated as a perfect reflector that obeys the reflec-
tive laws of electromagnetic theory. The roughness of a surface is characterized 
by the slopes of the microfacets. As shown in Figure 7.20, a rough surface is 
composed of microfacets having greatly varying slopes, whereas the microfacets 
for a relatively smooth surface have only small slopes. 
 Cook and Torrance use the following formula for the specular component s  
of the BRDF given in Equation (7.53). 

 ( ) ( ) ( ) ( )
( )( )

, ,, ,s
D G
π

=
⋅ ⋅

V L V L
V L V L

N V N L
   (7.54) 

 is the Fresnel factor, which describes the amount and color of light reflected as 
a function of the angle of incidence; D is the microfacet distribution function, 
which returns the fraction of microfacets oriented in a given direction; and G is 
the geometrical attenuation factor, which accounts for self-shadowing of the mi-
crofacets. Since the microfacets are perfect reflectors, only those microfacets 
whose normal vectors point in the direction of the halfway vector H contribute to 
the specular reflection. 
 The π  appearing in the denominator of Equation (7.54) is a normalization 
factor that accounts for the fact that the incident flux density Φ I at a surface for a 
constant emitted radiance EC  is given by 

 ( )
2

Ω
0 0

Φ cos sin
π π

I E EC dω φ φdφdθ πC= ⋅ = =  N L . (7.55) 

7.9.3  The Fresnel Factor 

The interaction of an electromagnetic wave and a surface results in a reflected 
wave and a transmitted wave. The energy contained in the reflected wave is equal 
to the energy contained in the incident wave minus the energy contained in the 
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transmitted wave (which is quickly absorbed by opaque materials). The electric 
field of the incident light can be decomposed into components that are polarized 
with respect to the plane containing the surface normal N and the direction to 
light L. The component parallel to this plane is called p-polarized, and the com-
ponent perpendicular to this plane is called s-polarized. The Fresnel factors giv-
ing, for a single wavelength, the fractions pF  and sF  of the amount of light re-
flected for these components are 

 ( )
( )

2
1 2

2
1 2

tan
tanp

θ θF
θ θ

−
=

+
 (7.56) 

and 

 ( )
( )

2
1 2

2
1 2

sin
sins

θ θF
θ θ

−
=

+
, (7.57) 

where 1θ  is the angle of incidence and 2θ  is the wavelength-dependent angle of 
transmittance. For unpolarized light, we simply average these to obtain the Fres-
nel factor λF  corresponding to the wavelength λ: 

 ( )
( )

( )
( )

2 2
1 2 1 2

2 2
1 2 1 2

tan sin1
2 tan sinλ

θ θ θ θF
θ θ θ θ

− − = + + + 
. (7.58) 

 The angle of incidence 1θ  is equal to ( )1cos − ⋅L H  since every microfacet con-
tributing to the specular reflection is oriented such that its normal vector points 
along the halfway vector H. It turns out that we can write the Fresnel factor in 
terms of ⋅L H and the indexes of refraction 1η  and 2η  of the two materials by ap-
plying some trigonometric identities and using Snell’s law. Factoring the sine 
function out of Equation (7.58) gives us 

 ( )
( )

( )
( )

2 2
1 2 1 2

2 2
1 2 1 2

sin cos1 1
2 sin cosλ

θ θ θ θF
θ θ θ θ

− + = + + − 
. (7.59) 

Applying the trigonometric identities for sums and differences of angles to the 
sine factors yields 

 

( )
( )

1 2 1 2 1 2

1 2 1 2 1 2

2 1

2 1

sin sin cos cos sin
sin sin cos cos sin

cos cos ,
cos cos

λ

λ

θ θ θ θ θ θ
θ θ θ θ θ θ

η θ θ
η θ θ

− −=
+ +

−=
+

 (7.60) 
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where Snell’s law has been used to obtain 

 2 1

1 2

sin
sinλ

η θη
η θ

= = . (7.61) 

We can express 2cosθ  in terms of 1cosθ  and η by writing Snell’s law in the form 

 2 2
1 1 2 21 cos 1 cosη θ η θ− = −  (7.62) 

and solving for 2cosθ : 

 ( )2
2 12

1cos 1 1 cos
λ

θ θ
η

= − − . (7.63) 

Defining the variable g as 

 ( )2 2
2cos 1λ λg η θ η= = − + ⋅L H  (7.64) 

lets us express the quotient of the sine functions as 

 ( )
( )

1 2

1 2

sin
sin

θ θ g
θ θ g

− − ⋅=
+ + ⋅

L H

L H
. (7.65) 

A similar procedure allows us to express the cosine factors in terms of g and 
⋅L H. We begin by applying angle sum and difference identities: 

 

( )
( )

1 2 1 2 1 2

1 2 1 2 1 2

2
1 2 2

2
1 2 2

cos cos cos sin sin
cos cos cos sin sin
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λ

λ

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ η θ
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+ −=
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 (7.66) 

Again using the variable g defined in Equation (7.64), we can write this as 

 

( )
( )

( )
( )
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 (7.67) 
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The Fresnel factor can now be entirely expressed in terms of ⋅L H and λη  as 
follows. 

 ( ) ( )
( )

( )( )[ ]
( )( )[ ]

22

2 2

11, 1
2 1λ

ggF
g g

⋅ + ⋅ −− ⋅  = + + ⋅ ⋅ − ⋅ + 

L H L HL H
V L

L H L H L H
 (7.68) 

The RGB color Fresnel factor ( ),V L  simply consists of the function ( ),λF V L  
evaluated at red, green, and blue wavelengths. 
 We can make a couple of observations about the behavior of the function λF . 
First, as the angle of incidence approaches 90 degrees, the value of ⋅L H ap-
proaches 0, and thus the value of λF  approaches 1. This means that at grazing an-
gles, all the incident light is reflected, leaving none to be absorbed by the surface. 
Second, for normal incidence in which the incident angle is 0, the value of ⋅L H 
is 1, and λF  reduces to 

 ( )
21

1
λ

λ
λ

ηF
η=

− =  + 
L H . (7.69) 

This gives us a convenient way of deriving an approximate value for λη  if all that 
is known about a material is the specular color  reflected at normal incidence. 
Solving Equation (7.69) for λη  yields 

 ( )
( )

1
1

λ
λ

λ

Fη
F

=

=

+
=

−
L H

L H

. (7.70) 

Once a value of λη  has been calculated with this equation by setting the value of 
( )λF =L H at red, green, and blue wavelengths equal to the red, green, and blue 
components of , it can be used in Equation (7.68) to calculate reflectance for 
any other angle of incidence. 

7.9.4  The Microfacet Distribution Function 

Given a halfway vector H, the microfacet distribution function returns the frac-
tion of microfacets whose normal vectors point along the direction H. For rough 
surfaces, the Beckmann distribution function5 given by 

 ( )
( )

( )
( )

2

2 4 2 2

11, exp
4mD

m m
⋅ − =  ⋅ ⋅ 

N H
V L

N H N H
 (7.71) 

                                                      
5 Petr Beckmann and André Spizzichino, The Scattering of Electromagnetic Waves from 
Rough Surfaces, Macmillan, 1963. 
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describes the distribution of microfacet orientations in terms of the root mean 
square slope m. Large values of m correspond to rough surfaces and thus produce 
a wide distribution of microfacet orientations. As shown in Figure 7.21, smaller 
values of m correspond to smoother surfaces and produce relatively narrow dis-
tributions, which result in a sharper specularity. 
 The function given by Equation (7.71) is isotropic, meaning that it is invari-
ant under a rotation about the normal vector N. As long as the angle between the 
direction to viewer V and direction to light L remains constant, and the angle 
between each of these vectors and the normal vector remains constant, the distri-
bution of microfacets also remains constant. Many surfaces, however, possess 
different degrees of roughness in different directions. These surfaces are called 
anisotropic reflectors and include materials such as brushed metal, hair, and cer-
tain fabrics. 
 
 

(a) N

L

 
(b) N

L

 
Figure 7.21. Microfacet distributions given by Equation (7.71) modeling (a) a rough sur-
face using 0.6m =  and (b) a relatively smooth surface using 0.25m = . 
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 We can modify the microfacet distribution function to account for aniso-
tropic surface roughness by changing Equation (7.71) to 

 ( )
( )

( ) ( ) ( )
( )

2 2 2

4 2 2 2

1 11, exp
4 x y x y

D
m m m m

⋅ − ⋅ ⋅ −  = +  ⋅ ⋅  
m

T P T P N H
V L

N H N H
, (7.72) 

where m is a two-dimensional roughness vector, T is the tangent to the surface 
aligned to the direction in which the roughness is xm , and P is the normalized 
projection of the halfway vector H onto the tangent plane: 

 ( )
( )

− ⋅
=

− ⋅
H N H N

P
H N H N

. (7.73) 

Figure 7.22 shows a disk rendered with both isotropic and anisotropic surface 
roughness values. Some surfaces exhibit roughness at multiple scales. This can 
be accounted for by calculating a weighted average of microfacet distribution 
functions 

 ( )
1

, ( , )i

n

i
i

D w D
=

= mV L V L , (7.74) 

where multiple roughness values im  are used and the weights iw  sum to unity. 
Figure 7.23 shows two objects rendered with different values of m and another 
object rendered using a weighted sum of those same values. 

 

Figure 7.22. A disk rendered using the anisotropic distribution function given by Equa-
tion (7.72). For each image 0.1ym = . From left to right the values of xm  are 0.1 (iso-
tropic), 0.12, 0.15, and 0.2. The tangent vectors are aligned to concentric rings around the 
center of the disk—they are perpendicular to the radial direction at every point on the 
surface. 
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Figure 7.23. Copper vases rendered with isotropic microfacet distributions. The first two 
images use a single roughness value of 1 0.1m =  (left) and 2 0.25m =  (center). The right-
most image combines these using the weights 1 0.4w =  and 2 0.6w = . 

7.9.5  The Geometrical Attenuation Factor 

Some of the light incident on a single microfacet may be blocked by adjacent 
microfacets before it reaches the surface or after it has been reflected. This block-
ing results in a slight darkening of the specular reflection and is accounted for by 
the geometrical attenuation factor. Blocked light is essentially scattered in ran-
dom directions and ultimately contributes to the surface’s diffuse reflection. 
 We can derive an estimate of how much light is blocked due to surface 
roughness by assuming that microfacets always form V-shaped grooves. Figure 
7.24(a) illustrates a situation in which light reflected by a microfacet is partially 
blocked by an adjacent microfacet. In this case, light is blocked after being re-
flected. Reversing the direction in which the light travels exhibits the case in 
which light is blocked before reaching the microfacet, as shown in Figure 
7.24(b). 
 The application of a little trigonometry leads us to a formula giving the frac-
tion of light reflected by a microfacet that still reaches the viewer after being par-
tially blocked by an adjacent microfacet. As shown in Figure 7.25, we would like 
to determine the portion x of the width w of a microfacet that is visible to the 
viewer. We first observe that 

 1
sin

w
α

= , (7.75) 

and that by the law of sines (see Appendix B, Section B.6), 
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L H

V

V H

L

(a) (b)
 

Figure 7.24. (a) Light reflected by the left microfacet is partially blocked by the right 
microfacet. (b) Light is blocked by the right microfacet before reaching the left micro-
facet. 

 
( )
2sin

sin 2
γx

β π
=

+
. (7.76) 

We can express each of the sine functions in Equations (7.75) and (7.76) as co-
sine functions that have been shifted by 2π  radians by writing 

 

( )
( )

( )

sin cos 2
sin 2 cos
sin cos 2 .

α π α
β π β
γ π γ

= − = ⋅
+ = = ⋅
= − = ⋅

N H

V H

N V  (7.77) 

Using the dot products corresponding to each of the cosine functions lets us ex-
press the fraction of light 1G  reaching the viewer as 

 ( )( )
1

2xG
w

⋅ ⋅= =
⋅

N H N V

V H
. (7.78) 

 When light is blocked before reaching a microfacet, we can calculate the 
fraction 2G  that still reaches the viewer by simply exchanging the vectors V and 
L in Figure 7.25 to obtain 

 ( )( )
2

2xG
w

⋅ ⋅
= =

⋅
N H N L

L H
. (7.79) 

 The three possible cases pertaining to light reflected by a microfacet are that 
the light is completely unobstructed (the fraction of light reaching the viewer is 
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γ
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1

 
Figure 7.25. The fraction of light reflected from the left microfacet that reaches the 
viewer is equal to x w. The halfway vector H is normal to the microfacet surface since 
only microfacets possessing that orientation contribute to the specular reflection. 

one), that some of the reflected light is blocked, and that some of the incident 
light is blocked. We account for all three cases by defining the geometrical atten-
uation factor as the minimum fraction of light that reaches the viewer: 

 

{ }
( )( ) ( )( ){ }
1 2( , ) min 1, ,

2 2
min 1, ,

G G G=
⋅ ⋅ ⋅ ⋅

=
⋅ ⋅

V L

N H N V N H N L

L H L H
. (7.80) 

We have changed the denominator of 1G  to ⋅L H. This is allowable because, by 
the definition of the halfway vector, the angle between L and H is equal to the 
angle between V and H, and thus ⋅ = ⋅V H L H. 

7.9.6  Implementation 

Ray tracing applications can directly apply Equation (7.54) in its entirety when-
ever a ray intersects a surface. For real-time applications where greater efficiency 
is required, we need to sacrifice a little precision for better performance. For suf-
ficiently tessellated surfaces, evaluating Equation (7.54) at each vertex might 
produce good results, but architectural geometry in games generally does not 
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possess such tessellation. Modern GPUs can evaluate Equation (7.54) at every 
pixel with a fragment program. We can avoid many of the microfacet shading 
calculations by using texture maps to essentially store lookup tables that are in-
dexed by quantities such as ⋅N H and ⋅L H. 
 Adding a texture map factor  and a gloss map factor  to Equation (7.53) 
and substituting the BRDF  into Equation (7.50) gives us the following formula 
for the color of light  reflected toward the viewer by a surface illuminated by a 
single light source, where  is the color of the light and k is the fraction of light 
that is reflected diffusely. 

 ( ) ( ) ( )[ ]1 ,sk k= ⋅ + −N L V L     (7.81) 

Substituting Equation (7.54) for ( ),s V L  gives us 

 ( ) ( ) ( ) ( ) ( )
( )
, ,1 , mD Gk k
π

= ⋅ + −
⋅

V L V L
N L V L

N V
   . (7.82) 

 The only quantity on which the Fresnel factor ( ),V L  depends is ⋅L H, and 
the only quantity on which the isotropic microfacet distribution function 

( ),mD V L  depends is ⋅N H. Given a normal-incidence specular reflection color  
and a microfacet root mean square slope m, we can construct a texture map 
whose s and t coordinates correspond to ⋅N H and ⋅L H, respectively, and whose 
color values represent the product ( ) ( ), ,mD πV L V L . An example of such a 
texture map is shown in Figure 7.26. 
 For small values of m, the value of the microfacet distribution function mD  is 
significant only when ⋅N H is near 1. To maximize the resolution of the useful 
information in the texture containing the products ( ) ( ), ,mD πV L V L , we map 
the range [ ]0,1  of s texture coordinates to the range [ ],1x , where x is the value of 

⋅N H for which ( ),mD π ε=V L  for some small threshold ε . We cannot find the 
value of x analytically, but we can apply Newton’s method (see Section 6.1.4) to 
the function 

 ( )
2

2 4 2 2

1 1exp
4

xf x ε
πm x m x

− = − 
 

. (7.83) 

The refinement formula used to find the value of x for which ( ) 0f x =  is given 
by 
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⋅N H

⋅L H

0.0

1.0

0.9 1.0 

Figure 7.26. A texture map representing the product ( ) ( ), ,mD πV L V L . The s coordi-
nate corresponds to the quantity ( )10 9⋅ −N H , and the t coordinate corresponds to the 
quantity ⋅L H. This image was generated using the normal-incidence specular reflection 
color ( )0.8,0.6,0.1=  and the microfacet root mean square slope 0.2m = . 
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. (7.84) 

Using an initial value of 0 1x =  may require several iterations of this refinement 
formula since the slope of the function ( )f x  may be steep at 1x = . Once the val-
ue of x for which ( ) 0f x =  is known, we map values of ⋅N H from the range [ ],1x  
to the range [ ]0,1  using the formula 

 
1

xs
x

⋅ −=
−

N H . (7.85) 

 It is convenient for us to perform the microfacet lighting calculations in tan-
gent space since, in this setting, 0,0,1=N  and, for calculations pertaining to 
anisotropic microfacet distributions, 1,0,0=T . The vertex shader shown in List-
ing 7.2 can be used again to transform the view direction V and light direction L 
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into tangent space for each vertex. The fragment shader shown in Listing 7.3 can 
then be used to implement isotropic microfacet shading. 
 In tangent space without bump mapping, zL⋅ =N L , zV⋅ =N V , and ⋅ =N H  

zH . The specular component of Equation (7.82) becomes 

 ( ) ( ) ( )
specular

,1 ,z
z

Gk H
V

= − ⋅
V L

L Hs  , (7.86) 

where ( ),zH ⋅L H  represents the product ( ) ( ), ,mD πV L V L  that is looked 
up in a texture map. The fragment program shown in Listing 7.3 calculates the 
halfway vector H, performs a texture fetch to obtain the value of ( ),zH ⋅L H , 
and multiplies it by the precomputed value of ( )1 k− . The geometrical attenua-
tion factor ( ),G V L  sometimes makes a subtle contribution and may be omitted. 
When present, its value is calculated in tangent space using the formula 

 ( ) ( )2, min ,z
z z

HG V L=
⋅

V L
L H

 (7.87) 

and using the saturation operation to clamp the result to the range [ ]0,1 . 
 For anisotropic microfacet distributions, we can use a 3D texture map whose 
p coordinate corresponds to the quantity ( ) 2⋅T P , where P is the projection of the 
halfway vector H onto the tangent plane. In tangent space, Equation (7.73) 
becomes 

 
2 2

, ,0x y

x y

H H
H H

=
+

P , (7.88) 

and thus 

 ( )
2

2
2 2

x

x y

H
H H

⋅ =
+

T P . (7.89) 

The 3D texture map contains the product ( ) ( ), ,D πmV L V L , where ( ),Dm V L  
is the anisotropic distribution function given by Equation (7.72). A fragment 
shader almost identical to that shown in Listing 7.3 can be used to implement 
anisotropic microfacet shading. The only changes are that a 3D texture map is 
used instead of a 2D texture map, and the value given by Equation (7.89) is add-
ed for the third texture coordinate. 
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Listing 7.3. This fragment shader performs the calculations necessary for isotropic microfacet 
shading. The uniform parameter named diffuse contains the product k, the uniform 
parameter named specular contains the product ( )1 k− , and the uniform parameter named 
range contains the scale and bias used to map the values of ⋅N H to the range [ ]0,1 . The 2D 
texture map containing the product ( ) ( ), ,mD πV L V L  is bound to the sampler named 
microfacetTexture. 

in vec3     view;  // Tangent-space view direction. 

in vec3     light;  // Tangent-space light direction. 

uniform vec3   diffuse; // Diffuse material color. 

uniform vec3   specular; // Specular material color. 

uniform vec2   range;  // Scale and bias for look-up texture. 

uniform sampler2D  microfacetTexture; // The look-up texture sampler. 

 

void main() 

{ 

 vec2 txtr; 

 

 // Normalize V and L. 

 vec3 vdir = normalize(view); 

 vec3 ldir = normalize(light); 

 

 // Calculate H. 

 vec3 hdir = normalize(vdir + ldir); 

  

 // Scale and bias N*H. 

 txtr.x = hdir.z * range.x + range.y; 

 

 // Calculate L*H. 

 txtr.y = dot(ldir, hdir); 

 

 // Look up product F(V,L)D(V,L)/pi and divide by N*V. 

 vec3 color = texture2D(microfacetTexture, txtr).xyz / vdir.z; 

 

 // Calculate geometrical attenuation (may be omitted). 

 color *= saturate(min(vdir.z, ldir.z) * 2.0 * hdir.z / txtr.y); 

  

 // Multiply specular by (1-k)C and add kCD(N*L). 

 gl_FragColor.xyz = color * specular + diffuse * ldir.z; 

} 
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Chapter 7 Summary 

Point Light Source Attenuation 

The intensity  of a point light source at a distance d from its position is given by 

 02

1
c l qk k d k d

=
+ +

  , 

where 0  is the color of the light, and the constants ck , lk , and qk  control the at-
tenuation. 

Spot Light Source Attenuation 

The intensity  of a spot light source at a point Q lying at a distance d from the 
light’s position is given by 

 { }
02

max ,0 p

c l qk k d k d
− ⋅

=
+ +

R L
  , 

where 0  is the color of the light; ck , lk , and qk  are the attenuation constants; R is 
the direction in which the spot light is pointing; L is the unit vector pointing from 
Q to the light position; and the exponent p controls the rate at which the intensity 
falls off as the angle between R and −L increases. 

Ambient and Diffuse Lighting 

The ambient and diffuse contribution to the illumination color calculated at a 
point Q on a surface is given by the expression 

 { }diffuse
1

max ,0
n

i i
i=

= + ⋅ N L    , 

where  is the surface’s diffuse reflection color, N is the normal vector to the 
surface, iL  is the unit vector pointing from Q toward the i-th light, i  is the inten-
sity of the i-th light at the point Q, and  represents the ambient light color. 

Specular Lighting 

The specular contribution to the illumination color calculated at a point Q on a 
surface is given by the expression 
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 { } ( )specular
1

max ,0 0
n

m
i i i

i=
= ⋅ ⋅ > N H N L   , 

where  is the surface’s specular reflection color; iH  is the unit halfway vector at 
the point Q, which lies halfway between the direction to light iL  and the direction 
to the viewer; and m controls the sharpness of the specularity. The expression 
( )0i⋅ >N L  evaluates to 1 or 0, depending on whether the surface is facing the 
light. 

Standard Shading Equation 

The reflected color  calculated at a point Q on a surface illuminated by n lights 
is given by 

 ( ) ( ) ( )
1

0
n

m
i i i i

i=

 = + + ⋅ + ⋅ ⋅ >  N L N H N L      , 

where the dot products i⋅N L  and i⋅N H  are clamped to zero, and the quantities 
involved are defined as follows. 

 = diffuse reflection color 
 = specular reflection color 
m = specular exponent 
 = ambient light color 
 = emission color 
 = texture map color 
 = gloss map color 
 = emission map color 

i  = color of i-th light at Q 
iL  = direction vector to i-th light 
iH  = halfway vector for i-th light 

N = normal vector 

Bump Mapping 

The tangent T and bitangent B for a triangle whose vertices lie at the points 0P , 
1P , and 2P  are calculated using the formula 

 
( ) ( ) ( )
( ) ( ) ( )

2 1 1 1 1

2 1 2 2 21 2 2 1

1x y z x y z

x y z x y z

T T T t t
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Q Q Q
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where 1 1 0= −Q P P , 2 2 0= −Q P P , and 

 
1 1 1 0 1 0

2 2 2 0 2 0

, ,
, ,

s t s s t t
s t s s t t

= − −
= − − . 

The direction-to-light vector L and halfway vector H are transformed from object 
space to tangent space using the matrix 

 
x y z

x y z

x y z

T T T
B B B
N N N

′ ′ ′ 
 ′ ′ ′ 
  

, 

where ′T  and ′B  are orthogonal to N and each other. 

Bidirectional Reflectance Distribution Functions 

The radiance R  of the light reflected in the direction V from a surface illuminat-
ed by n lights is given by 

 ( ) ( ) ( )
1

,
n

R i i i
i=

= ⋅V V L N L   , 

where i  is the radiance of the i-th light source. The BRDF  can be divided into 
diffuse and specular components by writing 

 ( ) ( ) ( ), 1 ,sk k= + −V L V L   , 

where k is the fraction of light that is reflected diffusely. 

Cook-Torrance Illumination 

The specular component of the BRDF used in the Cook-Torrance illumination 
model is given by 

 ( ) ( ) ( ) ( )
( )( )

, ,, ,s
D G
π

=
⋅ ⋅

V L V L
V L V L

N V N L
  , 

where  is the Fresnel factor, D is the microfacet distribution function, and G is 
the geometrical attenuation factor. 
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Fresnel Factor 

The Fresnel factor for a single color is given by 

 ( ) ( )
( )

( )( )[ ]
( )( )[ ]

22
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where g is defined by 

 ( )2 21λg η= − + ⋅L H . 

The index of refraction λη  can be calculated using the equation 

 1
1

λ
λ

λ

Sη
S

+=
−

, 

where  is the specular reflection color at normal incidence. 

Microfacet Distribution Functions 

The microfacet distribution function mD  for isotropic surfaces is given by 

 ( )
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where m is the root mean square slope of the microfacets. For anisotropic surfac-
es, the microfacet distribution function becomes 

 ( )
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where xm  and ym  represent the root mean square slopes parallel and perpendicu-
lar to the tangent direction T. The vector P is the normalized projection of the 
halfway vector H onto the tangent plane. 

Geometrical Attenuation Factor 

The geometrical attenuation factor is given by the formula 

 ( )( ) ( )( ){ }2 2( , ) min 1, ,G ⋅ ⋅ ⋅ ⋅
=

⋅ ⋅
N H N V N H N L

V L
L H L H

 

and accounts for the incident or reflected light for a microfacet that is blocked by 
adjacent microfacets. 
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Exercises for Chapter 7 

1. A point light source has attenuation constants 1ck = , 0lk = , and 1
2qk = . At 

what distance from the light source is the radiant intensity one-fourth that of 
the intensity at a distance of one meter? 

2. A spot light source positioned 10 meters above the origin at the point 
0,0,10=P  and radiating energy in the direction 0,0, 1= −R  is configured 

so that no distance attenuation takes place by setting 1ck =  and 0l qk k= = . 
If the color of the light is white ( ( )0 1,1,1= ) and the spot exponent is 8, then 
what is the radius of the circle lying in the x-y plane where the intensity of 
the light is 50 percent gray ( ( )1 1 1

2 2 2, ,= )? 

3. Describe how it is possible for ⋅N H to be a positive number when ⋅N L is a 
negative number, thus necessitating the ( )0⋅ >N L  term in the illumination 
formula. 

4. Let L be the normalized direction to the light source and V be the normal-
ized direction to the viewer at a surface point where the unit normal vector 
is N. Show that 

 ( ) ( )
( )

22

2 1

m
m ⋅ + ⋅ ⋅ =  ⋅ + 

N L N V
N H

L V
, 

 where H is the halfway vector defined by Equation (7.9), and m is an arbi-
trary specular exponent. 

5. Write a program that calculates vertex normals and vertex tangents for an 
arbitrary triangle mesh. Assume that the triangle mesh is specified such that 
each of n triangles indexes three entries in an array of m vertices. Each entry 
in the vertex array contains the position of the vertex and two-dimensional 
texture-mapping coordinates. 

6. Modify Listing 7.3 so that it performs bump mapping as well as isotropic 
microfacet shading. 

7. Implement a simple ray tracer that calculates diffuse and specular reflections 
using Equations (7.6) and (7.8). The ray tracer should be able to model 
spheres and should support directional, point, and spot light sources. 

8. Extend the ray tracer from Exercise 7 to implement Cook-Torrance micro-
facet shading. 
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Chapter 8 

Visibility Determination 

When it comes to the performance of a real-time 3D engine, the single most im-
portant component of the rendering architecture is visibility determination. Given 
a particular camera position and orientation, every engine must be able to effi-
ciently determine which parts of the world are potentially visible and therefore 
should be rendered. This problem is usually attacked from the opposite perspec-
tive—the engine determines which parts of the world are definitely not visible 
and renders whatever is left over. 
 Most engines perform visibility determination at multiple levels. The general 
goal is to determine what world geometry cannot possibly intersect the view frus-
tum. At the smallest scale, 3D hardware performs backface culling to eliminate 
individual triangles that face away from the camera. At the level above that, 
bounding volume tests are usually performed to determine whether an object lies 
completely outside the view frustum. Moderate-size groups of geometry can be 
culled from the visible set by organizing areas of the world into tree structures 
such as binary space partitioning (BSP) trees or octrees. At the largest scale, en-
tire regions of world geometry can be eliminated by using a technique known as 
a portal system. 

8.1  Bounding Volume Construction 

Bounding volumes are constructed so that they enclose all the vertices belonging 
to a triangle mesh, thereby ensuring that every triangle in the mesh is also con-
tained in the bounding volume. The bounding volume should be made as small as 
possible so that it falls completely outside the view frustum as often as possible, 
thus enabling the object it contains to be culled from the visible set of geometry 
as often as possible. 
 Figure 8.1(a) shows a box bounding a set of points that represent the vertices 
of a triangle mesh. The box is aligned to the coordinate axes, but the vertices are 
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Figure 8.1. A bounding volume aligned to the coordinate axes is usually a poor choice 
for most vertex distributions. 

distributed in such a way that the box enclosing them contains a lot of empty 
space. As Figure 8.1(b) demonstrates, choosing a bounding box that is aligned to 
the natural axes of the data set can greatly reduce the size of the box. We present 
a method for determining the natural alignment in the next section. 

8.1.1  Principal Component Analysis 

We can reduce the size of each of our bounding volumes by determining a coor-
dinate system that is naturally aligned to the set of vertices belonging to each tri-
angle mesh. We can calculate these coordinate axes by using a statistical method 
called principal component analysis. Principal component analysis allows us to 
find a coordinate space in which a set of data composed of multiple variables, 
such as the x, y, and z coordinates stored in an array of vertex positions, can be 
separated into uncorrelated components. The primary principal component of the 
data is represented by the direction in which the data varies the most. 
 To determine the natural coordinate system for an arbitrary set of N vertices 

1 2, , , NP P P , where , ,i i i ix y z=P , we first calculate the mean (average) position 
m using the formula 

 
1

1 N

i
iN =

= m P . (8.1) 

We then construct a 3 3×  matrix C called the covariance matrix as follows. 
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 ( )( ) T

1

1 N

i i
iN =

= − −C P m P m  (8.2) 

The covariance matrix is a symmetric matrix made up of the following six unique 
entries. 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

2
11 12 21

1 1

2
22 13 31

1 1

2
33 23 32

1 1

1 1

1 1

1 1

N N

i x i x i y
i i
N N

i y i x i z
i i
N N

i z i y i z
i i

C x m C C x m y m
N N

C y m C C x m z m
N N

C z m C C y m z m
N N

= =

= =

= =

= − = = − −

= − = = − −

= − = = − −

 

 

   (8.3) 

The entries of the covariance matrix represent the correlation between each pair 
of the x, y, and z coordinates. An entry of zero indicates no correlation between 
the two coordinates used to calculate that entry. If C is a diagonal matrix, then all 
three coordinates are completely uncorrelated, meaning that the points are dis-
tributed evenly about each axis.  
 We want to find a basis to which we can transform our set of vertices so that 
the covariance matrix is diagonal. If we apply a transformation matrix A to each 
of the points { }iP , then the covariance matrix ′C  of the transformed set of points 
is given by 

 

( )( )

( )( )

T

1

T T

1
T

1

1

.

N

i i
i
N

i i
i

N

N

=

=

′ = − −

= − −

=





C AP Am AP Am

A P m P m A

ACA  (8.4) 

Thus, we require an orthogonal transformation matrix A whose transpose diago-
nalizes the matrix C. Since C is a real symmetric matrix, we know by Theorem 
3.26 that its eigenvectors are orthogonal. The matrix whose rows consist of the 
eigenvectors of C meets our requirements and maps our vertices into a space 
where their coordinates are uncorrelated. 
 We have now turned the problem of finding the natural axes of a set of points 
into that of calculating the eigenvectors of the covariance matrix. One possible 
way to do this is to first calculate the eigenvalues given by the roots of the char-
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acteristic polynomial, a cubic in the case of the 3 3×  covariance matrix. Fortu-
nately, since the covariance matrix is symmetric, it has only real eigenvalues (see 
Theorem 3.25), and we can therefore use the method presented in Section 6.1.2 
to explicitly calculate all of them. Finding the corresponding eigenvectors is then 
achieved by solving three homogeneous linear systems, as in the following ex-
ample. Alternatively, a numerical method may be used to calculate the eigenval-
ues and eigenvectors, as discussed in Section 16.3. 

Example 8.1. Determine the natural axes for the following set of points.  
 

  

1

2

3

4

1, 2,1
1,0,2
2, 1,3
2, 1,2

= − −
=
= −
= −

P

P

P

P  

Solution. We first calculate the average position m: 

 
4

1

1 1, 1,2
4 i

i=
= = −m P . (8.5) 

The covariance matrix C is then given by 

 

3 31
2 2 4
1 1 1
2 2 4
3 1 1
4 4 2

 
 =  
  

C . (8.6) 

The eigenvalues of the covariance matrix are the roots of the characteristic 
polynomial: 

 

( )

3 31
2 2 4

1 1 1
2 2 4
3 1 1
4 4 2

3 25 7 1
2 8 16

det

.

λ
λ λ

λ

λ λ λ

−
− = −

−

= − + − +

C I

 (8.7) 
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Explicitly solving for the roots of the characteristic polynomial using the method 
presented in Section 6.1.2 gives us the following eigenvalues. 

 

1

2

3

2.097
0.3055
0.09756

λ
λ
λ

=
=
=  (8.8) 

The eigenvectors, which we call R, S, and T here, are found by solving the linear 
systems ( )i iλ− =C I V 0. Omitting the details of these calculations, the unit-length 
eigenvectors of the matrix C are 

 
0.833 0.257 0.489
0.330 0.941 0.0675
0.443 0.218 0.870

− −     
     = − = = −     
− − −          

R S T , (8.9) 

and these represent the natural axes of the set of vertices iP .  

 In the remainder of this chapter, we use the letters R, S, and T to represent 
the natural axes of a set of vertices. The direction R always represents the princi-
pal axis, which corresponds to the largest eigenvalue of the covariance matrix. 
The directions S and T represent the axes corresponding to the second largest and 
the smallest eigenvalues, respectively. That is, if 1λ , 2λ , and 3λ  are the eigenvalues 
corresponding to the vectors R, S, and T, respectively, then 1 2 3λ λ λ≥ ≥ . 

8.1.2  Bounding Box Construction 

Given a set of vertex positions 1 2, , , NP P P  for a triangle mesh, we can now cal-
culate the directions R, S, and T corresponding to the natural axes of the object. 
To construct a bounding box, we need to determine the minimum and maximum 
extents of the vertex set along these three directions. These extents immediately 
produce the six planes of the bounding box; other types of bounding volumes 
require a little more computation. 
 To find the extents, we simply compute the dot product of each vertex posi-
tion iP  with the unit length vectors R, S, and T, and take the minimum and max-
imum values. The six planes of the bounding box are then given by 
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{ } { }

{ } { }

{ } { }

1 1

1 1

1 1

, min ,max

, min ,max

, min ,max .

i i
i N i N

i i
i N i N

i i
i N i N

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

− ⋅ − ⋅

− ⋅ − ⋅

− ⋅ − ⋅

R P R R P R

S P S S P S

T P T T P T  (8.10) 

Example 8.2. Calculate the six planes of the naturally aligned bounding box 
for the set of points given in Example 8.1. 

Solution. The natural axes for this set of points are given by Equation (8.9). The 
dot products of each of the four points with the directions R, S, and T are listed 
below. 

 

1 1 1

2 2 2

3 3 3

4 4 4

1.05 1.84 1.22
1.72 0.693 1.25
2.67 2.11 1.56
2.22 1.89 0.695

⋅ = ⋅ = − ⋅ = −
⋅ = − ⋅ = − ⋅ = −
⋅ = − ⋅ = − ⋅ = −
⋅ = − ⋅ = − ⋅ = −

P R P S P T

P R P S P T

P R P S P T

P R P S P T

 (8.11) 

Using the minimum and maximum values of i ⋅P R, the two planes perpendicular 
to the direction R are given by 

 ,2.67 ,1.05−R R . (8.12) 

Similarly, the planes perpendicular to the S and T directions are given by 

 
,2.11 , 0.693
,1.56 , 0.695

− −
− −

S S

T T .  (8.13) 

 The dimensions of the bounding box are given by the differences between 
the minimum and maximum dot products in each of the directions R, S, and T. 
The center Q of the bounding box is the point at which the three planes lying 
halfway between each pair of opposing faces intersect. We assign to the scalars 
a, b, and c the average extent in the R, S, and T directions, respectively, as 
follows. 
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2
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≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⋅ + ⋅
=

⋅ + ⋅
=

⋅ + ⋅
=

P R P R

P S P S

P T P T
 (8.14) 

The three planes that divide the box in half are given by , a−R , , b−S , and 
, c−T . Using Equation (5.21) to calculate the point of intersection provides us 

with the following expression for the center Q. 

 a b c= + +Q R S T (8.15) 

8.1.3  Bounding Sphere Construction 

Bounding spheres are commonly used in tests for object visibility due to the 
speed with which such a test can be performed. As with all bounding volumes, 
we should construct bounding spheres that are as tight as possible so as to mini-
mize the occurrence of its intersection with the view frustum. Achieving an abso-
lutely optimal bounding sphere in all cases turns out to be a hard problem that we 
do not discuss here, but we are able to construct bounding spheres that are ac-
ceptably efficient without requiring an excessively complex algorithm. 
 We begin constructing a bounding sphere for a set of points 1 2, , , NP P P  by 
first calculating the principal axis R and locating the points kP  and lP  represent-
ing the minimum and maximum extents in that direction (i.e., we locate the 
points having the least and greatest dot product with R). We then construct a 
sphere whose center Q and radius r are given by 

 
2

k l

kr

+=

= −

P P
Q

P Q . (8.16) 

That is, the center of the sphere lies halfway between the points producing the 
minimum and maximum extents in the R direction, and the radius is the distance 
from the center to either of those points. 
 Although it is a good approximation to the final bounding sphere, the sphere 
given by Equation (8.16) may not enclose all the points 1 2, , , NP P P . We must 
therefore test each of the points { }iP  to make sure they fall inside the sphere. 



218 8. Visibility Determination 
 

G

Q
r

′Q

iP
r′

 
Figure 8.2. The initial bounding sphere determined by the extents of the set of points in 
the direction of the principal axis is expanded to include any points in the set that lie out-
side of the sphere. 

Whenever a point is encountered that lies outside the sphere, we expand the 
sphere by adjusting the center Q and radius r to enclose the previous sphere and 
the exterior point, as shown in Figure 8.2. A point iP  lies outside the sphere if 

 2 2
i r− >P Q . (8.17) 

We expand the sphere by placing the new center ′Q  on the line connecting the 
previous center Q and the exterior point iP . The new sphere is then tangent to the 
previous sphere at a point G given by 

 i

i
r −= −

−
P Q

G Q
P Q

, (8.18) 

which also lies on the line containing Q and iP . The new center ′Q  is placed 
halfway between the points G and iP , and the new radius r′ is the distance from 
the new center to either of these points: 

 
2

i

ir

+′ =

′ ′= −

G P
Q

P Q . (8.19) 

8.1.4  Bounding Ellipsoid Construction 

An ellipsoidal bounding volume may be appropriate for a triangle mesh having 
an elongated shape. To determine a good bounding ellipsoid for a set of vertices 

1 2, , , NP P P , we need to calculate the lengths of the three semiaxes of the ellip-
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soid aligned to the natural axes R, S, and T. We can transform the problem into 
that of finding a bounding sphere by scaling the vertex positions in these direc-
tions so that their bounding box becomes a cube. Once the bounding sphere of 
the scaled set is known, we scale its radius by the reciprocal amount in each di-
rection to derive the semiaxis lengths. 
 To scale the vertex positions so that they are bounded by a cube, we need to 
know the distance between the planes representing the minimum and maximum 
extents in each natural axis direction. These distances are equal to the dimensions 
of the standard bounding box, which are given by the differences between the 
minimum and maximum dot products of the points iP  with the vectors R, S, and 
T. Calling these distances a, b, and c, respectively, we have 

 

{ } { }

{ } { }

{ } { }

11

11

11

max min

max min

max min .

i i
i Ni N

i i
i Ni N

i i
i Ni N

a

b

c

≤ ≤≤ ≤

≤ ≤≤ ≤

≤ ≤≤ ≤

= ⋅ − ⋅

= ⋅ − ⋅

= ⋅ − ⋅

P R P R

P S P S

P T P T  (8.20) 

To transform the vertex set into one bounded by a cube, we need to scale their 
positions by 1 a in the R direction, by 1 b in the S direction, and by 1 c in the T 
direction. As stated in Equation (4.11), the matrix M that performs this scale is 
given by 

 [ ] [ ] T

1 0 0
0 1 0
0 0 1

a
b

c

 
 =  
  

M R S T R S T , (8.21) 

where we have replaced the inverse operation for the rightmost matrix by a 
transpose operation since the vectors R, S, and T are orthonormal. 
 Once each of the points { }iP  has been transformed by the matrix M, we cal-
culate the bounding sphere for the set of points 1 2, , , NMP MP MP . Once the 
center Q of this sphere is known, we can calculate the center of the bounding 
ellipsoid of the original set of vertices by transforming Q back into the unscaled 
coordinate space. The ellipsoid center is simply given by 1−M Q, where the in-
verse of M is 

 [ ] [ ]1 T

0 0
0 0
0 0

a
b

c

−
 
 =  
  

M R S T R S T . (8.22) 
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The lengths of the semiaxes of the bounding ellipsoid are calculated by scaling 
the radius r of the bounding sphere calculated for the points { }iMP . The semiaxis 
lengths corresponding to the directions R, S, and T are given by ar, br, and cr, 
respectively. 

8.1.5  Bounding Cylinder Construction 

A cylindrical bounding volume is represented by its radius and the two points 
corresponding to the centers of its endcaps. The endcaps of a cylinder bounding 
the set of points 1 2, , , NP P P  coincide with the planes of the bounding box that 
are perpendicular to the principal axis R. Most of the calculations involved in 
determining the bounding cylinder for a triangle mesh lie in finding the circle 
that bounds the projection of the points iP  onto the plane containing the natural 
axes S and T. 
 We find the bounding circle in a manner similar to the way we calculate 
bounding spheres, except that the component of each point iP  parallel to the R 
direction is ignored. Instead of working directly with the points { }iP , we remove 
the projection of each iP  onto R and work with the points { }iH  given by 

 ( )i i i= − ⋅H P P R R. (8.23) 

We first locate the points kH  and lH  that have the least and greatest dot products 
with the vector S. (Recall that the axis S corresponds to the second largest eigen-
value of the covariance matrix.) The initial center Q and radius r of the bounding 
circle are given by 

 
2

k l

kr

+=

= −

H H
Q

H Q . (8.24) 

We then proceed exactly as we would when calculating a bounding sphere. We 
check each point to make sure it falls inside the bounding circle. When a point iH  
for which 

 2 2
i r− >H Q  (8.25) 

is encountered, we expand the bounding circle so that it has a new center ′Q  and 
new radius r′ given by 
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H Q , (8.26) 

where 

 i

i
r −= −

−
H Q

G Q
H Q

. (8.27) 

 The radius of the bounding cylinder is the same as the radius of the circle 
bounding the set of points { }iH . The center Q of the bounding circle lies in the 
plane perpendicular to the direction R but passing through the origin. The centers 
of the cylinder’s endcaps are found by projecting Q onto the bounding box 
planes corresponding to the least and greatest dot products of the points { }iP  with 
the direction R. Calling the endpoints 1Q  and 2Q , we have 

 

{ }

{ }
1

1

2
1

min

max

i
i N

i
i N

≤ ≤

≤ ≤

= + ⋅

= + ⋅

Q Q P R R

Q Q P R R. (8.28) 

8.2  Bounding Volume Tests 

Now that we have seen how to construct a variety of bounding volumes, we turn 
our attention to the methods used to determine whether each type is visible. All 
the techniques presented in this section reduce the problem of intersecting a 
bounding volume with the view frustum to that of intersecting a point or a line 
segment with a properly modified view frustum. This is accomplished by moving 
the planes of the view frustum outward by appropriate amounts, which are de-
termined differently for each type of bounding volume. 

8.2.1  Bounding Sphere Test 

A sphere of radius r intersects the view frustum if its center lies inside the view 
frustum or lies within a distance r of any of the six sides of the view frustum. The 
gray region shown in Figure 8.3(a) corresponds to the volume in which the 
sphere’s center must lie whenever it is visible. The boundary of this region, 
formed by rolling the sphere around the outside edges of the view frustum, is 
parallel to one of the frustum planes everywhere except at the corners, where it is 
rounded. As Figure 8.3(b) shows, we can approximate the exact volume of visi-
bility by moving each of the six frustum planes outward by a distance r. 
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(a) (b)

r

r

 
Figure 8.3. (a) The yellow region corresponds to the volume, in addition to the view frus-
tum itself, in which the center of a sphere of radius r must lie whenever it is visible. (b) 
We can approximate the exact volume of visibility by moving each of the six frustum 
planes outward by a distance r. 

 Given a sphere of radius r whose center resides at the point Q in camera 
space, we compute the 4D dot products of the homogeneous extension of Q with 
the six frustum planes listed in Table 5.1. Since the frustum plane normals point 
inward, a negative dot product indicates that Q lies outside the visible volume of 
space. If any one of the dot products is less than or equal to r− , then the sphere 
does not intersect the view frustum at all, and the object bounded by it should be 
culled from the visible set of geometry. Otherwise, some part of the sphere prob-
ably lies inside all six frustum planes, the exception being the case shown in Fig-
ure 8.4. Near the edges of the view frustum, some spheres that are not visible 
may not be culled because they do not fall far enough outside any single frustum 
plane. This infrequent occurrence is normally tolerated to preserve the simplicity 
of the visibility test. We examine a small enhancement that reduces this effect in 
Section 8.4.2. 

8.2.2  Bounding Ellipsoid Test 

When testing the visibility of a sphere, we move each of the six frustum planes 
outward by the radius of the sphere and test whether the sphere’s center lies on 
the positive side of these modified planes. A similar method can be used to test 
the visibility of an ellipsoid, but since an ellipsoid does not possess the isotropic 
symmetry that a sphere does, the effective radius of the ellipsoid is different for 
each frustum plane. 
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Figure 8.4. Near the edges of the view frustum, some spheres that are not visible are not 
culled because they do not fall far enough outside any single frustum plane. 

 Suppose that an object is bounded by an ellipsoid whose semiaxes are given 
by the mutually perpendicular vectors R, S, and T, as shown in Figure 8.5, where 
R, S, and T are parallel to the principal axes of the bounded object but have 
magnitudes equal to the semiaxis lengths of the ellipsoid. A point P on the sur-
face of the ellipsoid can be expressed in terms of the three vectors R, S, and T as 
follows. 

 cos sin sin sin cosθ φ θ φ φ= + +P R S T  (8.29) 

This expression represents a spherical coordinate system aligned to the axes of 
the ellipsoid. The angle φ represents the angle that the point P makes with the 
vector T. The angle θ  represents the angle that the projection of P onto the plane 
containing the vectors R and S makes with the vector R. Over the entire surface 
of the ellipsoid, φ ranges from 0 to π , and θ  ranges from 0 to 2π. 
 Given a unit direction vector N, we would like to find the point P on the sur-
face of the ellipsoid whose projection onto N has the greatest magnitude. This 
would give us the effective radius effr  of the ellipsoid with respect to a plane 
whose normal vector is N. Since N has unit length, the magnitude of the projec-
tion of P onto N is simply given by ⋅P N. We wish to find the angles φ and θ  that 
maximize this quantity, so we set partial derivatives to zero as follows. 

 ( ) ( ) ( ) ( )cos cos sin cos sin 0θ φ θ φ φ
φ
∂ ⋅ = ⋅ + ⋅ − ⋅ =

∂
P N R N S N T N  (8.30) 
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Figure 8.5. A bounding ellipsoid whose semiaxes are given by the mutually perpendicu-
lar vectors R, S, and T (where T points out of the page). The effective radius of the ellip-
soid with respect to a plane is equal to the maximum distance from the ellipsoid’s center 
to any point on the surface projected onto the plane’s normal. 

 ( ) ( ) ( )sin sin cos sin 0θ φ θ φ
θ
∂ ⋅ = − ⋅ + ⋅ =

∂
P N R N S N  (8.31) 

 In our derivation of an expression for the quantity ⋅P N, we make use of the 
trigonometric identity 

 2 2tan 1 secα α+ = , (8.32) 

which can be transformed into the identities 

 

2

2

tansin
tan 1

1cos
tan 1

αα
α

α
α

=
+

=
+

. (8.33) 

Equation (8.31) can be rewritten as 

 ( ) ( )cos sinθ θ⋅ = ⋅S N R N , (8.34) 

allowing us to express tanθ as 

 tanθ ⋅=
⋅

S N

R N
. (8.35) 

Equation (8.30) can be rewritten as 
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 ( ) ( ) ( )sin cos cos sin cosφ θ φ θ φ⋅ = ⋅ + ⋅T N R N S N , (8.36) 

allowing us to express tanφ as 

 

( )

2

2

2

2

2
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1 tan
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1 1 tan
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φ θ θ

θ
θ

θ
θ

θ
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⋅ ⋅

⋅ ⋅ = + ⋅ ⋅ +
⋅= +
⋅ +
⋅= +
⋅
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T N T N
R N S N

T N T N

R N

T N

R N

T N

R N S N

T N R N
 (8.37) 

where Equation (8.35) has been used in two steps. Using the identities given by 
Equation (8.33), the value of ⋅P N can now be written as 

 

( ) ( ) ( )

( )[ ]
2 2

cos sin sin sin cos
1 tan tan

tan 1 tan 1

θ φ θ φ φ
φ θ

φ θ

⋅ = ⋅ + ⋅ + ⋅

 = ⋅ + ⋅ + ⋅ 
 + +

P N R N S N T N

R N S N T N . (8.38) 

Substituting expressions from Equations (8.35) and (8.37) for tanθ  and tanφ 
gives us 
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which yields the relatively simple expression 

 ( ) ( ) ( )2 2 2
effr = ⋅ = ⋅ + ⋅ + ⋅P N R N S N T N . (8.40) 

 Equation (8.40) provides the effective radius of an arbitrary ellipsoid with 
respect to a plane having unit normal direction N. Since the near and far planes 
are parallel, the ellipsoid’s effective radius for those two planes is the same. 
Thus, to test whether an ellipsoid falls outside the view frustum, we need to cal-
culate at most five effective radii. As with the sphere test, we compute the four-
dimensional dot products of the ellipsoid’s center with each of the frustum plane 
vectors. If any single dot product is less than or equal to effr− , then the ellipsoid is 
not visible. Otherwise, the object bounded by the ellipsoid should be drawn. 

8.2.3  Bounding Cylinder Test 

We reduced the problem of intersecting a sphere or an ellipsoid with the view 
frustum to that of testing whether a point fell on the positive side of frustum 
planes that were offset by the bounding volume’s effective radius. To intersect a 
cylinder with the view frustum, we instead reduce the problem to determining 
whether a line segment is visible in a properly expanded frustum. 
 As with the ellipsoid test, we must determine the effective radius of a bound-
ing cylinder with respect to each of the view frustum planes. The effective radius 
depends on the cylinder’s orientation and ranges from zero (when the cylinder is 
perpendicular to a plane) to the actual radius (when the cylinder is parallel to a 
plane). Suppose that we are given a cylinder of radius r whose endpoints lie at 1Q  
and 2Q . We define the vector A to be the unit vector parallel to the axis of the 
cylinder: 

 2 1

2 1

−=
−

Q Q
A

Q Q
. (8.41) 

As shown in Figure 8.6, the effective radius effr  of the cylinder with respect to a 
plane having unit normal direction N is given by 

 eff sinr r α= , (8.42) 

where α is the angle formed between the vectors A and N. This can also be writ-
ten as 

 ( )

2
eff

2

1 cos

1

r r α

r

= −

= − ⋅A N . (8.43) 
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Figure 8.6. The effective radius of a bounding cylinder. 

 We perform the visibility test by visiting each of the six view frustum planes, 
beginning with the near and far planes since they are parallel and thus share the 
same effective radius. For each frustum plane L, we first calculate the 4D dot 
products 1⋅L Q  and 2⋅L Q . If both dot products are less than or equal to the value 

effr−  corresponding to the plane L, then we immediately know that the cylinder is 
not visible, and the test exits. If both dot products are greater than or equal to 

effr− , then we cannot draw any conclusions and simply proceed to the next plane. 
 In the remaining case that one of the dot products is less than effr− , and the 
other dot product is greater than effr− , we calculate the point 3Q  such that 

 3 effr⋅ = −L Q  (8.44) 

and replace the exterior endpoint with it. This effectively chops off the part of the 
cylinder that is now known to lie outside the view frustum. To find the point 3Q , 
we use the parametric line equation 

 ( ) ( )3 1 2 1t t= + −Q Q Q Q , (8.45) 

where the range 0 1t≤ ≤  represents the axis of the cylinder. Substituting the right 
side of this equation for 3Q  in Equation (8.44) allows us to solve for the value 
of t: 

 
( )

eff 1

1 2

rt + ⋅=
⋅ −

L Q

L Q Q
. (8.46) 

(Note that the difference 1 2−Q Q  has a w coordinate of 0.) Plugging this back 
into Equation (8.45) gives us our new endpoint 3Q . After replacing the exterior 
endpoint with it, we continue to the next plane. 



228 8. Visibility Determination 
 

 If we visit all six planes of the view frustum and never encounter the case 
that both endpoints produce a dot product less than or equal to effr− , then the cyl-
inder is probably at least partially visible. Of course, this means that we do not 
have to replace any endpoints for the last plane that we visit. As soon as we know 
that at least one endpoint iQ  satisfies effi r⋅ > −L Q  for the final plane, we know 
that part of the cylinder intersects the view frustum. 

8.2.4  Bounding Box Test 

When determining whether a box intersects the view frustum, we have a choice 
between reducing the problem to that of testing a point or to that of testing a line 
segment. If the bounding box extents in the primary axis direction R are signifi-
cantly greater than those in the S and T directions, then we may choose to test a 
line segment. For bounding boxes whose dimensions are roughly equal, we favor 
the point test. 
 We assume in this section that the magnitudes of the vectors R, S, and T rep-
resenting the principal axes of the object bounded by the box are equal to the di-
mensions of the box itself. To reduce the problem of intersecting a box with the 
view frustum to that of testing whether its center lies inside the expanded frustum 
planes, we need a way to determine the box’s effective radius. As shown in Fig-
ure 8.7, we can calculate the effective radius effr  of a box with respect to a plane 
having unit normal direction N using the formula 

 ( )1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N . (8.47) 
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Figure 8.7. Calculating the effective radius of a box. 
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Once the effective radius is known, we proceed in exactly the same manner as we 
would to test an ellipsoid. For each frustum plane L, we calculate the 4D dot 
product between the plane and the center Q of the bounding box. If for any plane 

effr⋅ ≤ −L Q , then the box is not visible. 
 In the case that the length of R is much greater than the lengths of S and T, a 
box may not be rejected in many situations when it lies far outside the view frus-
tum. An instance of this case is demonstrated in Figure 8.8. To circumvent this 
problem, we can reduce the box intersection test to a line segment intersection, as 
is done for cylinders. 
 In terms of the bounding box center Q and its primary axis R, we can express 
the endpoints 1Q  and 2Q  of the line segment representing the box as 

 

1
1 2

1
2 2

= +
= −

Q Q R

Q Q R. (8.48) 

The effective radius effr  with respect to a plane having unit normal direction N is 
given by 

 ( )1
eff 2r = ⋅ + ⋅S N T N , (8.49) 

R

S

 
Figure 8.8. This example demonstrates that using the point test for a box having one di-
mension much larger than the other two can result in the failure to reject a box that lies a 
significant distance outside the view frustum. 
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where the ⋅R N  term appearing in Equation (8.47) is now absent since it is rep-
resented by the line segment connecting 1Q  and 2Q . 
 We now proceed in exactly the same manner as we would to test a cylinder. 
For each frustum plane L, we first calculate the 4D dot products 1⋅L Q  and 

2⋅L Q . If both dot products are less than or equal to the value effr−  corresponding 
to the plane L, then we immediately know that the box is not visible, and the test 
exits. If both dot products are greater than or equal to effr− , then we cannot draw 
any conclusions and simply proceed to the next plane. When one of the dot prod-
ucts is less than effr−  and the other dot product is greater than effr− , we calculate 
the point 3Q  such that 3 effr⋅ = −L Q  using Equations (8.45) and (8.46), and re-
place the exterior endpoint with it. If we are able to visit all six frustum planes 
without encountering the case that both endpoints produce a dot product less than 
or equal to effr− , then the box is probably at least partially visible. 

8.3  Spatial Partitioning 

It is possible to increase the efficiency for which the visibility of a large number 
of objects is determined by organizing them into a structure whose properties 
allow large regions of space to be culled from the visible set of geometry using 
very simple tests. This practice is called spatial partitioning and comes in two 
popular varieties that we discuss in this section: octrees and binary space parti-
tioning trees. Both methods are usually applied only to static world geometry 
since computation of the data structures involved is generally too expensive to 
perform at runtime. 

8.3.1  Octrees 

Suppose that all the geometry belonging to an entire world or to a particular re-
gion of a world is contained within a rectangular box B. An octree is a structure 
that partitions this box into eight smaller, equal-size rectangular boxes called oc-
tants. These smaller boxes are further subdivided into eight even smaller octants, 
and the process continues to some maximum number of iterations called the 
depth of the octree. Each octant is linked to the box from which it was parti-
tioned, and each object in the world is linked to the smallest octant that complete-
ly contains it (which may be the original box B). 
 Figure 8.9(a) illustrates the two-dimensional analog of an octree, called a 
quadtree, constructed for an area containing a single object. Figure 8.9(b) shows 
how the corresponding data structure is organized. Each node in a quadtree struc-
ture has at most four subnodes—octrees can have up to eight. As this example 



8.3  Spatial Partitioning 231 
 

K

K

A
A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Root(a) (b)

 
Figure 8.9. (a) A quadtree constructed for an area containing a single object. (b) The data 
structure representation of the quadtree. 

demonstrates, if no world geometry intersects a quadrant (or an octant in an oc-
tree), then that quadrant is not subdivided. Furthermore, any quadrant that does 
not completely contain any objects is deleted from the tree. We always assume 
that any missing quadrants are empty. 
 Organizing geometry into a tree structure has the benefit that whenever we 
can determine that a node of the tree is not visible, then we immediately know 
that every subnode of that node is also not visible and can simultaneously be 
culled. (Chapter 12 discusses how a similar property of tree structures benefits 
collision detection.) Visibility determination for the octree begins by testing the 
box surrounding the root node for intersection with the view frustum. If the cam-
era is known to always lie within the boundary of the octree, then it can be as-
sumed that the root node is always visible. When any node’s bounding box is 
determined to be visible, we consider each object linked to that node by testing 
its bounding volume for visibility. We then perform the same test for any existing 
subnodes of the visible node. When a node’s bounding box fails the visibility 
test, we ignore all objects linked to that node and any subnodes belonging to that 
node. 
 We can use the fact that the bounding boxes at each level of an octree all 
have the same orientation to our advantage. For any given camera position and 
orientation, we transform the axes of the octree into camera space and calculate 
the five effective radii (one for the near and far planes and four corresponding to 
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the side planes) of the box B bounding the entire structure. If effr  is the effective 
radius of the box B with respect to a particular view frustum plane, then the ef-
fective radius of any box residing one level deeper within the tree is simply 

eff 2r . This saves us from having to use Equation (8.47) to calculate effective ra-
dii for every octant at every level—calculating it once at the beginning is 
sufficient. 

8.3.2  Binary Space Partitioning Trees 

A Binary Space Partitioning (BSP) tree is a structure that divides space into two 
regions at each level. Unlike the planes that partition octrees, the planes partition-
ing a BSP tree can be arbitrarily oriented. A BSP tree is constructed for a set of 
objects by choosing a partitioning plane, sometimes called a splitting plane, and 
sorting the geometry into two groups: objects lying on the positive side of the 
plane (also called the positive halfspace) and objects lying on the negative side of 
the plane (the negative halfspace). 
 Traditionally, the partitioning planes of a BSP tree have been aligned to the 
polygons that make up the world geometry. Figure 8.10 illustrates a two-
dimensional example of a region containing several polygons that determine the 
structure of the BSP tree. One polygon is chosen to represent the splitting plane 
at each level, and the remaining polygons are sorted into positive and negative 
groups. Any polygons intersecting the plane are split into two polygons that lie in 
the positive and negative halfspaces. The positive and negative groups are then 
partitioned, and the process continues for each halfspace until no polygons 
remain. 

(a) (b)
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Figure 8.10. (a) A traditional BSP tree and (b) the associated data structure. 
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 The large number of polygons and curved surfaces used in modern 3D en-
gines makes the traditional BSP tree impractical. In a somewhat modified ap-
proach, we create one splitting for each object instead of each polygon. As shown 
in Figure 8.11, the splitting plane for an object is aligned so that it is perpendicu-
lar to the object’s principal axis T corresponding to the smallest dimension of its 
bounding box. This minimizes the distance that the object extends away from the 
splitting plane. After a splitting plane has been chosen for an object, the other 
objects are sorted into those that lie completely within the positive halfspace and 
those that lie completely within the negative halfspace. Any objects that straddle 
the splitting plane are added to both the positive and negative groups. The half-
spaces are recursively partitioned until no objects remain. 
 For each splitting plane of a BSP tree, we need to determine the visibility of 
each halfspace and the visibility of the object associated with the plane. This re-
quires that we have a way to determine whether a plane K intersects the view 
frustum. The simplest approach would be to test the eight vertices of the view 
frustum in world space against the plane K by calculating the 4D dot products 
and comparing them to zero. If all eight dot products have the same sign (mean-
ing that all eight points lie on the same side of the plane), then the plane does not 
intersect the view frustum. Fortunately, we can find a better method by trans-
forming the plane K into homogeneous clip space and utilizing the cubic sym-
metry of the view frustum in that space (see Section 5.5.1). 
 A plane K can be transformed from world space to homogeneous clip space 
using the formula 

 ( ) 1 T−′ =   K PM K, (8.50) 

R
T

 
Figure 8.11. An object’s splitting plane is aligned so that it is perpendicular to the ob-
ject’s principal axis T corresponding to the smallest dimension of its bounding box. 



234 8. Visibility Determination 
 

where P is the projection matrix and M is the transformation from world space to 
camera space. The components of each vertex of the view frustum in clip space 
are 1± . The vertex producing the greatest dot product with the plane ′K  is the one 
having component signs that match the signs of the x, y, and z components of ′K . 
The vertex producing the least dot product with ′K  is the one having component 
signs opposite those of the components of ′K . The greatest dot product maxd  and 
the least dot product mind  are thus given by 

 
max

min

x y z w

x y z w

d K K K K
d K K K K

′ ′ ′ ′= + + +
′ ′ ′ ′= − − − + . (8.51) 

 As shown in Figure 8.12, if max 0d ≤ , then the view frustum lies entirely on 
the negative side of the plane K. This means that nothing on the positive side of 
the plane is visible. Similarly, if min 0d ≥ , then the view frustum lies entirely on 
the positive side of the plane K, and thus nothing on the negative side of the 
plane is visible. If neither of the conditions max 0d ≤  or min 0d ≥  is satisfied, then 
the plane K intersects the view frustum, and we cannot cull either halfspace. 

mind

maxd

K

 

Figure 8.12. Let maxd  and mind  be the greatest dot product and least dot product of any 
frustum vertex with the plane K. If max 0d ≤  or min 0d ≥ , then the view frustum lies com-
pletely on one side of K, so the other side is not visible. 
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8.4  Portal Systems 

A portal system is an extremely powerful technique that can be used to quickly 
eliminate massive regions of world geometry from the visible set. The general 
idea is surprisingly simple—the world is divided into many disjoint zones that are 
connected by portals. A portal is represented by a convex polygon through which 
one region can be seen from another. The advantage of a portal system is that any 
region of space that cannot be seen through a series of portals is never even con-
sidered for rendering. When determining what parts of a world are visible, using 
a portal system allows us to touch only a small fraction of the entire data set be-
cause any geometry that lies on the opposite side of an invisible portal is ignored. 
 Figure 8.13 illustrates how visibility determination is carried out for a portal 
system. We first locate the zone in which the camera resides—this zone is always 
considered visible. We then examine each of the portals leading out of the zone 
containing the camera. For each portal that intersects the view frustum, we con-
sider the zone to which it connects visible. Each portal leading out of the con-
necting zone, excluding any leading back to the first zone, is then tested for visi-
bility, but this time against a view frustum that has been reduced in size by the 
boundary of the portal through which we are looking. This technique is applied 
recursively until no new portals are visible. 

 
Figure 8.13. Only regions of space that can be seen through a series of portals are con-
sidered visible. 
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 The zones connected by portals may be further organized into tree structures, 
and the objects residing in these regions may still have bounding volumes. The 
visibility of large regions determined by the portal system is a large-scale culling 
process that should be supplemented by smaller-scale visibility determination in 
each zone. 

8.4.1  Portal Clipping 

Whenever the camera looks through a portal connecting to another zone, we 
know that the volume of visibility in that zone is smaller than the whole view 
frustum. Thus, we can reject a larger number of objects during smaller-scale visi-
bility testing by using a smaller view frustum. The near and far planes remain the 
same, but the side planes of the new view frustum are replaced by a set of planes 
that represents the intersection of the original view frustum and the sides of any 
polygonal portals through which we are looking. 
 As a convention, the plane containing a portal must have a normal direction 
that points toward the camera, and the vertices of the portal must be wound coun-
terclockwise, as shown in Figure 8.14. Consequently, portals are one-way in the 
sense that if a portal leads from zone X to zone Y, then the same portal does not 
lead backward from zone Y to zone X. When the camera lies on the negative side 
of a plane containing a portal, that portal is never considered visible. Two-way 
visibility between two zones requires that each zone have a portal leading to the 
other. 
 Whenever we consider a portal leading out of a zone, we are interested only 
in the visible area of that portal. The visible area of a portal is equal to the area 
that intersects the current view frustum, which may be the original view frustum 
or a reduced view frustum. To determine what area of a portal is visible, we clip 

 
Figure 8.14. The vertices of a portal are wound counterclockwise about the normal of the 
plane containing them. Here, the normal points out of the page. 
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its polygon against the planes bounding the current view frustum. Clipping a pol-
ygon against a plane removes the portion of the polygon lying on the negative 
side of the plane, resulting in a new polygon whose interior lies completely on 
the positive side of the plane. Clipping a polygon against every plane of the cur-
rent view frustum effectively chops off any part lying outside the volume of 
space that is visible to the camera. 
 Suppose we need to clip a portal whose vertices lie at the points 1 2, , , nV V V  
and connect to form a convex polygon. When we clip this polygon against a 
plane L, we produce a new convex polygon having at most 1n +  vertices. We 
begin the clipping process by classifying all of the vertices into three categories: 
those lying on the positive side of L, those lying on the negative side of L, and 
those considered to be lying in the plane L itself. A vertex iV  is classified as ly-
ing in the plane if its dot product with L satisfies 

 0iε− < ⋅ ≤L V  (8.52) 

for some small constant ε  (typically, 0.001ε ≈ ). This prevents problems associat-
ed with round-off error that would otherwise wreak havoc on our visibility tests 
by destroying the convexity of the view frustum. If no vertices lie on the positive 
side of the plane L, then the portal is not visible, and we do not render anything 
in the zone to which it connects. If no vertices lie on the negative side of the 
plane L, then no clipping is necessary. Otherwise, we visit every pair of neigh-
boring vertices, looking for edges having one positive vertex and one negative 
vertex. As shown in Figure 8.15, new vertices are added to the polygon where 
edges intersect the clipping plane, and vertices lying on the negative side of the 
plane are removed. Vertices lying on the positive side of the clipping plane or 
lying in the clipping plane itself are not affected. 
 Suppose that the vertex iV  lies on the positive side of the clipping plane L, 
and that the vertex 1i+V  lies on the negative side of L, or equivalently, 

 1

0i

i ε+

⋅ >
⋅ ≤ −

L V

L V . (8.53) 

A point W lying on the line segment connecting iV  and 1i+V  can be expressed as 

 ( ) ( )1i i it t += + −W V V V , (8.54) 

where the parameter t satisfies 0 1t≤ ≤ . Solving for the value of t that yields 
( ) 0t⋅ =L W , we have 
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L

 
Figure 8.15. When a portal is clipped against a plane, new vertices are added where edg-
es intersect the plane, and vertices lying on the negative side of the plane are removed. 
Vertices lying on the positive side of the clipping plane or lying in the clipping plane 
itself are not affected. 
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⋅ −
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. (8.55) 

(Note that the difference 1i i+−V V  has a w coordinate of 0.) Substituting this val-
ue back into Equation (8.54) gives us our new vertex W. 

8.4.2  Reduced View Frustums 

Given a clipped portal, we wish to calculate the planes surrounding the volume of 
space visible through that portal. This enables us to perform visibility determina-
tion against a view frustum that is smaller than the original view frustum, result-
ing in a greater number of objects being culled. Fortunately, the camera-space 
plane corresponding to an edge of a portal is simple to calculate. The plane iL  
passing through the origin and the two portal vertices iV  and 1i+V  is given by 

 1

1
,0i i

i
i i

+

+

×=
×

V V
L

V V
. (8.56) 

For a portal having n vertices, we use Equation (8.56) to calculate the n side 
planes of our reduced view frustum. (For the plane nL , we wrap around by set-
ting 1 0n+ =V V .) If the distance between any two portal vertices iV  and 1i+V  is very 
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small, then round-off errors can cause convexity problems, so we discard any 
plane iL  for which 

 2
1i i ε+ − <V V , (8.57) 

where ε  is a small constant that can be adjusted to produce acceptable results. 
 The side planes of a reduced view frustum can meet at highly acute angles. 
As shown in Figure 8.16, this can impact the effectiveness of bounding volume 
visibility tests because objects lying far from the view frustum still may not lie on 
the negative side of any single frustum plane. We can eliminate this problem by 
detecting cases in which adjacent frustum planes meet at a small angle and add-
ing an extra plane to the view frustum whenever such cases occurs. 
 Figure 8.16 shows a new plane having normal direction 3N  added to the view 
frustum between two adjacent planes having normal vectors 1N  and 2N . The vec-
tor 3N  is constructed by first calculating the average (unnormalized) direction 
between 1N  and 2N , which is simply given by the sum 1 2+N N . We then subtract 
the projection of this average onto the direction 1 2×N N  to ensure that the new 
plane contains the line at which the two original planes intersect. This gives us 
the following expression for 3N . 

 ( )
( )

1 2

1 2

3

= +
= ×

− ⋅
=

− ⋅

A N N

B N N

A A B B
N

A A B B
 (8.58) 
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Figure 8.16. Side planes of the reduced view frustum that meet at an acute angle can 
impact the effectiveness of bounding volume visibility tests. The bounding sphere shown 
here does not fail the visibility test even though it lies far outside the view frustum. 
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Since it passes through the origin in camera space, the new plane has a w coordi-
nate of 0. 
 The situation demonstrated in Figure 8.16 can be avoided by constructing an 
extra plane whenever two adjacent frustum planes having normals 1N  and 2N  sat-
isfy the condition 1 2 α⋅ <N N , where α represents an acuteness threshold. The 
extra planes do not actually contribute to the shape of the view frustum since they 
are coincident with the lines at which previously existing planes intersect. They 
should be used only for visibility testing within a single zone and should not par-
ticipate in the clipping of any portals leading to other zones. 

Chapter 8 Summary 

Principal Components 

The principal axes R, S, and T of a set of N vertices 1 2, , , NP P P  are given by the 
eigenvectors of the covariance matrix C defined by 

 ( )( ) T

1

1 N

i i
iN =

= − −C P m P m , 

where the mean position m is given by 

 
1

1 N

i
iN =

= m P . 

If 1λ , 2λ , and 3λ  are the eigenvalues corresponding to the vectors R, S, and T, re-
spectively, then 1 2 3λ λ λ≥ ≥ . 

Bounding Boxes 

The two planes perpendicular to the principal axis A that bound the set of verti-
ces 1 2, , , NP P P  are given by 

 { } { }
1 1

, min ,maxi i
i N i N≤ ≤ ≤ ≤

− ⋅ − ⋅A P A A P A . 

The center Q of a bounding box is given by 

 1 1 2 2 3 3k k k= + +Q A A A , 

where 

 
{ } { }

1 1
min max

2
i j i j

i N i N
jk ≤ ≤ ≤ ≤

⋅ + ⋅
=

P A P A
, 
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and 1A , 2A , and 3A  are the unit-length principal axes. 

The effective radius effr  with respect to a plane having normal direction N of a 
bounding box whose dimensions and orientation are described by the vectors R, 
S, and T is given by 

 1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N . 

Bounding Spheres 

A bounding sphere for the set of vertices 1 2, , , NP P P  is constructed by locating 
the points kP  and lP  that produce the least and greatest dot products with the pri-
mary axis R and setting the initial center Q and radius r to 

 
2

k l

kr

+=

= −

P P
Q

P Q . 

For any point iP  satisfying 2 2
i r− >P Q , we replace the center and radius with 

the values 
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i

ir

+′ =

′ ′= −

G P
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P Q , 

where G is defined as 

 i

i
r −= −

−
P Q

G Q
P Q

. 

A bounding sphere having center Q and radius r is not visible if for any view 
frustum plane L we have r⋅ ≤ −L Q . 

Bounding Ellipsoids 

A bounding ellipsoid for the set of vertices 1 2, , , NP P P  is constructed by trans-
forming into a space in which the box bounding the set is a cube, constructing a 
bounding sphere in that space, and then performing the reverse transformation to 
scale the sphere to the original dimensions of the bounding box. 
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The effective radius effr  with respect to a plane having normal direction N of a 
bounding ellipsoid whose semiaxis lengths and orientations are described by the 
vectors R, S, and T is given by 

 ( ) ( ) ( )2 2 2
effr = ⋅ + ⋅ + ⋅R N S N T N . 

A bounding ellipsoid having center Q is not visible if for any view frustum plane 
L we have effr⋅ ≤ −L Q . 

Bounding Cylinders 

A bounding cylinder for the set of vertices 1 2, , , NP P P  is constructed by first 
calculating the points { }iH  using the formula 

 ( )i i i= − ⋅H P P R R, 

where R is the unit vector parallel to the primary axis. After finding a bounding 
circle for the points { }iH  having center Q and radius r, the endpoints 1Q  and 2Q  
of the bounding cylinder are given by 

 

{ }

{ }
1

1

2
1

min

max

i
i N

i
i N

≤ ≤

≤ ≤

= + ⋅

= + ⋅

Q Q P R R

Q Q P R R. 

The effective radius effr  with respect to a plane having normal direction N of a 
bounding cylinder is given by 

 ( ) 2
eff 1r r= − ⋅A N , 

where A is the unit vector parallel to the axis of the cylinder given by 

 2 1

2 1

−=
−

Q Q
A

Q Q
. 

A bounding cylinder is not visible if the line segment connecting the endpoints 
1Q  and 2Q  is completely clipped away by the view frustum planes. 

Binary Space Partitioning (BSP) Trees 

We can determine whether a world-space plane K intersects the view frustum by 
transforming the plane into homogeneous clip space using the formula 
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 ( ) 1 T−′ =   K PM K, 

where P is the projection matrix and M is the transformation from world space to 
camera space. The greatest dot product maxd  and least dot product mind  of any 
frustum vertex with the plane ′K  are given by 

 
max

min

x y z w

x y z w

d K K K K
d K K K K

′ ′ ′ ′= + + +
′ ′ ′ ′= − − − + . 

If max 0d ≤  or min 0d ≥ , then the view frustum lies completely on one side of K, so 
the other side is not visible. 

Portal Systems 

When clipping a portal having vertices 1 2, , , nV V V  against a plane L, we add a 
new vertex between any two adjacent vertices iV  and 1i+V  lying on opposite sides 
of L. The new vertex W is given by 

 ( )1i i it += + −W V V V , 

where the parameter t is given by 

 
( )1

i

i i
t

+

⋅=
⋅ −

L V

L V V
. 

The plane iL  passing through the origin and the two portal vertices iV  and 1i+V  is 
given by 

 1

1
,0i i

i
i i

+

+

×=
×

V V
L

V V
. 

An extra plane may be added to the view frustum to improve bounding volume 
visibility determination when planes having normal directions 1N  and 2N  meet at 
an acute angle. The new plane passes through the origin and has the normal di-
rection 3N  given by 

 ( )
( )

1 2

1 2

3

= +
= ×

− ⋅
=

− ⋅

A N N

B N N

A A B B
N

A A B B
. 
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Exercises for Chapter 8 

1. Given two spheres 1S  and 2S  centered at the points 1Q  and 2Q , and having 
radii 1r  and 2r , respectively, determine the center Q and radius r of the small-
est single sphere that encloses both 1S  and 2S . Account for the cases that the 
two spheres are disjoint, that the two spheres intersect, and that one of the 
spheres encloses the other. 

2. Determine formulas for the center Q and radius r of the optimal bounding 
sphere for a cone whose radius (at the base) is s, whose height is h, and 
whose base is centered on the origin of the x-y plane as shown in Figure 
8.17. Consider the two cases that s h<  and s h≥ . 

h

s

z

x y
 

Figure 8.17. The cone used in Exercise 2. 

3. Determine the effective radius effr  of a box whose edges are described by the 
vectors 2,0,1=R , 1,0, 2= −S , and 0,1,0=T  with respect to a plane hav-
ing unit normal direction 3 3 3

3 3 3, ,= −N . 

4. Write programs that construct a bounding box, a bounding sphere, a bound-
ing ellipsoid, and a bounding cylinder given an array of n vertex positions. 

5. Implement a portal system that can clip the view frustum to an arbitrary 
convex polygon and perform visibility tests against the reduced frustum. 
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Chapter 9 

Polygonal Techniques 

This chapter discusses several techniques that involve the manipulation of polyg-
onal models. A 3D graphics engine often needs to create polygonal models in 
real-time in addition to working with models that have been preprocessed in 
some way. We begin this chapter with techniques pertaining to decal construction 
and billboarding, operations usually performed on the fly. Subsequent sections 
discuss preprocessing methods such as polygon reduction and triangulation, 
which are normally performed by a tool that generates structures used for render-
ing at a later time. 

9.1  Depth Value Offset 

Many games need to render special effects such as scorch marks on a wall or 
footprints on the ground that are not an original part of a scene, but are created 
during gameplay. (A method for creating these is discussed in Section 9.2.) The-
se types of decorative additions are usually decaled onto an existing surface and 
thus consist of polygons that are coplanar with other polygons in a scene. The 
problem is that pixels rendered as part of one polygon rarely have exactly the 
same interpolated depth value as pixels rendered as part of a coplanar polygon. 
The result is an undesired pattern in which parts of the original surface show 
through the decaled polygons. 
 The goal is to find a way to offset a polygon’s depth in a scene without 
changing its projected screen coordinates or altering its texture-mapping perspec-
tive. Most 3D graphics systems contain some kind of polygon offset function to 
help achieve this goal. However, these solutions generally lack fine control and 
usually incur a per-vertex performance cost. In this section, we present an alter-
native method that modifies the projection matrix to achieve the depth offset 
effect. 
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9.1.1  Projection Matrix Modification 

Let us first examine the effect of the standard OpenGL perspective projection 
matrix on an eye space point ( ), , ,1x y zP P P=P . To simplify the matrix given in 
Equation (5.52) a bit, we assume that the view frustum is centered about the z 
axis so that the left and right planes intersect the near plane at x n e= ± , and the 
top and bottom planes intersect the near plane at y an e= ± , where e is the focal 
length and a is the aspect ratio. Calling the distance to the near clipping plane n 
and the distance to the far clipping plane f, we have 
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0 0 0
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. (9.1) 

To finish the projection, we need to divide this result by its w coordinate, which 
has the value zP− . The resulting point ′P  is given by 

 ( )

( )
2

x

z

y

z

z

eP
P

e a P
P

f n fn
f n P f n

 − 
 
 ′ = − 
 

+ + − − 

P . (9.2) 

 It is clear from Equation (9.2) that preserving the value of zP−  for the w co-
ordinate will guarantee the preservation of the projected x and y coordinates as 
well. From this point forward, we shall concern ourselves only with the lower-
right 2 2×  portion of the projection matrix, since this is the only part that affects 
the z and w coordinates. 
 The projected z coordinate may be altered without disturbing the w coordi-
nate by introducing a factor of 1 ε+ , for some small ε , as follows. 

 
( ) ( )2 21 1

1
1 0

zz

z

f n fn f n fnε ε PP
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 (9.3) 
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After dividing by w, we arrive at the following value for the projected z 
coordinate. 

 

( )
( )

( )

21

2

z
z

z

f n fnP ε
f n P f n

f n fn f nε
f n P f n f n

+′ = + +
− −

+ += + +
− − −

 (9.4) 

Comparing this to the z coordinate in Equation (9.2), we see that we have found a 
way to offset projected depth values by a constant f n

f nε +
− . 

9.1.2  Offset Value Selection 

Due to the nonlinear nature of the z-buffer, the constant offset given in Equation 
(9.4) corresponds to a larger difference far from the camera than it does near the 
camera. Although this constant offset may work well for some applications, there 
is no single solution that works for every application at all depths. The best we 
can do is choose an appropriate ε , given a camera-space offset δ and a depth val-
ue zP , that collectively represents the object that we are offsetting. To determine a 
formula for ε , we examine the result of applying the standard projection matrix 
from Equation (9.1) to a point whose z coordinate has been offset by some small 
δ as follows. 
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zz

z

f n fnf n fn P δP δ
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P δ
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 (9.5) 

Dividing by w, we have the following value for the projected z coordinate. 

 

( )( )
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 (9.6) 

Equating this result to Equation (9.4) and simplifying a bit, we end up with 
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z z

fn δε
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 A good value of δ for a particular application can be found with a little ex-
perimentation. It should be kept in mind that δ is a camera-space offset, and thus 
becomes less effective as zP  gets larger. For an m-bit integer depth buffer, we 
want to make sure that 

 2
2 1m

f nε
f n

− ≥  − + 
 (9.8) 

since smaller values of ε  will not yield an offset significant enough to alter the 
integer depth value. Substituting the right side of Equation (9.7) for ε  and solving 
for δ gives us 
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1
z

z

kPδ
kP

≥
−

 (9.9) 

or 

 
2

1
z

z

kPδ
kP

−≤
+

, (9.10) 

where the constant k is given by 

 ( )2 1m

f nk
fn

−=
−

. (9.11) 

Equation (9.9) gives us the minimum effective value for δ when offsetting a pol-
ygon toward the camera (the usual case), and Equation (9.10) gives us the maxi-
mum effective value for δ when offsetting a polygon away from the camera. 

9.1.3  Implementation 

Listing 9.1 demonstrates how the projection matrix shown in Equation (9.3) may 
be implemented under OpenGL. The LoadOffsetMatrix() function takes the 
same six values that are passed to the OpenGL function glFrustum(). It also 
takes the values for δ and zP  that are used to calculate ε . 
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Listing 9.1. This code modifies the OpenGL projection matrix so that it offsets depth values by 
the constant ε  given by Equation (9.7). 

void LoadOffsetMatrix(float l, float r, float b, float t, 

  float n, float f, float delta, float pz) 

{ 

 float  matrix[16]; 

 

 // Set up standard perspective projection. 

 glMatrixMode(GL_PROJECTION); 

 glFrustum(l, r, b, t, n, f); 

 

 // Retrieve the projection matrix. 

 glGetFloatv(GL_PROJECTION_MATRIX, matrix); 

 

 // Calculate epsilon with Equation (9.7). 

 float epsilon = –2.0F * f * n * delta / ((f + n) * pz * (pz + delta)); 

 

 // Modify entry (3,3) of the projection matrix. 

 matrix[10] *= 1.0F + epsilon; 

 

 // Send the projection matrix back to OpenGL. 

 glLoadMatrix(matrix); 

} 

9.2  Decal Application 

Effects such as scorch marks on walls or footprints on the ground are commonly 
implemented by creating a new object, called a decal, that coincides with an ex-
isting surface and rendering it using a depth offset technique such as that dis-
cussed in Section 9.1. Applying a decal to the interior of a planar surface is sim-
ple, but difficulties arise when applying decals to the more complex surfaces 
used in today’s games to represent curved objects and terrain patches. In this sec-
tion, we present a general method for applying a decal to an arbitrarily shaped 
surface and concurrently clipping the decal to the surface’s boundary. An exam-
ple of the technique we present is shown in Figure 9.1. 
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Figure 9.1. A blast mark decal applied to a curved surface. (Image from the C4 Engine, 
courtesy of Terathon Software LLC.) 

9.2.1  Decal Mesh Construction 

We begin with a point P that lies on an existing surface and a unit normal direc-
tion N that is perpendicular to the surface at that point. The point P represents the 
center of the decal and may be the point at which a projectile has hit the surface 
or the point where a character’s foot has stepped upon the ground. A unit tangent 
direction T must also be chosen to determine the orientation of the decal. This 
configuration is illustrated in Figure 9.2. 
 Given the point P and the directions N and T, we have an oriented plane that 
is tangent to the surface geometry at P. We can carve a rectangle out of this plane 
that represents the area of our decal by constructing four boundary planes that are 
parallel to the normal direction N. Let w and h be the width and height of the de-
cal. Then the 4D vectors corresponding to the four border planes are given by 
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Figure 9.2. The configuration of a decal. 

 

,
2

,
2

,
2

,
2

wleft

wright

hbottom

htop

 = − ⋅ 
 
 = − + ⋅ 
 
 = − ⋅ 
 
 = − + ⋅ 
 

T T P

T T P

B B P

B B P , (9.12) 

where = ×B N T. We generate a triangle mesh for the decal object by clipping 
nearby surfaces to the four boundary planes. We also want to clip to front and 
back planes to avoid bleeding through to parts of the same surface mesh that may 
be inside the boundary planes but far in front of or behind the point P. The 4D 
vectors corresponding to the front and back planes are given by 

 
( )
( )

,
, ,

front d
back d

= − + ⋅
= − ⋅

N N P

N N P  (9.13) 

where d is the maximum distance that any vertex in the decal may be from the 
tangent plane passing through the point P. 
 The mesh construction algorithm proceeds as follows. First, we identify 
which surfaces in the world could potentially be affected by the decal. This may 
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be determined by locating each surface whose bounding volume reaches within a 
certain distance of the point P. For each potentially affected surface, we individ-
ually examine every triangle in the surface’s mesh. Let M denote the unit normal 
direction corresponding to the plane of a triangle in the mesh. We throw out any 
triangles for which ε⋅ <N M  for some fixed positive value ε  since these triangles 
are facing away from the decal’s normal direction N. The remaining triangles are 
clipped to the planes given by Equations (9.12) and (9.13) and stored in a new 
triangle mesh. 
 When a triangle overlaps any of the planes and needs to be clipped, we inter-
polate the normal vectors as well as the vertex positions so that we can later ap-
ply coloring to the clipped vertices that reflects the angle between each vertex’s 
normal direction and the decal’s normal direction. This has the effect of smoothly 
fading the decal texture in relation to each triangle’s orientation relative to the 
plane of the decal. We assign an alpha value to each vertex using the equation 
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ε
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ε

⋅ −
=

−

N R
R , (9.14) 

where R is the (possibly unnormalized due to interpolation) normal vector corre-
sponding to the vertex. This maps the dot product range [ ],1ε  to the alpha value 
range [ ]0,1 . 
 Texture mapping coordinates are applied to the resulting triangle mesh by 
measuring the distance from each vertex to the planes passing through the point 
P and having normal directions T and B. Let Q be the position of a vertex in the 
decal’s triangle mesh. Then the texture coordinates s and t are given by 

 

( )

( )

1
2
1
2

s
w

t
h

⋅ −
= +

⋅ −
= +

T Q P

B Q P . (9.15) 

9.2.2  Polygon Clipping 

Each triangle belonging to a surface that could potentially be affected by the de-
cal is treated as a convex polygon and clipped to each of the six boundary planes, 
one at a time. Clipping a convex polygon having n vertices to a plane results in a 
new convex polygon having at most 1n +  vertices. Thus, polygons that have been 
clipped against all six planes may possess as many as nine vertices. Once the 
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clipping process is complete, each polygon is treated as a triangle fan and added 
to the decal’s triangle mesh. 
 To clip a convex polygon against an arbitrary plane, we first classify all the 
vertices belonging to the polygon into two categories: those lying on the negative 
side of the plane and those lying on the positive side of the plane or in the plane 
itself. (This differs from the method used to clip portals in Section 8.4.1 in that 
we do not have a separate classification for vertices lying in the plane.) If all the 
polygon’s vertices lie on the negative side of the plane, then the polygon is dis-
carded. Otherwise, we visit every pair of neighboring vertices in the polygon 
looking for edges that intersect the clipping plane. As shown in Figure 9.3, new 
vertices are added to the polygon where such intersections occur, and vertices 
lying on the negative side of the plane are removed. 
 Suppose that the vertex 1V  lies on the positive side of the clipping plane K 
and that the vertex 2V  lies on the negative side of K. A point W lying on the line 
segment connecting 1V  and 2V  can be expressed as 

 ( ) ( )1 2 1t t= + −W V V V , (9.16) 

1V

2V

W

K

 
Figure 9.3. When a polygon is clipped against a plane, new vertices are added where 
edges intersect the plane, and vertices lying on the negative side of the plane are re-
moved. 
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where the parameter t satisfies 0 1t≤ ≤ . The value of t for which ( ) 0t⋅ =K W  is 
given by 

 
( )

1

1 2
t ⋅=

⋅ −
K V

K V V
. (9.17) 

(Note that the difference 1 2−V V  has a w coordinate of 0.) Substituting this value 
of t back into Equation (9.16) gives us our new vertex W. 

9.3  Billboarding 

Many special effects are implemented by applying a two-dimensional texture 
map to a flat polygon that is always oriented to face the camera. This technique is 
called billboarding and is an effective way to create the illusion that a flat object 
has volume. This section examines methods for calculating the vertices of bill-
board polygons in different situations. 

9.3.1  Unconstrained Quads 

An unconstrained quad is a four-sided rectangular polygon that is free to rotate in 
any direction. Unconstrained quads are typically used to create special effects 
such as particle systems, smoke trails, and lens flare coronas. 
 We billboard an unconstrained quad by forcing its vertices to lie in a plane 
that is perpendicular to the direction in which the camera is pointing. Let the vec-
tors R and U denote the unit-length world space right direction and up direction 
of the current camera view. (These correspond to the camera space x and y axes, 
respectively.) The quad that we wish to billboard is defined by the following 
quantities. 

(a) The world space position P corresponding to the center of the quad. 
(b) The width w and height h of the quad. These may be changed over time to 

produce the effect of an expanding or shrinking billboard. 
(c) The angle θ  by which the quad should be rotated relative to the camera’s ori-

entation. This may be changed over time to produce the effect of a spinning 
billboard. If θ  is constant, then the quad rotates with the camera about the 
view direction. 

Using these quantities, we define the vectors X and Y as follows. 
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The rotation θ  is typically quantized to some number of possible angles so that a 
lookup table may be used for the sine and cosine functions. Of course, if 0θ = , 
then the expressions for the vectors X and Y reduce to 
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As illustrated in Figure 9.4, the four vertices 1Q , 2Q , 3Q , and 4Q  of the quad are 
given by 
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Figure 9.4. Calculating the vertices of an unconstrained billboarded quad. 
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These vertices are arranged in a counterclockwise winding order so that the front 
of the quad faces the camera. The corresponding two-dimensional texture map-
ping coordinates are given by 

 
1 1 2 2

3 3 4 4

, 1,1 , 0,1
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s t s t
s t s t

= =
= = . (9.21) 

 Billboarded quads whose vertices derive from the vectors X and Y given by 
Equation (9.18) are always aligned to the plane of the camera. As Figure 9.5 
demonstrates, this alignment can differ significantly from the plane perpendicular 
to the true direction from the quad’s center to the camera position. When hun-
dreds or thousands of small particles are being rendered, one may wish to use 
Equation (9.18) for efficiency, but large quads may look better if oriented to face 
the actual camera position instead of the plane of the camera. 
 We align a quad so that it faces the camera position by presenting a more 
computationally expensive formulation of the vectors X and Y. Let the vector C 
denote the world space camera position. Assuming that the center P of the quad 
does not lie on the line containing C and running in the direction U, we can 
calculate 

 .
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= ×

C P
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C P

U Z
A

U Z

B Z A  (9.22) 

 
Figure 9.5. A billboarded quad that is aligned to the plane of the camera may differ sig-
nificantly from a quad that directly faces the camera position. 
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The vector Z is the unit vector that points from the quad’s center toward the 
camera position. Calculating the cross product with U produces orthogonal vec-
tor A lying in the plane of the billboard. If ×U Z is close to zero, then we can use 
the alternate formula 

 .

×=
×

= ×

Z R
B

Z R

A B Z  (9.23) 

The vectors A and B form an orthogonal pair of unit vectors that we can use to 
express the vectors X and Y: 
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Using these in Equation (9.20) produces the vertices of the billboarded quad. 

9.3.2  Constrained Quads 

We now consider how to orient a quad that is constrained to rotate only about the 
z axis. An example of how such a quad might be used is to render the fire texture 
for a torch. In this case, the fire is always pointing upward, but the plane of the 
quad rotates to face the camera. As long as the camera does not view the quad 
from sharply above or below, this produces the convincing illusion that the fire 
has volume. 
 Suppose that the camera resides at the world space point C. For a quad cen-
tered at the point P, we define the vector X as 

 , ,0y y x xP C C P= − −X . (9.25) 

As shown in Figure 9.6, this vector is constructed by taking the difference be-
tween the camera position and the center of the quad, projecting it onto the x-y 
plane, and rotating it 90 degrees counterclockwise about the z axis. If 0=X , 
then the camera is either directly above or directly below the quad. In this case, 
the quad is being viewed on edge and therefore should not be rendered. Other-
wise, we calculate the four vertices 1Q , 2Q , 3Q , and 4Q  of the quad as follows. 
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Figure 9.6. Calculating the vertices of a billboarded quad that is constrained to rotate 
about the z axis. 
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The texture mapping coordinates are the same as those for an unconstrained quad 
given by Equation (9.21). 

9.3.3  Polyboards 

A polyline defined by a series of N points 1 2, , , NP P P  can be given some thick-
ness r by constructing a polyboard that traces the polyline in the manner shown 
in Figure 9.7. One application of such a polyboard is to render a lightning bolt 
whose path is defined by a set of points. Another application is to render a mo-
tion-blurred particle for which a number of intermediate positions have been cal-
culated between its position on the previous frame and its current position. 
 For each point iP  defining the polyline, we generate two polyboard vertices 
lying at a distance r from iP . The direction of the line on which these vertices and 
the point iP  lie should be orthogonal to both the direction to the camera position 
and the tangent direction of the polyline at iP . The unit direction iZ  to the camera 
is given by 
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Figure 9.7. A polyboard of radius r that traces a polyline. 
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where C is the camera position. A unit tangent vector iT  may be calculated for 
the point iP  using the formula 
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or in the case that iP  is an endpoint, 
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The two polyboard vertices iG  and iH  corresponding to the point iP  are then 
given by 
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i i i i
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G P T Z

H P T Z . (9.30) 
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Figure 9.8. Polyboards are used to render the curved beams of light in this screenshot. 
Shorter polyboards are also used to render the particles flying away from the blast point. 
(Image from the C4 Engine, courtesy of Terathon Software LLC.) 

Each edge of the polyboard constructed using the vertices 1G , 1H , 2G , 2H , , 
NG , NH  is perpendicular to the direction to the camera. Figure 9.8 demonstrates 

beams of light rendered using this technique. 

9.4  Polygon Reduction 

When a model consisting of a large number of triangles is rendered far from the 
camera, it is likely that many of the triangles make no perceptible contribution to 
the resulting image. By reducing the number of rendered triangles as the distance 
from the camera to the model increases, we can reduce the amount of computa-
tion needed to process the mesh as well as the amount of data sent to the graphics 
hardware. 
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 A common method used to reduce the number of triangles in a mesh is the 
edge collapse technique. This method works by locating edges within a triangle 
mesh whose removal would not cause a large change in the shape of the model. 
The process of removing an edge is called an edge collapse and is performed by 
merging the edge’s two endpoints. As illustrated in Figure 9.9, one endpoint re-
mains stationary, and the other endpoint is moved to the same location as the 
first. Thus, there are two ways in which an edge can be collapsed, depending on 
which endpoint remains stationary. The two triangles sharing the collapsed edge 
are eliminated, and any triangles using the moved vertex are stretched to fill in 
the space left behind. Of course, since the two endpoints now occupy the same 
location, the one that was moved can simply be eliminated. Thus, a single edge 
collapse results in the removal of two triangles, one edge, and one vertex from 
the mesh. 
 We decide which edges to collapse in a triangle mesh by calculating two 
costs for each edge. A cost is assigned to each endpoint of an edge based on how 
much the appearance of the triangle mesh would be altered if the edge is col-
lapsed by removing that endpoint. Endpoints having the lowest collapse cost de-
termine which edges are the first to be eliminated. If it is known that an edge 
should definitely not be eliminated, then the collapse costs of its endpoints can be 
set to some large value to indicate this. 
 There are many possible ways to calculate edge collapse costs. The method 
presented in this section assigns costs based on a combination of the edge’s 
length and the flatness of the triangle mesh on both sides of the edge around the 
endpoint being considered for elimination. Suppose that we wish to calculate the 
cost of eliminating the vertex 1V  in Figure 9.10 by collapsing it into the vertex 2V . 

 
Figure 9.9. An edge collapse merges the two endpoints of the edge and eliminates the 
triangles that share the edge. 
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Figure 9.10. Calculating the collapse cost. 

We first calculate the normal vector N for the vertex 1V  by averaging the normals 
of the surrounding triangles (see Section 7.7.1). We then define the vector D to 
be 

 ×=
×

N E
D

N E
, (9.31) 

where E is the direction pointing from 1V  to 2V : 

 2 1= −E V V . (9.32) 

The direction D is perpendicular to both the normal to the surface at 1V  and the 
edge that we are considering. It will be used to determine on which side of the 
edge a point lies. 
 It should be noted that if any of the edges leading away from the vertex 1V  
are not shared by two triangles, then 1V  should not be eliminated because doing 
so would change the shape of the triangle mesh’s boundary. If 1V  does lie in the 
interior of the mesh, then for each of the two triangles sharing the edge that con-
nects 1V  and 2V , we examine the vertex 3V  of the triangle that does not lie on the 
edge to determine whether the triangle lies on the positive side or negative side of 
the edge. If the condition 

 ( )3 1 0⋅ − ≥D V V  (9.33) 
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is satisfied, then the triangle lies on the positive side of the edge; otherwise, it lies 
on the negative side of the plane. We must have one of each, so if both triangles 
lie on the positive side or both triangles lie on the negative side, then the edge 
should not be collapsed. 
 Let posT  represent the unit-length normal vector of the triangle lying on the 
positive side of the edge, and let negT  represent the unit-length normal vector of 
the triangle lying on the negative side of the edge. We estimate the flatness of the 
triangle mesh on either side of the edge being considered for collapse by compar-
ing the normal vectors posT  and negT  to those of the other triangles using the vertex 

1V . As we examine these triangles, we maintain a value d corresponding to the 
smallest dot product found between the normal of any triangle occupying space 
on the positive side of the edge and the vector posT  and between the normal of any 
triangle occupying space on the negative side of the edge and the vector negT . A 
value of d near one indicates that the mesh is mostly flat on either side of the 
edge, but a small value of d indicates that large angles exist between triangles 
sharing the vertex 1V . If d falls below some threshold corresponding to the maxi-
mum surface roughness allowed, then the edge connecting 1V  and 2V  should not 
be collapsed. Otherwise, we assign the cost c to the edge using the formula 

 ( )1c d= − E . (9.34) 

 To clarify the procedure for calculating the value of d, suppose that a triangle 
has vertices 1V , A, and B (where neither A nor B is equal to 2V ), and has the unit-
length normal vector T. We classify the vertices A and B as lying on the positive 
side of the edge, on the negative side of the edge, or on the edge itself by examin-
ing the dot products 

 
( )
( )

1

1 .
a
b

= ⋅ −
= ⋅ −

D A V

D B V  (9.35) 

The quantities a and b represent the distances from the plane containing the edge 
and having normal vector D to the points A and B. If a ε>  or b ε>  for some 
small distance ε , then we consider the corresponding point to lie on the positive 
side of the edge. Similarly, if a ε< −  or b ε< − , then we consider the correspond-
ing point to lie on the negative side of the edge. Points lying within the distance ε  
of the edge are considered to be lying on the edge itself. If either A or B lies on 
the positive side of the edge, then we replace the minimum dot product d with the 
dot product pos⋅T T  if it is smaller: 

 { }posmin ,d d← ⋅T T . (9.36) 



264 9. Polygonal Techniques 
 

 
Figure 9.11. The edge collapse cost calculation allows the collapse of an edge between 
two triangles having largely differing orientations as long as the triangle mesh is reasona-
bly flat on both sides of the edge. 

If either A or B lies on the negative side of the edge, then we replace d with the 
dot product neg⋅T T  if it is smaller: 

 { }negmin ,d d← ⋅T T . (9.37) 

It is possible that both of the operations given by Equations (9.36) and (9.37) are 
performed for a single triangle. 
 The edge collapse cost calculation presented in this section allows the col-
lapse of an edge such as that shown in Figure 9.11. As long as the triangle mesh 
is reasonably flat on both sides of the edge, a collapse may occur along an edge 
between two triangles having largely differing orientations. 
 Figure 9.12 shows the original triangle mesh for a chunk of terrain and the 
same surface after 35 percent of its triangles have been eliminated using the edge 
collapse technique. Notice how edges in regions of high triangle concentration 
and regions of relative flatness were the first edges chosen to be removed. 

9.5  T-Junction Elimination 

Suppose that a scene contains two polygons that share a common edge, as shown 
in Figure 9.13(a). When two such polygons belong to the same model, the verti-
ces representing the endpoints of the common edge are not ordinarily duplicated 
unless some vertex attribute (such as texture coordinates) is different for the two 
polygons. Vertices shared by multiple polygons are usually stored once in an ar-
ray and referenced multiple times by the polygons that use them. Graphics hard-
ware is designed so that when adjacent polygons use exactly the same coordi-
nates for the endpoints of shared edges, rasterization produces sets of pixels that 
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Figure 9.12. The left image shows a chunk of terrain made up of 938 faces generated 
directly from an underlying data field. In the right image, unimportant edges have been 
collapsed, reducing the number of faces to 606. (Image from the C4 Engine, courtesy of 
Terathon Software LLC.) 

are precise complements of each other. Along the shared edge, there is no over-
lap between the pixels belonging to one polygon and those belonging to the oth-
er, and there are no gaps where pixels do not belong to either polygon. 
 A problem arises when adjacent polygons belong to different objects. Each 
object has its own copy of the endpoint vertices for the shared edge, and these 
vertices may differ greatly in each object’s local coordinate space. When the ver-
tices are transformed into world space, floating-point round-off error may pro-
duce slightly different positions for each object. Since the vertex coordinates are 
no longer exactly equal, a seam may appear when the polygons are rasterized. 
 A larger problem occurs when two polygons have edges that fall within the 
same line in space but do not share the same endpoints, as illustrated in Figure 
9.13(b). In such a situation, a vertex belonging to one polygon lies within the in- 

(a) (b)

 
Figure 9.13. (a) Two polygons share an edge and both endpoint vertices. (b) Two poly-
gons share an edge but do not share endpoint vertices. The location where a vertex of one 
polygon lies on the edge of another polygon is called a T-junction. 



266 9. Polygonal Techniques 
 

terior of an edge belonging to the other polygon. Due to the shape that the edges 
form, the location at which this occurs is called a T-junction. Because the adja-
cent edges do not share identical endpoints, T-junctions are a major cause of vis-
ible seams in any real-time graphics engine that does not take measures to elimi-
nate them. 
 In this section, we describe how to detect possible sources of seams in com-
plex 3D scenes and how to modify static geometry so that visible artifacts are 
avoided. The removal of seams is absolutely necessary in order for graphics en-
gines to employ stencil shadow techniques for global illumination (see Section 
10.4.1). When T-junctions are eliminated, new vertices are added to existing pol-
ygons. A method for triangulating arbitrary polygons is described in Section 9.6. 
 Given an immovable object A in our world, we need to determine whether 
there exist any other immovable objects possessing a vertex that lies within an 
edge of object A. We consider only those objects whose bounding volumes inter-
sect the bounding volume of object A. Let object X be an object that lies close 
enough to object A to possibly have adjacent polygons. We treat both objects as 
collections of polygons having the greatest possible number of edges. We per-
form triangulation of these polygons after the T-junction elimination process to 
avoid the creation of superfluous triangles. 
 Before we locate any T-junctions, we first want to find out if any of object 
A’s vertices lie very close to any of object X’s vertices. We must transform the 
vertices belonging to both objects into some common coordinate space and 
search for vertices separated by a distance less than some small constant ε . Any 
vertex AV  of object A that is this close to a vertex XV  of object X should be 
moved so that AV  and XV  have the exact same coordinates. This procedure is 
sometimes called welding. 
 Once existing vertices have been welded, we need to search for vertices of 
object X that lie within a small distance ε  of an edge of object A but do not lie 
within the distance ε  of any vertex of object A. This tells us where T-junctions 
occur. Let 1P  and 2P  be endpoints of an edge of object A, and let Q be a vertex of 
object X. The squared distance 2d  between the point Q and the line passing 
through 1P  and 2P  is given by 

 ( ) ( ) ( )[ ]
( )

2
1 2 12 2

1 2
2 1

d − ⋅ −
= − −

−
Q P P P

Q P
P P

. (9.38) 

If 2 2d ε< , then we know that the point Q lies close enough to the line containing 
the edge of object A, but we still need to determine whether Q actually lies be-
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tween 1P  and 2P . We can make this determination by measuring the projected 
length t of the line segment connecting 1P  to Q onto the edge formed by 1P  and 

2P . This length is given by 

 1 cost α= −Q P , (9.39) 

where α is the angle between the line segment and the edge. Using a dot product 
to compute the cosine, we have 

 ( ) ( )1 2 1

2 1
t − ⋅ −

=
−

Q P P P

P P
. (9.40) 

If t ε<  or 2 1t ε> − −P P , then the point Q does not lie within the interior of the 
edge formed by 1P  and 2P . Otherwise, we have found a T-junction, and a new 
vertex should be added to the polygon of object A between 1P  and 2P  precisely at 
Q’s location. 

9.6  Triangulation 

Triangulation is the process by which a polygon is divided into triangles that use 
the same array of vertices and collectively cover the same area. Polygons must be 
triangulated before they can be passed to the graphics hardware. A polygon hav-
ing n vertices is always decomposed into 2n −  triangles. Convex polygons are 
particularly easy to triangulate—we simply choose one vertex and connect edges 
to every other nonadjacent vertex to form a triangle fan like the one shown in 
Figure 9.14. Polygons that are not convex or possess three or more collinear ver-
tices cannot generally be triangulated in this way, so we have to employ more 
complicated algorithms. 

 
Figure 9.14. A convex polygon can be triangulated by connecting edges from one arbi-
trarily chosen vertex to every other nonadjacent vertex, creating a triangle fan. 
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 A modeling system may produce a list of polygons that might be convex or 
concave. After static world geometry has been processed by performing welding 
and T-junction elimination, any polygon may also contain several vertices that 
are collinear (or at least nearly collinear) with some of its other vertices. This 
prevents us from using a simple fanning approach that might ordinarily be used 
to triangulate a convex polygon. We are instead forced to treat the polygon as 
concave. 
 The algorithm that we describe takes as input a list of n vertices wound in a 
counterclockwise direction and produces a list of 2n −  triangles. At each itera-
tion, we search for a set of three consecutive vertices for which the corresponding 
triangle is not degenerate, is not wound in the wrong direction, and does not con-
tain any of the polygon’s remaining vertices. The triangle formed by such a set of 
three vertices is called an ear. Once an ear is found, a triangle is emitted, and the 
middle vertex is disqualified from successive iterations. The algorithm repeats 
until only three vertices remain. This process of reducing the size of the triangu-
lation problem by removing one ear at a time is called ear clipping. 
 In order to determine whether a set of three vertices is wound in a counter-
clockwise direction, we must know beforehand the normal direction 0N  of the 
plane containing the polygon being triangulated. Let 1P , 2P , and 3P  represent the 
positions of the three vertices. If the cross product ( ) ( )2 1 3 1− × −P P P P  points in 
the same direction as the normal 0N , then the corresponding triangle is wound 
counterclockwise. If the cross product is near zero, then the triangle is degener-
ate. Thus, two of our three requirements for a triangle are satisfied only if 

 ( ) ( )2 1 3 1 0 ε− × − ⋅ >P P P P N  (9.41) 

for some small value ε  (typically, 0.001ε ≈ ). 
 Our third requirement is that the triangle contains no other vertices belonging 
to the polygon. We can construct three inward-facing normals 1N , 2N , and 3N  
corresponding to the three sides of the triangle, as follows. 

 

( )
( )
( )

1 0 2 1

2 0 3 2

3 0 1 3

= × −
= × −
= × −

N N P P

N N P P

N N P P  (9.42) 

As shown in Figure 9.15, a point Q lies inside the triangle formed by 1P , 2P , and 
3P  if and only if ( )i i ε⋅ − > −N Q P  for { }1,2,3i ∈ . 

 Since we have to calculate the normals given by Equation (9.42) for each 
triangle, we can save a little computation by replacing the condition given by 
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Figure 9.15. A point Q lies in the interior of a triangle (or nearly on its boundary) if 

( )i i ε⋅ − > −N Q P  for { }1,2,3i ∈ . 

Equation (9.41) with the equivalent expression 

 ( )1 3 1 ε⋅ − >N P P . (9.43) 

This determines whether the point 3P  lies on the positive side of the edge con-
necting 1P  and 2P . 
 The implementation shown in Listing 9.2 maintains a working set of four 
consecutive vertices and at each iteration determines whether a valid triangle can 
be formed using the first three vertices or the last three vertices of that group. If 
only one of the sets of three vertices forms a valid triangle, then that triangle is 
emitted, and the algorithm continues to its next iteration. If both sets of three ver-
tices can produce valid triangles, then the code selects the triangle having the 
larger smallest angle. In the case that neither set of three vertices provides a valid 
triangle, the working set of four vertices is advanced until a valid triangle can be 
constructed. 
 The method presented in Listing 9.2 was chosen so that the output of the al-
gorithm would consist of a series of triangle strips and triangle fans. Such a tri-
angle structure exhibits excellent vertex cache usage on modern graphics proces-
sors. The implementation also includes a safety mechanism. If a polygon is 
passed to it that is degenerate, self-intersecting, or otherwise nontriangulatable, 
then the algorithm terminates prematurely to avoid becoming stuck in an infinite 
loop. This happens when the code cannot locate a set of three consecutive verti-
ces that form a valid triangle. 
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Listing 9.2. The TriangulatePolygon() function takes an arbitrary planar polygon having n 
vertices and triangulates it, producing at most 2n −  triangles. 

Parameters 

 vertexCount The number of vertices. 

 vertex A pointer to an array of n Point3D structures representing the polygon’s 
vertices. 

 normal The polygon’s normal direction. 

 triangle A pointer to an array of 2n −  Triangle structures where the results of the 
triangulation are stored. 

const float epsilon = 0.001F; 

 

static long GetNextActive(long x, long vertexCount, const bool *active) 

{ 

 for (;;) 

 { 

  if (++x == vertexCount) x = 0; 

  if (active[x]) return (x); 

 } 

} 

 

static long GetPrevActive(long x, long vertexCount, const bool *active) 

{ 

 for (;;) 

 { 

  if (--x == -1) x = vertexCount - 1; 

  if (active[x]) return (x); 

 } 

} 

 

long TriangulatePolygon(long vertexCount, const Point3D *vertex, 

  const Vector3D& normal, Triangle *triangle) 

{ 

 bool *active = new bool[vertexCount]; 

 for (long a = 0; a < vertexCount; a++) active[a] = true; 

  

 long triangleCount = 0; 

 long start = 0; 

 long p1 = 0; 
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 long p2 = 1; 

 long m1 = vertexCount - 1; 

 long m2 = vertexCount - 2; 

  

 bool lastPositive = false; 

 for (;;) 

 { 

  if (p2 == m2) 

  { 

   // Only three vertices remain. 

   triangle->index[0] = m1; 

   triangle->index[1] = p1; 

   triangle->index[2] = p2; 

   triangleCount++; 

   break; 

  } 

   

  const Point3D& vp1 = vertex[p1]; 

  const Point3D& vp2 = vertex[p2]; 

  const Point3D& vm1 = vertex[m1]; 

  const Point3D& vm2 = vertex[m2]; 

  bool positive = false; 

  bool negative = false; 

   

  // Determine whether vp1, vp2, and vm1 form a valid triangle. 

  Vector3D n1 = normal % (vm1 - vp2).Normalize(); 

  if (n1 * (vp1 - vp2) > epsilon) 

  { 

   positive = true; 

   Vector3D n2 = (normal % (vp1 - vm1).Normalize()); 

   Vector3D n3 = (normal % (vp2 - vp1).Normalize()); 

    

   for (long a = 0; a < vertexCount; a++) 

   { 

    // Look for other vertices inside the triangle. 

    if ((active[a]) && (a != p1) && (a != p2) && (a != m1)) 

    { 

     const Vector3D& v = vertex[a]; 

     if ((n1 * (v - vp2).Normalize() > -epsilon) 

      && (n2 * (v - vm1).Normalize() > -epsilon) 
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      && (n3 * (v - vp1).Normalize() > -epsilon)) 

     { 

      positive = false; 

      break; 

     } 

    } 

   } 

  } 

   

  // Determine whether vm1, vm2, and vp1 form a valid triangle. 

  n1 = normal % (vm2 - vp1).Normalize(); 

  if (n1 * (vm1 - vp1) > epsilon) 

  { 

   negative = true; 

   Vector3D n2 = (normal % (vm1 - vm2).Normalize()); 

   Vector3D n3 = (normal % (vp1 - vm1).Normalize()); 

    

   for (long a = 0; a < vertexCount; a++) 

   { 

    // Look for other vertices inside the triangle. 

    if ((active[a]) && (a != m1) && (a != m2) && (a != p1)) 

    { 

     const Vector3D& v = vertex[a]; 

     if ((n1 * (v - vp1).Normalize() > -epsilon) 

      && (n2 * (v - vm2).Normalize() > -epsilon) 

      && (n3 * (v - vm1).Normalize() > -epsilon)) 

     { 

      negative = false; 

      break; 

     } 

    } 

   } 

  } 

   

  // If both triangles are valid, choose the one having 

  // the larger smallest angle. 

  if ((positive) && (negative)) 

  { 

   float pd = (vp2 - vm1).Normalize() * (vm2 - vm1).Normalize(); 

   float md = (vm2 - vp1).Normalize() * (vp2 - vp1).Normalize(); 
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   if (fabs(pd - md) < epsilon) 

   { 

    if (lastPositive) positive = false; 

    else negative = false; 

   } 

   else 

   { 

    if (pd < md) negative = false; 

    else positive = false; 

   } 

  } 

   

  if (positive) 

  { 

   // Output the triangle m1, p1, p2. 

   active[p1] = false; 

   triangle->index[0] = m1; 

   triangle->index[1] = p1; 

   triangle->index[2] = p2; 

   triangleCount++; 

   triangle++; 

    

   p1 = GetNextActive(p1, vertexCount, active); 

   p2 = GetNextActive(p2, vertexCount, active); 

   lastPositive = true; 

   start = -1; 

  } 

  else if (negative) 

  { 

   // Output the triangle m2, m1, p1. 

   active[m1] = false; 

   triangle->index[0] = m2; 

   triangle->index[1] = m1; 

   triangle->index[2] = p1; 

   triangleCount++; 

   triangle++; 

    

   m1 = GetPrevActive(m1, vertexCount, active); 

   m2 = GetPrevActive(m2, vertexCount, active); 

   lastPositive = false; 
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   start = -1; 

  } 

  else 

  { 

   // Exit if we've gone all the way around the 

   // polygon without finding a valid triangle. 

   if (start == -1) start = p2; 

   else if (p2 == start) break; 

    

   // Advance working set of vertices. 

   m2 = m1; 

   m1 = p1; 

   p1 = p2; 

   p2 = GetNextActive(p2, vertexCount, active); 

  } 

 } 

  

 delete[] active; 

 return (triangleCount); 

} 

Chapter 9 Summary 

Depth Value Offset 

To offset the depth of a vertex whose z coordinate is roughly zP  by a distance δ, 
the ( )3,3  entry of the perspective projection matrix should be multiplied by 1 ε+ , 
where 

 
( )

2
z z

fn δε
f n P P δ

 = −  + + 
. 

Decal Application 

A decal of width w and height h centered at the point P, having normal direction 
N and tangent direction T, should be clipped to the planes 

 , ,
2 2
w wleft right   = − ⋅ = − + ⋅   

   
T T P T T P  
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where = ×B N T and d is the maximum distance that any vertex in the decal may 
be from the tangent plane passing through the point P. The texture coordinates 
for a decal vertex Q are given by 
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Billboarding 

The vertices of an unconstrained billboarded quad of width w, height h, and ori-
entation θ  centered at the point P may be calculated using 

 
1 2

3 4
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= − − = + −

Q P X Y Q P X Y
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where 
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and the directions R and U are the world space right and up directions of the 
camera view. The vertices of a billboarded quad constrained to rotate only about 
the z axis are given by 
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where 
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 , ,0y y x xP C C P= − −X , 

and C is the world space camera position. 

T-Junction Elimination 

The squared distance 2d  between the point Q and the line passing through 1P  and 
2P  is given by 

 ( ) ( ) ( )[ ]
( )

2
1 2 12 2

1 2
2 1

d − ⋅ −
= − −

−
Q P P P

Q P
P P

. 

A point Q satisfying 2 2d ε<  lies within the interior of the edge formed by 1P  and 
2P  if 2 1ε t ε< < − −P P , where t is given by 

 ( ) ( )1 2 1

2 1
t − ⋅ −

=
−

Q P P P

P P
. 

Triangulation 

A point Q lies inside (or near the boundary of) a triangle defined by the three 
vertices 1P , 2P , and 3P  belonging to a polygon if and only if ( )i i ε⋅ − > −N Q P  for 

{ }1,2,3i ∈ , where 

 

( )
( )
( )

1 0 2 1

2 0 3 2

3 0 1 3 ,

= × −
= × −
= × −

N N P P

N N P P

N N P P  

and 0N  is the polygon’s normal direction. The triangle is wound counterclock-
wise and is nondegenerate if 

 ( )1 3 1 ε⋅ − >N P P . 
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Exercises for Chapter 9 

1. Suppose that the distance to the near plane is 1n = , and the distance to the 
far plane is 100f =  for a particular view frustum. Calculate by what value 
the ( )3,3  entry of the projection matrix should be multiplied in order to off-
set a model centered at a depth of 20z = −  toward the camera by a distance 
of 0.2. 

2. Calculate the least distance d by which the model in Exercise 1 can be offset 
toward the camera if a 16-bit depth buffer is used. 

3. Write a program that applies a decal to a surface. Assume that the decal is 
described by its center P, a normal direction N, a tangent direction T, its 
width w, and its height h. The program should construct a decal object by 
clipping an arbitrary triangle mesh to the planes bounding the decal and 
should then calculate texture coordinates for each vertex in the decal object. 

4. Implement a particle system for which each particle is rendered as a textured 
quad centered at the particle’s position. Each particle should be described by 
its position P in world space, its radius r, its window-space orientation θ , 
and its velocity V. 
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Chapter 10 
Shadows 

Shadows are an essential component of any rendered scene that attempts to de-
pict a realistic environment because they provide many visual cues about the lo-
cation of objects in 3D space. The methods used to generate shadows in real-time 
applications fall into two broad categories. The first category is called shadow 
mapping or shadow buffering, and it is an image-based algorithm that uses a 
depth image generated from the location of a light source. The second category is 
known as stencil shadows (due to its use of the stencil buffer), or sometimes 
shadow volumes, and it is a geometric technique that derives volumes of space 
for which light is blocked by shadow-casting objects. In this chapter, we provide 
an introduction to both types of shadow rendering. There are several variations of 
the shadow mapping technique (and this is still an active area of research) for 
which we do not go into the details, but we do provide details for the shadow 
volumes technique because it is more mature, and there is a generally accepted 
best way to implement it. 

10.1  Shadow Casting Set 

In Chapter 8, we discussed methods for determining whether an object is visible 
to the camera, and we presumed that we could ignore any object that didn’t inter-
sect the view frustum when we rendered a scene. However, as soon as we intro-
duce a shadow-casting light source, the set of objects that can be directly seen by 
the camera may no longer be the full set of objects that needs to be considered. 
There could be objects outside the view frustum, and thus not directly visible, 
that cast shadows into the view frustum onto other objects that are visible. Ignor-
ing these objects would cause visible shadows to appear and disappear as the 
camera moves and objects enter or exit the view frustum. 
 The set of shadow-casting that we need to consider is clearly a superset of 
the set of visible objects, and the position of the light source relative to the view 
frustum determines which additional objects must participate in shadow genera- 
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Figure 10.1. Any objects that could cast shadows into the view frustum must intersect the 
convex hull enclosing the view frustum and the position L of the light source. The blue 
lines represent the edges of the view frustum between planes that face toward the light 
source and planes that face away from the light source. 

tion. In the case that the light source is actually inside the view frustum, we do 
not need to consider any more than the visible set of objects because shadows can 
only be cast out of the view frustum. For the only other case, that the light source 
lies outside the view frustum, we need to be able to identify objects that are posi-
tioned between the light source and the view frustum in such a way that shadows 
could fall upon visible objects. This can be achieved by considering the convex 
hull enclosing the view frustum and the light source, as shown in Figure 10.1. 
For an object to cast any part of its shadow into the view frustum, it must inter-
sect this region of space. 
 We construct the convex hull enclosing the view frustum and the light source 
by assembling a set of planes for which the intersection of all the positive half-
spaces represents the shadow-casting region. First, we test the light position 
against the six planes of the view frustum (see Table 5.1) by taking the dot prod-
uct between the four-dimensional plane vector and the homogeneous light posi-
tion with a w coordinate of one. The planes for which this dot product is positive 
form part of the boundary of the convex hull. Then, for each pair of adjacent 
frustum planes, if one has a positive dot product and the other does not, then we 
calculate a new plane defined by the edge between those two frustum planes and 
the position of the light source, making sure that the plane’s normal direction 
faces inward. 
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 In the case that an infinite view frustum is being used, the far plane is ig-
nored, and the edges that would lie between the far plane and any of the four side 
planes never participate in the construction of a new plane. The shadow-casting 
region is infinitely large in this case, but it is still convex and properly bounded. 
 Once the bounding planes of the shadow-casting region have been deter-
mined, we test for object intersection just as we would for the ordinary view frus-
tum. For each plane, we check to see whether the object lies completely on the 
negative side of any plane, and if it does, then it is rejected as a potential shadow 
castor. 

10.2  Shadow Mapping 

The technique known as shadow mapping is so named because a scene is ren-
dered from the perspective of a light source to generate a special shadow map 
that is subsequently used in the ordinary rendering pass from the camera’s per-
spective. Instead of three-component color, each pixel in the shadow map holds a 
single number representing the depth of the associated point in the scene with 
respect to the light source, as shown in Figure 10.2. Since it is an image-based 
technique, shadow mapping can be used to generate shadows for objects that use 
the alpha test to cut holes in their surfaces, as is often done for things like the 
leaves on a tree. Using the stencil shadow technique for these kinds of objects is 
impractical. 

10.2.1  Rendering the Shadow Map 

In order to render a shadow map, we first determine the region of space in which 
shadow castors may be positioned, as described in the previous section. We then 
create a bounding box for that region that is aligned to the light source’s coordi-
nate axes, as shown in Figure 10.3. The z axis points in the opposite direction that 
the light is shining, and the x and y axes represent the horizontal and vertical di-
rections in the shadow map. Shadow mapping is most easily implemented for an 
infinite light or spot light because each has a specific lighting direction. Shadow 
mapping for point lights is more difficult, but recent advancements in graphics 
hardware has made this more practical.1 
 After the aligned bounding box has been determined, we position the camera 
at the light source’s location, point it in the direction of the light, and set up an 

                                                      
1 For instance, complete cube shadow maps can be rendered in a single pass using ge-
ometry shaders, and depth-based cube maps are supported in OpenGL 3.0 and later. 
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Figure 10.2. The left image shows a scene in which shadows have been generated using the 
shadow mapping technique. The right image shows the shadow map in grayscale, where brighter 
values represent a greater depth from the perspective of the light source. Where the shadow map 
appears to be missing pieces of the terrain, geometry has actually been culled because it lies 
outside the shadow casting region illustrated in Figure 10.1. (Image from the C4 Engine, courtesy 
of Terathon Software LLC.) 

O

z y

0z =

maxz z=

 

Figure 10.3. A shadow map is rendered in the coordinate system of the light source. The z−  axis 
points in the direction that the light is shining and represents depth. The x and y axes are aligned to 
the s and t directions in the shadow map. (The x axis points out of the page in this figure.) 
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orthographic projection that precisely encloses the bounding box. For each object 
that is to be rendered in the shadow map, the vertex shader needs to transform the 
vertices into the camera’s local coordinate system and apply the projection, as 
would normally be done for the main camera. 
 Let objectM  be the 4 4×  matrix that transforms points in the space of the object 
being rendered into a common world-space coordinate system. Let lightM  be the 
matrix that transforms points in the space of the light source into world space. 
Then points are transformed from object space to light space through the matrix 
product 1

light object
−M M . The orthographic projection is then applied by multiplying 

by the matrix 

 

max min

max min max min

max min

max min max min
proj

max

2 0 0

20 0

20 0 1

0 0 0 1

x x
x x x x

y y
y y y y

z

+ − − −
 

+ − − − =
 − − 
 
 
  

M , (10.1) 

where the minimum and maximum x and y values represent the extents of the 
bounding box in light space, and maxz  represents the z coordinate of the maximum 
depth in light space. ( projM  is the projection matrix given by Equation (5.58) with 

minl x= , maxr x= , minb y= , maxt y= , maxf z= , and 0n = .) When rendering the shad-
ow map, the vertex shader should apply the matrix product 1

proj light object
−M M M  to 

each vertex. 
 The viewport should be set up to render into a depth-only render target for 
which the depth buffer has been allocated as a texture map whose pixels use a 
depth format. The viewport transformation should be set, using the glView-
port() function in OpenGL, to the dimensions of the shadow map’s render 
target. 

10.2.2  Rendering the Main Scene 

During the ordinary rendering pass from the main camera, texture coordinates for 
the shadow map are generated by transforming vertices into the light source’s 
coordinate space, applying the orthographic projection, and then applying a scale 
and bias to produce normalized texture coordinates for the shadow map. Three 
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coordinates are generated during this transformation, the s and t coordinates that 
are normally used to access a two-dimensional texture map and a p coordinate 
that represents the depth of the vertex in the space of the shadow map. These co-
ordinates are interpolated across the face of a triangle, and the p coordinate is 
compared to the depth stored in the shadow map at the ,s t  coordinates. If the 
depth p is greater, then the point corresponding to the pixel being drawn lies in 
shadow. (Most GPUs have the functionality for making this comparison built into 
the hardware, and it is enabled in OpenGL by making a call to the glTex-
Parameteri() function to set the value of GL_TEXTURE_COMPARE_MODE to 
GL_COMPARE_REF_TO_TEXTURE for the shadow map texture.) 
 The viewport transformation used to calculate shadow map coordinates is 
given by 

 

1 1
2 2

1 1
2 2

viewport 1 1
2 2

0 0
0 0
0 0
0 0 0 1

 
 
 =
 
 
 

M . (10.2) 

The entire matrix product 1
viewport proj light object

−M M M M  should be precalculated one 
time per object and stored as a constant accessible to the vertex shader. (The ma-
trices projM , lightM , and objectM  should be identical to those used in the shadow 
map generation phase.) The vertex shader should apply this matrix to an object-
space vertex position in order to generate the , , ,s t p q  texture coordinates that 
are passed to the fragment shader and used to sample the shadow map. The q co-
ordinate is normally going to be one all the time, so the fourth row of the matrix 
need not participate. 

10.2.3  Self-Shadowing 

A well-known problem that occurs with the shadow mapping technique is a self-
shadowing artifact often called shadow acne, as illustrated in Figure 10.4. This 
problem is due to the finite precision available for storing depth values in the 
shadow map. A conventional integer depth buffer stores 24 bits per pixel,2 and 
the values are evenly spaced between the minimum and maximum depths. (Float-
ing-point depth buffers are also available on recent GPUs, and the spacing 

                                                      
2 A depth buffer is usually combined with a stencil buffer that stores 8 more bits of in-
formation per pixel in an interleaved fashion, for a total of 32 contiguous bits per pixel. 
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Figure 10.4. In the left image, a depth offset is used to prevent self-shadowing artifacts. Without 
this offset, striped shadowing artifacts can be seen on the concrete and rock in the right image. 
(Image from the C4 Engine, courtesy of Terathon Software LLC.) 

between representable values varies with depth.) When a surface is rendered at 
an oblique angle relative to the direction of the light, the depths of many pixels in 
a small neighborhood may be quantized to the same value in the shadow map. As 
shown in Figure 10.5, this can result in some of the pixels being shadowed while 
others are not. 
 The most straightforward solution to the self-shadowing problem is to apply 
an offset to the values in the shadow map to make them appear slightly deeper 
than they would normally be. This eliminates the shadow artifacts by moving the 
shadow-casting surface underneath the actual surface that we render by a small 
distance. However, as the surface of an object becomes more oblique with re-
spect to the light direction, a greater offset must be used in order to fix the 
problem. 
 Fortunately, OpenGL provides a function called glPolygonOffset() that 
applies a depth offset that depends on the camera-space slope of the surface at 
each pixel. The following code solves the self-shadowing problem in most cases: 

glEnable(GL_POLYGON_OFFSET_FILL); 

glPolygonOffset(1.0F, 1.0F); 

It’s possible to use larger values to handle more problematic scenes, but values 
that are too large result in shadows appearing to be disconnected from the objects 
that are casting them. 
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Figure 10.5. This figure demonstrates how the finite precision of the depth buffer leads 
to self-shadowing artifacts. Since the depth stored in a shadow map can only take on spe-
cific integer values, represented by k, 1k + , and 2k +  here, any surface not perpendicular 
to the light direction goes in and out of its own shadow. 

10.3  Stencil Shadows 

The stencil shadows technique can be used to render accurate shadows for fully 
dynamic scenes using any type of light source residing at any location. Unlike 
shadow mapping, however, stencil shadows require a significant amount of geo-
metrical computation that must usually be performed by the CPU. The advantage 
is that the shadows are as accurate as the polygonal representation of the models 
that cast them, completely avoiding aliasing artifacts. 

10.3.1  Algorithm Overview 

Using an idea that was first conceived in the 1970s,3 the stencil buffer can be 
employed to generate extremely accurate shadows in real time. Two decades af-
ter the algorithm’s invention, 3D graphics hardware finally advanced to the point 

                                                      
3 Frank Crow, “Shadow Algorithms for Computer Graphics”, Proceedings of SIG-
GRAPH, 1977, pp. 242–248. 
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where stencil shadows became practical, but several unsolved problems still ex-
isted that prevented the algorithm from working correctly under various condi-
tions. These problems have now been solved, and stencil shadows can be robust-
ly implemented to handle arbitrarily positioned point lights and infinite direction-
al lights having any desired spatial relationship with the camera. 
 The basic concept of the stencil shadow algorithm is to use the stencil buffer 
as a masking mechanism that prevents pixels in shadow from being drawn during 
the rendering pass for a particular light source. This is accomplished by rendering 
an invisible shadow volume for each shadow-casting object in a scene using 
stencil operations that leave nonzero values in the stencil buffer wherever light is 
blocked. Once the stencil buffer has been filled with the appropriate mask, a 
lighting pass only illuminates pixels where the value in the stencil buffer is zero. 
 As shown in Figure 10.6, an object’s shadow volume encloses the region of 
space for which light is blocked by the object. This volume is constructed by 
finding the edges in the object’s triangle mesh representing the boundary be-
tween lit triangles and unlit triangles and extruding those edges away from the 
light source. Such a collection of edges is called the object’s silhouette with re-
spect to the light source. The shadow volume is rendered into the stencil buffer 
using operations that modify the stencil value at each pixel depending on whether 
the depth test passes or fails. Of course, this requires that the depth buffer has 
already been initialized to the correct values by a previous rendering pass. Thus, 
the scene is first rendered using a shader that applies surface attributes that do not 
depend on any light source, such as ambient illumination, emission, and envi-
ronment mapping. 

L

 
Figure 10.6. An object’s shadow volume encloses the region of space for which light 
emitted by the light source L is blocked by the object. 
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Figure 10.7. Numbers at the ends of rays emanating from the camera position C repre-
sent the values left in the stencil buffer for a variety of cases. The stencil value is incre-
mented when front faces of the shadow volume pass the depth test, and the stencil value 
is decremented when back faces of the shadow volume pass the depth test. The stencil 
value is not changed when the depth test fails. 

 The original stencil algorithm renders the shadow volume in two stages. In 
the first stage, the front faces of the shadow volume (with respect to the camera) 
are rendered using a stencil operation that increments the value in the stencil 
buffer whenever the depth test passes. In the second stage, the back faces of the 
shadow volume are rendered using a stencil operation that decrements the value 
in the stencil buffer whenever the depth test passes. As illustrated in Figure 10.7, 
this technique leaves nonzero values in the stencil buffer wherever the shadow 
volume intersects any surface in the scene, including the surface of the object 
casting the shadow. 
 There are two major problems with the method just described. The first is 
that no matter what finite distance we extrude an object’s silhouette away from a 
light source, it is still possible that it is not far enough to cast a shadow on every 
object in the scene that should intersect the shadow volume. The example shown 
in Figure 10.8 demonstrates how this problem arises when a light source is very 
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Figure 10.8. No matter what finite distance d an object’s silhouette is extruded away 
from a light source L, moving the light close enough to the object can result in a shadow 
volume that cannot reach other objects in the scene. 

close to a shadow-casting object. Fortunately, this problem can be elegantly 
solved by using a special projection matrix and extruding shadow volumes all the 
way to infinity. 
 The second problem shows up when the camera lies inside the shadow vol-
ume or the shadow volume is clipped by the near plane. Either of these occur-
rences can leave incorrect values in the stencil buffer, causing the wrong surfaces 
to be illuminated. The solution to this problem is to add caps to the shadow vol-
ume geometry, making it a closed surface, and using different stencil operations. 
The two caps added to the shadow volume are derived from the object’s triangle 
mesh as follows. A front cap is constructed using the unmodified vertices of tri-
angles facing toward the light source. A back cap is constructed by projecting the 
vertices of triangles facing away from the light source to infinity. For the result-
ing closed shadow volume, we render back faces (with respect to the camera) 
using a stencil operation that increments the stencil value whenever the depth test 
fails, and we render front faces using a stencil operation that decrements the sten-
cil value whenever the depth test fails. As shown in Figure 10.9, this technique 
leaves nonzero values in the stencil buffer for any surface intersecting the shad-
ow volume for arbitrary camera positions. Rendering shadow volumes in this 
manner is more expensive than using the original technique, but we can deter-
mine when it’s safe to use the less-costly depth-pass method without having to 
worry about capping our shadow volumes. 
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Figure 10.9. Using a capped shadow volume and depth-fail stencil operations allows the 
camera to be inside the shadow volume. The stencil value is incremented when back fac-
es of the shadow volume fail the depth test, and the stencil value is decremented when 
front faces of the shadow volume fail the depth test. The stencil value does not change 
when the depth test passes. 

 The details of everything just described are discussed throughout the remain-
der of this section. In summary, the rendering algorithm for a single frame runs 
through the following steps. 

A. Clear the frame buffer and perform an ambient rendering pass. Render the 
visible scene using any surface shading attribute that does not depend on any 
particular light source. 

B. Choose a light source and determine what objects may cast shadows into the 
visible region of the world. If this is not the first light to be rendered, clear 
the stencil buffer. 
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C. For each object, calculate the silhouette representing the boundary between 
triangles facing toward the light source and triangles facing away from the 
light source. Construct a shadow volume by extruding the silhouette away 
from the light source. 

D. Render the shadow volume using specific stencil operations that leave non-
zero values in the stencil buffer where surfaces are in shadow. 

E. Perform a lighting pass using the stencil test to mask areas that are not illu-
minated by the light source. 

F. Repeat steps B through E for every light source that may illuminate the visi-
ble region of the world. 

 For a scene illuminated by n lights, this algorithm requires at least 1n +  ren-
dering passes. More than 1n +  passes may be necessary if surface-shading calcu-
lations for a single light source cannot be accomplished in a single pass. To effi-
ciently render a large scene containing many lights, one must be careful during 
each pass to render only objects that could potentially be illuminated by a partic-
ular light source. An additional optimization using the scissor rectangle can also 
save a significant amount of rasterization work—this optimization is discussed in 
Section 10.3.7. 

10.3.2  Infinite View Frustums 

To ensure that shadow volumes surround every last bit of space for which light is 
blocked by an object, we must extrude the object’s silhouette to infinity. Using a 
standard perspective projection matrix would cause such a shadow volume to be 
clipped by the far plane. To avoid this unwanted effect, we can actually place the 
far plane at an infinite distance from the camera. 
 The standard OpenGL perspective projection matrix frustumM , derived in Sec-
tion 5.5.1, has the form 

 frustum

2 0 0

20 0

20 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f n fn
f n f n

+ 
 − −
 + 
 − −=
 + − −

− − 
 − 

M , (10.3) 
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where n is the distance to the near plane, f is the distance to the far plane, and l, r, 
b, and t represent the left, right, bottom, and top edges of the rectangle carved out 
of the near plane by the view frustum. By evaluating the limit as f tends to infini-
ty, we obtain the matrix 

 infinite frustum

2 0 0

20 0lim

0 0 1 2
0 0 1 0

f

n r l
r l r l

n t b
t b t b

n
→∞

+ 
 − −
 + = =  − −
 − − 
 − 

M M . (10.4) 

 The matrix infiniteM  transforms a 4D homogeneous eye-space point eye =P  
, , ,x y z w  to the clip-space point clipP  as follows. 

 clip infinite eye

2 20 0

2 20 0

0 0 1 2 2
0 0 1 0

n r l n r lx zxr l r l r l r l
n t b y n t by z

t b t b t b t bz
n z nww

z

+ +   +    − − − −
    + +     += = =   − − − − 
    − − − −    
   − −   

P M P  (10.5) 

Assuming 0w >  (it is normally the case that 1w = ), the resulting z coordinate of 
clipP  is always less than the resulting w coordinate of clipP , ensuring that projected 

points are never clipped by the far plane. A point at infinity is represented by a 
4D homogeneous vector having a w coordinate of 0 in eye space. For such a 
point, ( ) ( )clip clipz w=P P , and the perspective divide produces a 3D point in nor-
malized device coordinates having the maximal z value of 1. 
 In practice, the limitations of hardware precision can produce points having a 
normalized z coordinate slightly greater than 1. This causes severe problems 
when the z coordinate is converted to an integer value to be used in the depth 
buffer because the stencil operations that depend on the depth test to render 
shadow volumes may no longer function correctly. To circumvent this undesira-
ble effect, we can map the z coordinate of a point at infinity to a value slightly 
less than 1 in normalized device coordinates. The z coordinate of a 3D point D in 
normalized device coordinates is mapped from a value zD  in the range [ ]1,1−  to a 
value zD′  in the range [ ]1,1 ε− − , where ε  is a small positive constant, using the 
relation 
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 ( ) 21 1
2z z
εD D −′ = + − . (10.6) 

We need to find a way to modify the z coordinate of clipP  in order to perform this 
mapping as points are transformed from eye space into clip space. We can re-
write Equation (10.6) as an adjustment to ( )clip zP  by replacing zD  with 
( ) ( )clip clipz wP P  and zD′  with ( ) ( )clip clipz w′P P  as follows. 

 ( )
( )

( )
( )

clip clip

clip clip

21 1
2

z z

w w

ε′   −= + − 
 

P P

P P
 (10.7) 

Plugging in the values of ( )clip zP  and ( )clip wP  given by Equation (10.5), we have 

 ( )clip 2 21 1
2

z z nw ε
z z

′ − − − = + − − − 
P

. (10.8) 

Solving for ( )clip z′P  and simplifying yields 

 ( ) ( ) ( )clip 1 2z z ε nw ε′ = − + −P . (10.9) 

We can incorporate this mapping into the projection matrix infiniteM  given by 
Equation (10.4) as follows to arrive at the slightly tweaked matrix infinite′M  that we 
actually use to render a scene. 

 

( )
infinite

2 0 0

20 0

0 0 1 2
0 0 1 0

n r l
r l r l

n t b
t b t b

ε n ε

+ 
 − −
 + ′ =  − −
 − − 
 − 

M  (10.10) 

 For graphics hardware that supports depth clamping,4 the use of the matrix 
infinite′M  given by Equation (10.10) is not necessary. The depth clamping function-

ality in OpenGL allows a renderer to force depth values in normalized device 
coordinates to saturate to the range [ ]1,1− , thus curing the precision problem at 
the infinite far plane. When depth clamping is enabled using the function call 

                                                      
4 Depth clamping became a core feature of OpenGL in version 3.2. It was previously 
available through the GL_ARB_depth_clamp and GL_NV_depth_clamp extensions. 



294 10. Shadows 
 

 glEnable(GL_DEPTH_CLAMP); 

the projection matrix infiniteM  given by Equation (10.4) can safely be used. 
 The question of depth buffer precision arises when using an infinite projec-
tion matrix. It is true that placing the far plane at infinity reduces the number of 
discrete depth values that can occur within any finite interval along the z axis, but 
in most situations this effect is small. Consider the function ( )frustumd P  that uses 
the matrix frustumM  given in Equation (10.3) to map an eye-space point 

, , ,1x y zP P P=P  to its corresponding depth in normalized device coordinates: 

 ( ) ( )
( )

frustum
frustum

frustum

1 2z

w z

f n fnd
f n P f n

+  = = +  − − 

M P
P

M P
. (10.11) 

We obtain a different function ( )infinited P  by using the matrix infiniteM  given by 
Equation (10.4) to map an eye-space point P to its normalized depth: 

 ( ) ( )
( )

( )infinite
infinite

infinite

11 2z

w z
d n

P
= = +

M P
P

M P
. (10.12) 

Given two eye-space points 1P  and 2P , we can compare the differences in depth 
values produced by the functions frustumd  and infinited  as follows. 

 ( ) ( )
( ) ( )frustum 2 frustum 1

2 1

2 1 1
z z

fnd d
f n

 − = − −  
P P

P P
 

 ( ) ( )
( ) ( )infinite 2 infinite 1

2 1

1 12
z z

d d n − = − 
 

P P
P P

 (10.13) 

This demonstrates that the standard projection matrix frustumM  maps the points 1P  
and 2P  to a range that is a factor ( )f f n−  larger than the range to which the 
points are mapped by the infinite projection matrix infiniteM , thus equating to 
greater precision. For practical values of f and n, where f is much larger than 1 
and n is much smaller than 1, ( )f f n−  is close to unity, so the loss of precision 
is not a significant disadvantage. 

10.3.3  Silhouette Determination 

The stencil shadow algorithm requires that the models in our world be closed 
triangle meshes. In mathematical terms, the surface of any object that casts a 
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shadow must be a two-dimensional closed manifold. What this boils down to is 
that every edge in a mesh must be shared by exactly two triangles, disallowing 
any holes that would let us see the interior of the mesh. 
 Edge connectivity information must be precomputed so that we can deter-
mine a mesh’s silhouette for shadow volume rendering. Suppose that we have an 
indexed triangle mesh consisting of an array of N vertices 1 2, , , NV V V  and an 
array of M triangles 1 2, , , MT T T . Each triangle simply indicates which three ver-
tices it uses by storing three integer indexes 1i , 2i , and 3i . We say that an index pi  
precedes an index qi  if the number p immediately precedes the number q in the 
cyclic chain 1 2 3 1→ → → . For instance, 2i  precedes 3i  and 3i  precedes 1i , but 2i  
does not precede 1i . 
 The indexes 1i , 2i , and 3i  are ordered such that the positions of the vertices 1iV , 

2iV , and 3iV  to which they refer are wound counterclockwise about the triangle’s 
normal vector. Suppose that two triangles share an edge whose endpoints are the 
vertices aV  and bV  as shown in Figure 10.10. The consistent winding rule enforc-
es the property that for one of the triangles, the index referring to aV  precedes the 
index referring to bV , and that for the other triangle, the index referring to bV  pre-
cedes the index referring to aV . 
 As demonstrated in Listing 10.1, the edges of a triangle mesh can be identi-
fied by making a single pass through the triangle list. For any triangle having ver-
tex indexes 1i , 2i , and 3i , we create an edge record for every instance in which 
1 2i i< , 2 3i i< , or 3 1i i<  and store the index of the current triangle in the edge rec-
ord. This procedure creates exactly one edge for every pair of triangles that share 

aV

bV

1i

1i2i

2i

3i 3i

 
Figure 10.10. When consistent winding is enforced, it is always the case that the indexes 
referring to the vertices aV  and bV  of exactly one of the two triangles sharing an edge sat-
isfies the property that the index referring to aV  precedes the index referring to bV . 
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two vertices aV  and bV , duplicating any edges that are shared by multiple pairs of 
triangles. 
 Once we have identified all the edges, we make a second pass through the 
triangle list to find the second triangle that shares each edge. This is done by lo-
cating triangles for which 1 2i i> , 2 3i i> , or 3 1i i>  and matching it to an edge hav-
ing the same vertex indexes that has not yet been supplied with a second triangle 
index. 
 Armed with the edge list for a triangle mesh, we determine the silhouette by 
first calculating the dot product between the light position and the plane of each 
triangle. For a triangle whose vertex indexes are 1i , 2i , and 3i , the (unnormalized) 
outward-pointing normal direction N is given by 

 ( ) ( )2 1 3 1i i i i= − × −N V V V V  (10.14) 

since the vertices are assumed to be wound counterclockwise. The 4D plane vec-
tor F corresponding to the triangle is then given by 

 1, , ,x y z iN N N= − ⋅F N V . (10.15) 

 Let L represent the 4D homogeneous position of the light source. For point 
light sources, 0wL ≠ ; and for infinite directional light sources, 0wL = . A triangle 
faces the light source if 0⋅ >F L . Otherwise, the triangle faces away from the 
light source. The silhouette is equal to the set of edges shared by one triangle fac-
ing the light and one triangle facing away from the light. 

Listing 10.1. The BuildEdges() function examines an array of indexed triangles and constructs 
an array of edge records that refer back to the triangles that share them. The return value is the 
number of edges written to the array edgeArray. 
Parameters 
 triangleCount The number of triangles in the array pointed to by the triangle-

Array parameter. 
 triangleArray A pointer to an array of Triangle structures describing the polygonal 

mesh. 
 edgeArray A pointer to a location in which a pointer to the edge array is returned. 

long BuildEdges(long vertexCount, long triangleCount, 

  const Triangle *triangleArray, Edge **edgeArray) 

{ 

 long maxEdgeCount = triangleCount * 3; 
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 unsigned short *firstEdge = 

  new unsigned short[vertexCount + maxEdgeCount]; 

 unsigned short *nextEdge = firstEdge + vertexCount; 

 

 for (long a = 0; a < vertexCount; a++) firstEdge[a] = 0xFFFF; 

 

 // First pass over all triangles. This finds all the edges satisfying 

 // the condition that the first vertex index is less than the second  

 // vertex index when the direction from the first vertex to the second  

 // vertex representsa counterclockwise winding around the triangle to  

 // which the edge belongs. For each edge found, the edge index is 

 // stored in a linked list of edges belonging to the lower-numbered 

 // vertex index i. This allows us to quickly find an edge in the second 

 // pass whose higher-numbered vertex index is i. 

 

 long edgeCount = 0; 

 const Triangle *triangle = triangleArray; 

 for (long a = 0; a < triangleCount; a++) 

 { 

  long i1 = triangle->index[2]; 

  for (long b = 0; b < 3; b++) 

  { 

   long i2 = triangle->index[b]; 

   if (i1 < i2) 

   { 

    Edge *edge = &edgeArray[edgeCount]; 

 

    edge->vertexIndex[0] = (unsigned short) i1; 

    edge->vertexIndex[1] = (unsigned short) i2; 

    edge->faceIndex[0] = (unsigned short) a; 

    edge->faceIndex[1] = (unsigned short) a; 

 

    long edgeIndex = firstEdge[i1]; 

    if (edgeIndex == 0xFFFF) 

    { 

     firstEdge[i1] = edgeCount; 

    } 

    else 

    { 

     for (;;) 
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     { 

      long index = nextEdge[edgeIndex]; 

      if (index == 0xFFFF) 

      { 

       nextEdge[edgeIndex] = edgeCount; 

       break; 

      } 

 

      edgeIndex = index; 

     } 

    } 

 

    nextEdge[edgeCount] = 0xFFFF; 

    edgeCount++; 

   } 

 

   i1 = i2; 

  } 

 

  triangle++; 

 } 

 

 // Second pass over all triangles. This finds all the edges satisfying  

 // the condition that the first vertex index is greater than the second  

 // vertex index when the direction from the first vertex to the second  

 // vertex represents a counterclockwise winding around the triangle to 

 // which the edge belongs. For each of these edges, the same edge should 

 // have already been found in the first pass for a different triangle.  

 // So we search the list of edges for the higher-numbered vertex index 

 // for the matching edge and fill in the second triangle index. The 

 // maximum number of comparisons in this search for any vertex is the 

 // number of edges having that vertex as an endpoint. 

 

 triangle = triangleArray; 

 for (long a = 0; a < triangleCount; a++) 

 { 

  long i1 = triangle->index[2]; 

  for (long b = 0; b < 3; b++) 

  { 

   long i2 = triangle->index[b]; 
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   if (i1 > i2) 

   { 

    for (long edgeIndex = firstEdge[i2]; edgeIndex != 0xFFFF; 

     edgeIndex = nextEdge[edgeIndex]) 

    { 

     Edge *edge = &edgeArray[edgeIndex]; 

     if ((edge->vertexIndex[1] == i1) && 

      (edge->faceIndex[0] == edge->faceIndex[1])) 

     { 

      edge->faceIndex[1] = (unsigned short) a; 

      break; 

     } 

    } 

   } 

 

   i1 = i2; 

  } 

 

  triangle++; 

 } 

 

 delete[] firstEdge; 

 return (edgeCount); 

} 

10.3.4  Shadow Volume Construction 

Once the set of an object’s silhouette edges has been determined with respect to a 
light source, we must extrude each edge away from the light’s position to form 
the object’s shadow volume. Such an extrusion may be accomplished by making 
use of widely available vertex programming hardware exposed by shading lan-
guages such as GLSL. 
 For a point light source, the extrusion of the silhouette edges consists of a set 
of quads, each of which has the two unmodified vertices belonging to an edge 
and two additional vertices corresponding to the extrusion of the same edge to 
infinity. For an infinite directional light source, all points project to the same 
point at infinity, so the extrusion of the silhouette edges can be represented by a 
set of triangles that all share a common vertex. We distinguish between points 
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that should be treated normally and those that should be extruded to infinity by 
using 4D homogeneous coordinates. A w coordinate of 1 is assigned to the un-
modified vertices and a w coordinate of 0 is assigned to the extruded vertices. 
The vertex program performing the extrusion utilizes the information stored in 
the w coordinate to perform the appropriate vertex modifications. 
 Before we examine the extrusion method, we must prepare the appropriate 
quad list or triangle list (depending on whether we are using a point light or infi-
nite directional light). We need to make sure that the vertices of each extrusion 
primitive are wound so that the face’s normal direction points out of the shadow 
volume. Suppose that a silhouette edge E has endpoints A and B. The edge-
finding code presented in Listing 10.1 associates the triangle for which the verti-
ces A and B occur in counterclockwise order as the first triangle sharing the edge 
E. Thus, if the first triangle faces toward the light source, then we want the verti-
ces A and B to occur in the opposite order for the extruded primitive so that its 
vertices are wound counterclockwise. If the first triangle faces away from the 
light source, then we use the vertices A and B in the same order for the extruded 
primitive. Table 10.1 lists the vertices of the extrusion of the edge E for point 
light sources and infinite directional light sources for the cases that the first trian-
gle associated with the edge E faces toward or away from the light source. 
 
 
 

Facing of First 
Triangle 

Point Light Source 
(Extrusion is a list of 
quads) 

Infinite Light Source 
(Extrusion is a list of tri-
angles) 

Toward light 
source 

1 , , ,1x y zB B B=V  
2 , , ,1x y zA A A=V  
3 , , ,0x y zA A A=V  
4 , , ,0x y zB B B=V  

1 , , ,1x y zB B B=V  
2 , , ,1x y zA A A=V  
3 0,0,0,0=V  

Away from light 
source 

1 , , ,1x y zA A A=V  
2 , , ,1x y zB B B=V  
3 , , ,0x y zB B B=V  
4 , , ,0x y zA A A=V  

1 , , ,1x y zA A A=V  
2 , , ,1x y zB B B=V  
3 0,0,0,0=V  

Table 10.1. Given a silhouette edge E having endpoints A and B, this table lists the ob-
ject-space vertices of the extruded shadow volume face corresponding to E. The first tri-
angle associated with the edge E is the triangle for which the vertices A and B occur in 
counterclockwise order. 
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 We can write a couple of simple vertex shaders to perform edge extrusion 
and transformation to clip space. In each of the shaders that follow, we assume 
that we have access to a uniform variable named mvpMatrix containing the four 
rows of the product of the projection matrix and model-view matrix and another 
uniform variable named lightPosition containing the object-space light 
position. 
 The vertex shader shown in Listing 10.2 demonstrates a safe way to extrude 
vertices away from a point light source, where by “safe”, we mean that it is im-
mune to floating-point round-off errors. A similar vertex shader for infinite light 
sources is shown in Listing 10.3. 

Listing 10.2. This vertex shader extrudes vertices having a w coordinate of 0 away from a point 
light source and leaves vertices having a w coordinate of 1 unchanged. Vertex positions are then 
transformed into homogeneous clip space. 

in vec4    vertexPosition; // The object-space vertex position. 

uniform vec4  mvpMatrix[4];  // The model-view-projection matrix. 

uniform vec3  lightPosition;  // The object-space light position. 

 

void main() 

{ 

 float t = (vertexPosition.w < 0.5) ? 1.0 : 0.0; 

 vec4 extrudedPosition = vec4(vertexPosition.xyz - lightPosition * t, 

          vertexPosition.w); 

 

 gl_Position = vec4(dot(mvpMatrix[0], extrudedPosition), 

   dot(mvpMatrix[1], extrudedPosition), 

   dot(mvpMatrix[2], extrudedPosition), 

   dot(mvpMatrix[3], extrudedPosition)); 

} 

Listing 10.3. This vertex shader extrudes vertices having a w coordinate of 0 away from an 
infinite light source and leaves vertices having a w coordinate of 1 unchanged. Vertex positions 
are then transformed into homogeneous clip space. 

in vec4    vertexPosition; // The object-space vertex position. 

uniform vec4  mvpMatrix[4];  // The model-view-projection matrix. 

uniform vec3  lightDirection; // The object-space light direction. 
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void main() 

{ 

 float t = (vertexPosition.w < 0.5) ? 1.0 : 0.0; 

 vec4 extrudedPosition = 

  vec4(vertexPosition.xyz + lightDirection, vertexPosition.w); 

 extrudedPosition = vertexPosition - extrudedPosition * t; 

 

 gl_Position = vec4(dot(mvpMatrix[0], extrudedPosition), 

   dot(mvpMatrix[1], extrudedPosition), 

   dot(mvpMatrix[2], extrudedPosition), 

   dot(mvpMatrix[3], extrudedPosition)); 

} 

 In the case that shadow volume caps must be rendered for a point light 
source (see the next section), a vertex shader similar to the one in Listing 10.2 
should be used to transform vertices belonging to triangles that face away from 
the light. As demonstrated in Listing 10.4, extruded cap vertices can be obtained 
by simply subtracting the x, y, and z coordinates of the light’s position from the 
vertex’s position and assuming that the result has a w coordinate of 0. As shown 
in Figure 10.11, the silhouette extrusion for an infinite light source always comes 
to a point, so caps are never necessary. 

Listing 10.4. This vertex shader extrudes vertices belonging to a shadow volume cap away from a 
point light source. (Note that the extruded position is only a three-dimensional vector here.) Vertex 
positions are then transformed into homogeneous clip space. 

in vec4    vertexPosition; // The object-space vertex position. 

uniform vec4  mvpMatrix[4];  // The model-view-projection matrix. 

uniform vec3  lightPosition;  // The object-space light position. 

 

void main() 

{ 

 vec3 extrudedPosition = vertexPosition.xyz - lightPosition; 

 

 gl_Position = vec4(dot(mvpMatrix[0].xyz, extrudedPosition), 

   dot(mvpMatrix[1].xyz, extrudedPosition), 

   dot(mvpMatrix[2].xyz, extrudedPosition), 

   dot(mvpMatrix[3].xyz, extrudedPosition)); 

} 
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Figure 10.11. A cylinder illuminated by an infinite light source and the shadow volume 
formed by the extrusion of its silhouette. (Image from the C4 Engine, courtesy of Tera-
thon Software LLC.) 

10.3.5  Determining Cap Necessity 

As mentioned earlier, a completely closed shadow volume having a front cap and 
a back cap must be rendered whenever the camera lies inside the shadow volume, 
or the faces of the silhouette extrusion could potentially be clipped by the near 
plane. We wish to render this more expensive shadow volume as infrequently as 
possible, so a test for determining when it is not necessary would be useful. 
 The near rectangle is the rectangle carved out of the near plane by the four 
side planes of the view frustum. As shown in Figure 10.12, we can devise a test 
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to determine whether the shadow volume might be clipped by the near plane by 
constructing the set of planes that connect the boundary of the near rectangle to 
the light source. We call the volume of space bounded by these planes and by the 
near plane itself the near-clip volume. Only a point inside the near-clip volume 
can have an extrusion away from the light source that intersects the near rectan-
gle. Thus, if an object is known to lie completely outside the near-clip volume, 
then we do not have to render a capped shadow volume. 
 When constructing the near-clip volume, we consider three cases: 1) the light 
source lies in front of the near plane, 2) the light source lies behind the near 
plane, and 3) the light source is very close to lying in the near plane. Let W be 
the transformation matrix that maps eye space to world space, and suppose that 
our light source lies at the 4D homogeneous point L in world space. We consider 
a point light source (for which 1wL = ) to be lying in the near plane if its distance 
to the near plane is at most some small positive value δ. For an infinite direction-
al light source (for which 0wL = ), we consider the distance to the near plane to be 
the length of the projection of the light’s normalized direction vector , ,x y zL L L  
onto the near plane’s normal direction. In either case, we can obtain a signed dis-
tance d from the light source to the near plane by calculating 

 ( )1 0,0, 1,d n−= ⋅ − −W L . (10.16) 

L

C

n

 
Figure 10.12. The near-clip volume is bounded by the planes connecting the near rectan-
gle to the light position L. If an object lies completely outside the near-clip volume, then 
its shadow volume cannot intersect the near rectangle, so it is safe to render it without 
caps. 
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If d δ> , then the light source lies in front of the near plane; if d δ< − , then the 
light source lies behind the near plane; otherwise, the light source lies in the near 
plane. 
 In the case that the light source lies in the near plane, the near-clip volume is 
defined by the planes 0 0,0, 1, n= − −K  and 1 0,0,1,n=K . These two planes are 
coincident but have opposite normal directions. This encloses a degenerate near-
clip volume, so testing whether an object is outside the volume amounts to de-
termining whether the object intersects the near plane. 
 If the light source does not lie in the near plane, we need to calculate the ver-
tices of the near rectangle. In eye space, the points 0R , 1R , 2R , and 3R  at the four 
corners of the near rectangle are given by 

 

0

1

2

3

, ,
, ,
, ,

, , ,

n e an e n
n e an e n
n e an e n

n e an e n

= −
= − −
= − − −
= − −

R

R

R

R  (10.17) 

where n is the distance from the camera to the near plane; a is the aspect ratio of 
the viewport, equal to its height divided by its width; and e is the camera’s focal 
length, related to the horizontal field-of-view angle α by Equation (5.27). These 
four points are ordered counterclockwise from the camera’s perspective. For a 
light source lying in front of the near plane, the world-space normal directions 

iN , where 0 3i≤ ≤ , are given by the cross products 

 ( )( ) ( )1 mod 4 , ,i i x y z w ii L L L L−′ ′ ′= − × −N R R R , (10.18) 

where each i′R  is the world-space vertex of the near rectangle given by 
i i′ =R WR . For a light source lying behind the near plane, the normal directions 

are simply the negation of those given by Equation (10.18). The corresponding 
world-space planes iK  bounding the near-clip volume are given by 

 ( ) ( ) ( )1 , , ,i i x i y i z i i
i

′= − ⋅K N N N N R
N

. (10.19) 

We close the near-clip volume by adding a fifth plane that is coincident with the 
near plane and has a normal pointing toward the light source. For a light source 
lying in front on the near plane, the fifth plane 4K  is given by 

 ( )1 T
4 0,0, 1, n−= − −K W , (10.20) 
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and for a light source lying behind the near plane, the fifth plane is given by the 
negation of this vector. (Remember that if W is orthogonal, then ( )1 T− =W W.) 
 We determine whether a shadow-casting object lies completely outside the 
near-clip volume by testing the object’s bounding volume against each of the 
planes iK . If the bounding volume lies completely on the negative side of any 
one plane, then the object’s shadow volume cannot intersect the near rectangle. 
In the case that an object is bounded by a sphere having center C and radius r, we 
do not need to render a capped shadow volume if i r⋅ < −K C  for any i. 
 Figure 10.13 demonstrates that for point light sources, bounding volumes 
lying behind the light source from the camera’s perspective may often be mistak-
en for those belonging to objects that might cast shadows through the near rec-
tangle. This happens when the bounding volume lies outside the near-clip vol-
ume, but does not fall completely on the negative side of any one plane. We can 
improve this situation substantially by adding an extra plane to the near-clip vol-
ume for point lights. As shown in Figure 10.13, the extra plane contains the light 
position L and has a normal direction that points toward the center of the near 
rectangle. The normal direction 5N  is given by 

 ( )1 T
5 0,0, ,1n−= − −N W L, (10.21) 

L L

(a) (b)

 
Figure 10.13. (a) The near-clip volumes tends to be somewhat thin, so objects behind the 
light source are sometimes not excluded by plane tests. (b) Adding an extra plane to the 
near-clip volume for point light sources enables more objects to be classified as outside 
the near-clip volume. 
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and the corresponding plane 5K  is given by 

 ( ) ( ) ( )5 5 5 5 5
5

1 , , ,x y z= − ⋅K N N N N L
N

. (10.22) 

The plane 5K  is added to the near-clip volume boundary for point light sources 
regardless of whether the light position is in front of, behind, or in the near plane. 

10.3.6  Rendering Shadow Volumes 

Now that we can determine an object’s silhouette with respect to a light source, 
construct a shadow volume by extruding the silhouette edges away from the light 
source, and decide whether front and back caps are necessary, we are finally 
ready to render the shadow volume into the stencil buffer. We assume that the 
frame buffer has already been cleared and that an ambient rendering pass (or a 
depth-only pass) has been performed to initialize the depth buffer. This section 
concentrates on the operations necessary to illuminate the scene using a single 
light source, and these operations should be repeated for all light sources that can 
affect the visible region of the world being rendered. 
 First, we must clear the stencil buffer, configure the stencil test so that it al-
ways passes, and configure the depth test so that it passes only when fragment 
depth values are less than those already in the depth buffer. This can be done in 
OpenGL using the following function calls. 

glClear(GL_STENCIL_BUFFER_BIT); 

glEnable(GL_STENCIL_TEST); 

glStencilFunc(GL_ALWAYS, 0, ~0); 

glEnable(GL_DEPTH_TEST); 

glDepthFunc(GL_LESS); 

We are only going to be drawing into the stencil buffer, so we need to disable 
writes to the color buffer and depth buffer as follows. 

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); 

glDepthMask(GL_FALSE); 

Shadow volume faces are rendered using different stencil operations depending 
on whether they face toward or away from the camera, and modern graphics 
hardware can be configured to perform different operations for front-facing and 
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back-facing polygons.5 So that no faces are skipped even when they face away 
from the camera, we make the following call to disable face culling. 

glDisable(GL_CULL_FACE); 

 For a shadow volume that does not require capping because it cannot possi-
bly intersect the near rectangle, we modify the values in the stencil buffer when 
the depth test passes. The stencil value is incremented for fragments belonging to 
front-facing polygons and is decremented for fragments belonging to back-facing 
polygons. These operations are performed by the following function calls, where 
the DrawShadowVolume() function renders all of the polygons belonging to the 
shadow volume. 

glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR_WRAP); 

glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR_WRAP); 

DrawShadowVolume(); 

 If a shadow volume does require capping, then we modify the values in the 
stencil buffer when the depth test fails. The stencil value is incremented for 
fragments belonging to back-facing polygons and is decremented for fragments 
belonging to front-facing polygons (the opposite of the depth-pass operations). 
These operations are accomplished using the following function calls. In this 
case, the DrawShadowVolume() function renders the polygons belonging to the 
shadow volume’s caps as well as its extruded silhouette edges. 

glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_DECR_WRAP); 

glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_INCR_WRAP); 

DrawShadowVolume(); 

 Once shadow volumes have been rendered for all objects that could poten-
tially cast shadows into the visible region of the world, we perform a lighting 
pass that illuminates surfaces wherever the stencil value remains zero. We re-
enable writes to the color buffer, re-enable face culling, change the depth test to 
pass only when fragment depth values are equal to those in the depth buffer, and 

                                                      
5 Two-sided stencil operations became a core feature of OpenGL in version 2.0. Previ-
ously, the same functionality was available through the GL_EXT_stencil_two_side 
and GL_ATI_separate_stencil extensions. 
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configure the stencil test to pass only when the value in the stencil buffer is zero 
using the following function calls. 

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); 

glEnable(GL_CULL_FACE); 

glDepthFunc(GL_EQUAL); 

glStencilFunc(GL_EQUAL, 0, ~0); 

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); 

Since the lighting pass adds to the ambient illumination already present in the 
color buffer, we need to configure the blending function as follows. 

glEnable(GL_BLEND); 

glBlendFunc(GL_ONE, GL_ONE); 

After the lighting pass has been rendered, we clean up by resetting a few render-
ing states back to those needed by the ambient pass for the next frame using the 
following function calls. 

glDepthMask(GL_TRUE); 

glDepthFunc(GL_LEQUAL); 

glStencilFunc(GL_ALWAYS, 0, ~0); 

10.3.7  Scissor Optimization 

When using an attenuated light source, it is usually convenient to define a range r 
beyond which the light source does not contribute any illumination to the world. 
Although this is not a physically correct model, using an attenuation function that 
vanishes at a distance r from the light’s position allows us to quickly cull any 
light source whose sphere of illumination does not intersect the view frustum. 
When a light source’s sphere of illumination is visible, the area within the view-
port that could possibility be affected by the light source may not be the entire 
viewport. By projecting the sphere of illumination to the image plane and using 
the scissor rectangle to limit our drawing to the projected area of influence, we 
can avoid a significant amount of superfluous rendering of both shadow volumes 
and illuminated surfaces. 
 Suppose that we have a point light source whose center lies at the point L in 
eye space and whose range is r, as shown in Figure 10.14. We wish to find four 
planes, two parallel to the x axis and two parallel to the y axis, that pass through 
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Figure 10.14. For a point light source at the position L having range r, we calculate the 
four planes that pass through the camera position C and are tangent to the light’s sphere 
of illumination. By calculating the intersection of each tangent plane with the image 
plane lying at a distance e from the camera, we can limit our drawing to an area smaller 
than the full size of the viewport. 

the camera position (the origin in eye space) and are also tangent to the light 
source’s bounding sphere. Once these planes have been determined, we can lo-
cate their intersections with the image plane to find the rectangular boundary of 
the projection of the light source’s bounding sphere. 
 We assume that the tangent planes parallel to the y axis have a unit-length 
normal vector N whose y coordinate is 0. Since the planes pass through the 
origin, each can be represented by a 4D vector ,0, ,0x zN N=T . We wish to cal-
culate values of xN  and zN  such that the following conditions are satisfied. 

 r⋅ =T L  (10.23) 

 2 2 1x zN N+ =  (10.24) 
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By expanding the dot product and rearranging slightly, we can rewrite Equation 
(10.23) as 

 z z x xN L r N L= − . (10.25) 

Squaring both sides of Equation (10.25) and making the substitution 2 21z xN N= − , 
we have 

 ( )2 2 2 2 21 2x z x x x xN L r rN L N L− = − + . (10.26) 

This can be rewritten as a quadratic equation in xN  as follows. 

 ( ) ( )2 2 2 2 22 0x z x x x zL L N rL N r L+ + − + − =  (10.27) 

The discriminant D is given by 

 ( )( )2 2 2 2 2 24 x x z zD r L L L r L= − + −  . (10.28) 

0D ≤  precisely when 2 2 2
x zL L r+ ≤  (i.e., when the origin falls within the parallel 

projection of the sphere onto the x-z plane). When this happens, we know the 
light source’s bounding sphere fills the entire viewport, and we do not continue. 
 If 0D > , then we can solve Equation (10.27) using the quadratic formula to 
obtain 

 

( )2 2

2 2

2
2

4

x
x

x z

x

x z

rL DN
L L

rL D
L L

±=
+

±=
+

. (10.29) 

This gives us two values for xN . The corresponding values for zN  are calculated 
by making a small adjustment to Equation (10.25): 

 x x
z

z

r N LN
L

−= . (10.30) 

 The point P at which the plane T is tangent to the sphere is simply given by 

 ,0, ,1x x z z

r
L rN L rN

= −
= − −

P L N

. (10.31) 
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We only want to consider planes whose point of tangency with the light source’s 
bounding sphere lies in front of the camera. If 0zP < , then we have found a plane 
that may allow us to shrink the scissor rectangle. We now need to determine 
where the tangent plane intersects the image plane. 
 As shown in Figure 10.14, the image plane is perpendicular to the z axis and 
lies at a distance e from the camera. On the image plane, the area of the viewport 
corresponds to x coordinates in the range [ ]1,1−  and y coordinates in the range 
[ ],a a− , where a is the aspect ratio given by the height of the viewport divided by 
its width. Any point Q lying in the image plane has coordinates , ,x y e= −Q . A 
point Q lying in the plane tangent to the light source’s bounding sphere satisfies 

0⋅ =N Q , so we can solve for x: 

 z

x

N ex
N

= . (10.32) 

This x coordinate can be mapped to the viewport coordinate x′ using the formula 

 1
2

xx l w+′ = + , (10.33) 

where l is the left edge of the viewport and w is the viewport’s width, both in 
pixels. 
 Given a value x′ calculated using Equation (10.33), we need to determine 
whether it represents a left-side boundary or a right-side boundary. If x xP L<  (or 
equivalently, if 0xN > ), then x′ represents a left-side boundary because the point 
of tangency falls to the left of the light source. If x xP L> , then x′ represents a 
right-side boundary. Since the value x′ may lie outside the viewport (if 

[ ]1,1x ∉ − ), we calculate the left and right edges of the scissor rectangle as 
follows. 

 
( )
( )

. max ,
. min ,

scissor left x l
scissor right x l w

′=
′= +

 (10.34) 

 The two tangent planes parallel to the x axis are found in an almost identical 
manner. Each of these planes is represented by a 4D vector 0, , ,0y zN N , whose 
nonzero components are given by the following formulas. 

 
( )( )2 2 2 2 2 2

2 2
y y y z z

y
y z

rL r L L L r L
N

L L
± − + −

=
+
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 y y
z

z

r N LN
L

−
=  (10.35) 

The point of tangency P is given by 

 0, , ,1y y z zL rN L rN= − −P . (10.36) 

If 0zP < , then the y coordinate where each plane intersects the image plane is 
given by 

 z

y

N ey
N a

= , (10.37) 

where the viewport’s aspect ratio a has been added to the denominator. Finally, 
the viewport coordinate y′ is calculated using the formula 

 1
2

yy b h+′ = + , (10.38) 

where b is the bottom edge of the viewport and h is the viewport’s height, both in 
pixels. 
 If y yP L<  (or equivalently, if 0yN > ), then y′ represents a bottom-side 
boundary. If y yP L> , then y′ represents a top-side boundary. As with the left and 
right sides, the values of y′ should be clamped to the viewport’s range as follows. 

 
( )
( )

. max ,
. min ,

scissor bottom y b
scissor top y b h

′=
′= +

 (10.39) 

 Using the values given by Equations (10.34) and (10.39), the OpenGL scis-
sor rectangle is enabled and set to the appropriate values using the following 
function calls. 

glEnable(GL_SCISSOR_TEST); 

glScissor(scissor.left, scissor.bottom, 

  scissor.right - scissor.left, scissor.top - scissor.bottom); 

The scissor rectangle affects the clear operation as well, so once rendering has 
been completed, scissor test should either be disabled or the scissor rectangle 
should set back to the entire viewport rectangle by making the following call. 

glScissor(l, b, w, h); 
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Chapter 10 Summary 

Shadow Mapping 

A shadow map is generated by placing the camera at the light position, orienting 
it to the direction of the light, and using the projection matrix 

 

max min

max min max min

max min

max min max min
proj

max

2 0 0

20 0

20 0 1

0 0 0 1

x x
x x x x

y y
y y y y

z

+ − − −
 

+ − − − =
 − − 
 
 
  

M , 

where [ ]min max,x x  and [ ]min max,y y  are the extents of the light-space-aligned 
bounding box for the shadow casting region, and maxz  is the z coordinate repre-
senting the maximum depth of the bounding box. 

Silhouette Determination 

An edge shared by two triangles lying in the planes 1F  and 2F  is part of an ob-
ject’s silhouette with respect to the light position L if the dot products 1 ⋅F L and 

2 ⋅F L have opposite signs. For point light sources, 0wL ≠ , and for infinite direc-
tional light sources, 0wL = . 

Shadow Volume Construction 

The vertices of a silhouette edge E having endpoints A and B are listed in Table 
10.1. For a point light source at the position L (where 1wL = ), an edge vertex V is 
extruded using the formula 

 , , ,0w x x y y z zV V L V L V L′ = + − − −V L . 

For an infinite light source at the position L (where 0wL = ), an edge vertex V is 
extruded using the formula 

 ( )wV′ = + −V V L L. 
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Determining Cap Necessity 

The near-clip volume is bounded by the planes connecting the near rectangle to 
the world-space light position L. The four world-space normal directions iN  for 
the near-clip volume are given by 

 ( )( ) ( )1 mod 4 , ,i i x y z w ii L L L L−′ ′ ′= − × −N R R R , 

where each i′R  is the world-space vertex of the near rectangle given by 
i i′ =R WR , W is the transformation from camera space to world space, and the 

values of iR  are given by Equation (10.17). The corresponding world-space 
planes iK  bounding the near-clip volume are given by 

 ( ) ( ) ( )1 , , ,i i x i y i z i i
i

′= − ⋅K N N N N R
N

. 

The near-clip volume is closed by adding a fifth plane that is coincident with the 
near plane and has a normal pointing toward the light source. For a light source 
lying in front on the near plane, the fifth plane 4K  is given by 

 ( )1 T
4 0,0, 1, n−= − −K W . 

For an object that is bounded by a sphere having center C and radius r, we do not 
need to render a capped shadow volume if i r⋅ < −K C  for any i. 

Exercises for Chapter 10 

1. Use a technique similar to that described in Section 9.1 to derive the ( )3,3  
entry of a projection matrix based on the matrix infinite′M  given by Equation 
(10.10) that offsets depth values at a camera-space depth zP  by a small 
amount δ. 

2. Write a program that renders a stencil shadow for a triangle mesh illuminat-
ed by a single point light source. Assume that the triangle mesh is specified 
such that each of n triangles indexes three entries in an array of m vertices. 
The program should precalculate an edge list, determine the edges belonging 
to the model’s silhouette with respect to the light source, and render the ex-
truded silhouette edges using the stencil buffer operations described in Sec-
tion 10.3.6. 
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Chapter 11 

Curves and Surfaces 

Curved geometry has become commonplace in 3D graphics engines due to mod-
ern hardware’s ability to render the high number of vertices and faces needed to 
convincingly render smoothly varying surfaces. In addition to geometrical mod-
eling, curves may be employed as paths along which certain objects travel. This 
chapter examines several classes of three-dimensional cubic curves and then dis-
cusses how they can be used to produce bicubic parametric surfaces. 

11.1  Cubic Curves 

Due to the balance that they possess between simplicity and flexibility, curves 
defined by cubic polynomials have earned widespread use by computer graphics 
applications. In the sections that follow, we examine several classes of cubic 
curves and compare their properties. 
 The fundamental form of a cubic curve is given by the parametric repre-
sentation 

 ( ) 2 3t t t t= + + +Q a b c d , (11.1) 

where a, b, c, and d are constant vectors, and ( )tQ  is the point on the curve cor-
responding to the parameter value t. Writing the components of ( )tQ  separately, 
we have 

 

( )
( )
( )

2 3

2 3

2 3.

x x x x x

y y y y y

z z z z z

Q t a b t c t d t
Q t a b t c t d t

Q t a b t c t d t

= + + +

= + + +

= + + +  (11.2) 

It is convenient for us to write this as the following matrix product. 
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 ( ) 2

3

1
x x x x

y y y y

z z z z

a b c d
t

t a b c d
t

a b c d
t

 
   
   =    
    

 

Q  (11.3) 

Using a more compact notation, we can write 

 ( ) ( )t t=Q CT , (11.4) 

where C represents the matrix of coefficients and ( ) 2 31, , ,t t t t≡T . The deriva-
tive of ( )tQ , which gives the tangent direction to the curve at t, is easy to calcu-
late in this form since the matrix C is constant. Thus, we can write 

 ( ) ( )
2

0
1
2

3

dt t
tdt

t

 
 
 ′ = =
 
 
 

Q C T C . (11.5) 

 A long, curving path is generally composed of several smaller cubic “pieces” 
that are connected together at their endpoints. At the points where two adjacent 
pieces of a curve join together, there are the notions of parametric continuity and 
geometric continuity. The symbol nC  is used to represent n-th order parametric 
continuity, and the symbol nG  is used to represent n-th order geometric continui-
ty. The two curves are said to have 1C  continuity if their tangent vectors are equal 
in both magnitude and direction at the join point. If the tangent vectors point in 
the same direction but have different magnitudes, then the curves have 1G  conti-
nuity. In general, two curves meet with nC  continuity if their n-th derivatives are 
equal, and two curves meet with nG  continuity if their n-th derivatives are non-
zero and point in the same direction but do not have the same magnitude. nC  con-
tinuity implies nG  continuity unless the n-th derivatives are zero. 0C  and 0G  con-
tinuity are equivalent and simply mean that the curves share a common endpoint. 
 The classes of cubic curves that we examine in this chapter are defined in 
terms of certain geometrical constraints such as the endpoint positions (i.e., the 
values of ( )tQ  at 0t =  and 1t = ) or endpoint tangent directions (i.e., the values of 

( )t′Q  at 0t =  and 1t = ). Since an arbitrary cubic curve has four coefficients, we 
need four constraints in order to define a particular curve. Calling these con-
straints 1g , 2g , 3g , and 4g , we can express the curve ( )tQ  as 
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( ) ( )
( )
( )
( )

2 3
1 1 1 1 1

2 3
2 2 2 2 2

2 3
3 3 3 3 3

2 3
4 4 4 4 4

t a b t c t d t

a b t c t d t

a b t c t d t

a b t c t d t

= + + +

+ + + +

+ + + +

+ + + +

Q g

g

g

g . (11.6) 

This is simply a weighted sum of the four geometrical constraints. The polyno-
mials 2 3

i i i ia b t c t d t+ + +  are called the blending functions. Equation (11.6) can 
be written in matrix form as 

 ( ) [ ]

1 1 1 1

2 2 2 2
1 2 3 4 2

3 3 3 3
3

4 4 4 4

1a b c d
a b c d t

t
a b c d t
a b c d t

   
   
   =
   
   
   

Q g g g g . (11.7) 

We can write this more compactly as 

 ( ) ( )t t=Q GMT , (11.8) 

where the matrix G defined by 

 [ ]
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

x x x x

y y y y

z z z z

 
 = =  
  

g g g g

G g g g g g g g g

g g g g

 (11.9) 

is called the geometry matrix, and the 4 4×  matrix M defined by 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

a b c d
a b c d
a b c d
a b c d

 
 
 =
 
 
 

M  (11.10) 

is called the basis matrix. In most of the discussions that follow, there is a con-
stant basis matrix M pertaining to each class of cubic curve, and the shapes of 
particular curves in each class are determined solely by the geometry matrix G. 
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11.2  Hermite Curves 

A cubic Hermite curve is defined by two endpoints 1P  and 2P , and the tangent 
directions 1T  and 2T  at those endpoints. Using these four quantities to define the 
geometry matrix, we can express a Hermite curve ( )tH  as 

 ( ) [ ]1 2 1 2 2

3

1

H
t

t
t
t

 
 
 =
 
 
 

H P P T T M , (11.11) 

where HM  is a 4 4×  basis matrix that we need to determine. The geometry matrix 
is [ ]1 2 1 2H =G P P T T . By imposing the geometrical constraints, we obtain 
the four equations 

 

( ) [ ]
( ) [ ]
( ) [ ]
( ) [ ]

1 2 1 2 1

1 2 1 2 2

1 2 1 2 1

1 2 1 2 2

0 1,0,0,0
1 1,1,1,1
0 0,1,0,0
1 0,1,2,3

H

H

H

H

= =
= =

′ = =
′ = =

H P P T T M P

H P P T T M P

H P P T T M T

H P P T T M T . (11.12) 

Writing this as the single equation 

 [ ] [ ]1 2 1 2 1 2 1 2

1 1 0 0
0 1 1 1
0 1 0 2
0 1 0 3

H

 
 
  =
 
 
 

P P T T M P P T T , (11.13) 

we deduce that HM  must be given by 

 

11 1 0 0 1 0 3 2
0 1 1 1 0 0 3 2
0 1 0 2 0 1 2 1
0 1 0 3 0 0 1 1

H

− −   
   −   = =

−   
   −   

M . (11.14) 

 The basis matrix HM  provides the coefficients of the blending functions, al-
lowing us to write the Hermite curve as the weighted sum of the geometrical con-
straints 1P , 2P , 1T , and 2T : 

 ( ) ( ) ( ) ( ) ( )2 3 2 2 2
1 2 1 21 3 2 3 2 1 1t t t t t t t t t= − + + − + − + −H P P T T . (11.15) 
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The blending functions are shown in Figure 11.1. As expected, only the weight 
corresponding to 1P  is nonzero at 0t = , and only the weight corresponding to 2P  is 
nonzero at 1t = . 
 Figure 11.2 shows two Hermite curves ( )1 tH  and ( )2 tH  that share a common 
endpoint. If the geometry matrix corresponding to the curve ( )1 tH  is given by 
[ ]1 2 1 2P P T T , then 1G  continuity is achieved if the geometry matrix for the 
curve ( )2 tH  is equal to [ ]2 3 2 3uP P T T  with 0u > , and 1C  continuity is 
achieved if 1u = . 

t

1

10
( )2 1t t−

( )21t t−

( )2 3 2t t−

2 31 3 2t t− +

 
Figure 11.1. Blending functions for the Hermite class of cubic curves. 

2u− T

2T

1−T

3T
1P

2P

3P

( )1 tH

( )2 tH

 
Figure 11.2. Two Hermite curves sharing the endpoint 2P . 
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11.3  Bézier Curves 

Although we shall limit ourselves to studying the cubic variety, a Bézier (pro-
nounced BAY-ZEE-AY) curve can be defined for any polynomial degree n. Giv-
en 1n +  points 0 1, , , nP P P , called the control points of the curve, the degree n 
Bézier curve ( )tB  is given by the parametric function 

 ( ) ( ),
0

n

n k k
k

t B t
=

=B P , (11.16) 

where the blending functions ( ),n kB t  are the Bernstein polynomials defined by 

 ( ), 1 n kk
n k

n
B t t

k
− = − 

 
 (11.17) 

with the binomial coefficient 

 
( )

!
! !

n n
k k n k
  =  − 

. (11.18) 

The first and last control points, 0P  and nP , are interpolated by the curve, and the 
interior control points 1 2 1, , , n−P P P  are approximated by the curve. The Bern-
stein polynomials can be generated by the recurrence relation 

 ( ) ( ), 1, 1 1,1n k n k n kB t t B tB− − −= − + , (11.19) 

where 0,0 1B = , and , 0n kB =  whenever 0k <  or k n> . As shown in Figure 11.3, 
this recurrence resembles Pascal’s triangle, but with the modification that each 
value is the weighted average of the two closest values above it instead of the 
sum. 

11.3.1  Cubic Bézier Curves 

The cubic Bézier curve has four control points whose positions are blended to-
gether by evaluating Equation (11.16) for 3n = : 

 

( ) ( )

( ) ( ) ( )

3

3,
0

3 2 2 3
0 1 2 31 3 1 3 1

k k
k

t B t

t t t t t t
=

=

= − + − + − +

B P

P P P P . (11.20) 
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1
t(1 − t)

t(1 − t)

t(1 − t) t(1 − t) t(1 − t)

t(1 − t)

( )1 t− t

( )21 t− ( )2 1t t− 2t

( )31 t− ( )23 1t t− ( )23 1t t− 3t  
Figure 11.3. The Bernstein polynomials, generated by the recurrence relation given in 
Equation (11.19), can be calculated using a method similar to that used to calculate bi-
nomial coefficients in Pascal’s triangle. Each value is the weighted average of the two 
closest values above it, where the weights are t and 1 t− . (For values on the left and right 
edges of the triangle, the missing value above it is assumed to be zero.) 

The geometry matrix for a cubic Bézier curve is [ ]0 1 2 3B =G P P P P . From 
Equation (11.20), we can derive the basis matrix BM  for the cubic Bézier curve 
and write ( )tB  as follows. 

 ( ) [ ]0 1 2 3 2

3

1 3 3 1 1
0 3 6 3
0 0 3 3
0 0 0 1

t
t

t
t

− −   
   −   =

−   
   
   

B P P P P  (11.21) 

 The four Bernstein polynomials appearing in Equation (11.20) are shown in 
Figure 11.4. Since the Bézier curve interpolates the endpoints 0P  and 3P , we must 
have 

 ( )3,
1, if 0;

0
0, if 1,2,3;k

k
B

k
==  =

 (11.22) 

and 

 ( )3,
0, if 0,1,2;

1
1, if 3.k

k
B

k
==  =

 (11.23) 
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1

10

3,0B

3,1B 3,2B

3,3B

 
Figure 11.4. The blending functions for the cubic Bézier curve. The functions 3,kB  are the 
degree 3 Bernstein polynomials. 

An additional property of the Bernstein polynomials is that they sum to unity for 
all values of t: 

 ( )
3

3,
0

1k
k

B t
=

= . (11.24) 

 Figure 11.5 shows some of the shapes that a Bézier curve may assume. A 
useful property of the Bézier curve is that it is entirely contained within the con-
vex hull of its control points. That is, the smallest polyhedron containing all four 
control points of a Bézier curve ( )tB  also contains every point on the curve be-
tween 0t =  and 1t = . This is a consequence of the fact that the Bernstein polyno-
mials are nonnegative on the interval [ ]0,1  and that they sum to unity. 
 The derivative of a Bézier curve ( )tB , giving the tangent direction to the 
curve, can be expressed as 

 ( ) [ ]0 1 2 3
2

3 6 3
1

3 12 9
0 6 9
0 0 3

t t
t

− − 
  −   ′ =  − 
   

 

B P P P P . (11.25) 

Examining the derivative at 0t =  and 1t = , we find 

 
( ) ( )
( ) ( )

1 0

3 2

0 3
1 3

′ = −
′ = −

B P P

B P P . (11.26) 
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Figure 11.5. A variety of Bézier curves having control points 0P , 1P , 2P , and 3P . 

This reveals that the tangent directions at the endpoints are multiples of the dif-
ferences between the endpoints and the adjacent interior control points. This pro-
vides us with a mechanism for easily translating between the Bézier form and 
Hermite form of a cubic curve. To translate from Bézier to Hermite (where we 
are now calling the endpoints of the Hermite curve 0P  and 3P ), we simply use the 
values given by Equation (11.26) as the tangents 1T  and 2T  corresponding to the 
endpoints 0P  and 3P , respectively. To translate from Hermite to Bézier, we solve 
Equation (11.26) for the interior control points as follows. 

 

1
1 0

2
2 3

3

3

= +

= −

T
P P

T
P P  (11.27) 
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11.3.2  Bézier Curve Truncation 

Equation (11.27) is also useful for calculating the interior control points for a 
Bézier curve that exactly matches another Bézier curve on an interval [ ]0 1,t t . 
This process is called truncation and is illustrated in Figure 11.6. Suppose we 
wish to truncate a Bézier curve ( )P tB  having the control points 0P , 1P , 2P , and 3P  
to the interval [ ]0 1,t t  by creating a new Bézier curve ( )Q uB  having the control 
points 0Q , 1Q , 2Q , and 3Q . The new parameter u is related to the parameter t by 
the function 

 ( ) ( )0 1 0t u t t t u= + − . (11.28) 

The endpoints 0Q  and 3Q  of the new Bézier curve are simply 

 
( )
( )

0 0

3 1 .
P

P

t
t

=
=

Q B

Q B  (11.29) 

The interior control points 1Q  and 2Q  are obtained using Equation (11.27), but we 
must be careful to calculate the tangents with respect to the parameter u. Since 
the curves ( )P tB  and ( )Q uB  are coincident, 

0P

1P

2P

3P0Q

1Q

2Q

3Q

( )P tB

( )Q uB

 
Figure 11.6. A Bézier curve ( )P tB  having the control points 0P , 1P , 2P , and 3P  is truncat-
ed to the interval [ ]0 1,t t  to create a new Bézier curve ( )Q uB  having the control points 0Q , 

1Q , 2Q , and 3Q . 
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 ( ) ( )( )Q Pu t u=B B . 

Thus, applying the chain rule, we have 

 

( ) ( )( ) ( )

( ) ( )( )1 0 0 1 0

Q P

P

d d du t u t u
du dt du

t t t t t u

=

′= − + −

B B

B . (11.30) 

The tangents 0T  and 3T  to the curve ( )Q uB  at 0u =  and 1u =  are given by 

 
( ) ( ) ( )
( ) ( ) ( )

0 1 0 0

3 1 0 1

0
1 ,

Q P

Q P

t t t
t t t

′ ′= = −
′ ′= = −

T B B

T B B  (11.31) 

and the control points 1Q  and 2Q  are therefore 

 

( ) ( )

( ) ( )

1 00
1 0 0 0

1 03
2 3 3 1

3 3

.
3 3

P

P

t t t

t t t

− ′= + = +

− ′= − = −

T
Q Q Q B

T
Q Q Q B  (11.32) 

11.3.3  The de Casteljau Algorithm 

The de Casteljau algorithm provides a geometrical construction by which we can 
subdivide a Bézier curve into two parts at an arbitrary parameter value [ ]0,1t ∈ . 
During the construction, we obtain the four control points corresponding to both 
components of the subdivided curve.  
 Suppose that we split a Bézier curve ( )P tB  having the control points 0P , 1P , 

2P , and 3P  at the parameter value t s=  to create two new Bézier curves ( )Q uB  and 
( )R vB  coinciding with the original curve on the intervals [ ]0, s  and [ ],1s , respec-

tively. Equations (11.29) and (11.32) provide the control points 0Q , 1Q , 2Q , and 
3Q  of the curve ( )Q uB : 

 

( )

( ) ( )

( ) ( )

( )

0 0

1

2

3

0

0 0
3

3
.

P

P P

P P

P

s

ss s

s

= =

′= +

′= −

=

Q B P

Q B B

Q B B

Q B  (11.33) 
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Evaluating the functions PB  and P′B  for 1Q  and 2Q  gives us the following formu-
las for the interior control points of ( )Q uB . 

 
( )
( )

1 0 1

0 1

1
1

s s
s s

= − +
= − +

Q P P

Q P  (11.34) 

 
( ) ( )[ ] ( )[ ]
( ) ( )[ ]

2 0 1 1 2

1 1 2

1 1 1
1 1

s s s s s s
s s s s

= − − + + − +
= − + − +

Q P P P P

Q P P  (11.35) 

We repeat a similar procedure for the control points 0R , 1R , 2R , and 3R  of the 
curve ( )R vB : 

 

( )

( ) ( )

( ) ( )

( )

0

1

2

3 3

1
3

11 1
3

1 .

P

P P

P P

P

s
ss s

s

=
− ′= +

− ′= −

= =

R B

R B B

R B B

R B P  (11.36) 

Formulas for the interior control points of ( )R vB  are found by evaluating the 
functions PB  and P′B  as follows. 

 
( )
( )

2 2 3

2 3

1
1

s s
s s

= − +
= − +

R P P

P R  (11.37) 

 
( ) ( )[ ] ( )[ ]
( ) ( )[ ]

1 1 2 2 3

1 2 2

1 1 1
1 1

s s s s s s
s s s s

= − − + + − +
= − − + +

R P P P P

P P R  (11.38) 

Finally, we take a look at the value of 3 0=Q R . This is the point where the line 
segment connecting 2Q  and 1R  is tangent to the curve ( )P tB . If we evaluate 

( )P sB  and compare it to Equations (11.35) and (11.38), we see that 

 ( ) ( ) 2 11P s s s= − +B Q R . (11.39) 

 The entire procedure that we just went through leads us to the formulation of 
the de Casteljau algorithm. As illustrated in Figure 11.7, we begin by connecting 
adjacent pairs of the four control points 0P , 1P , 2P , and 3P , creating three line 
segments. We then construct the points ( )1

0P , ( )1
1P , and ( )1

2P  by linearly interpolating 
the endpoints of each of the line segments using the parameter value s as follows. 

 ( ) ( )1
11 i ii s s += − +P P P  (11.40) 
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0 0=P Q 3 3=P R

( )1
10 =P Q

( )2
20 =P Q ( )3

0P

1P 2P( )1
1P

( )2
11 =P R

( )1
22 =P R

0R
3Q

 
Figure 11.7. A Bézier curve is subdivided into two components at the parameter value 

1 2s = . The green points are those constructed by the de Casteljau algorithm. 

This process recurs by connecting these new points and interpolating at the pa-
rameter value s until we are left with only one point ( )3

0P . In general, we have the 
recurrence formula 

 ( ) ( ) ( ) ( )1 1
11k k k

i i is s− −
+= − +P P P , (11.41) 

where we have equated ( )0
ii ≡P P . The control points of the two components of the 

subdivided Bézier curve are given by 

 

( )

( )
0

3

i
i

i
i i

−

=

=

Q P

R P . (11.42) 

11.4  Catmull-Rom Splines 

Given a set of 1n +  points { }0 1, , , nP P P  with 3n ≥ , a Catmull-Rom spline inter-
polates the points { }1 2 1, , , n−P P P  using a piecewise cubic curve. The tangent 
direction iT  at each point iP  is given by 
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 ( )1 1
1
2i i i+ −= −T P P . (11.43) 

We can express each piece ( )i tC  of the spline, where 1 2i n≤ ≤ − , as a Hermite 
curve having the endpoints iP  and 1i+P  and the tangents iT  and 1i+T : 

 ( ) [ ]1 1 2

3

1

i i i i i H
t

t
t
t

+ +

 
 
 =
 
 
 

C P P T T M . (11.44) 

We would like to find a basis matrix CRM  that allows us to express the geometry 
matrix CRG  as four points, so we observe the following. 

 [ ] [ ]

1
2

1
2

1 1 1 1 2 1
2

1
2

0 0 0
1 0 0
0 1 0
0 0 0

i i i i i i i i+ + − + +

− 
 − =
 
 
 

P P T T P P P P  (11.45) 

Substituting this into Equation (11.44) shows us that the basis matrix CRM  must 
be the product of the rightmost matrix in Equation (11.45) and the Hermite basis 
matrix HM . Thus, 

 

0 0 1 0 1 0 3 2 0 1 2 1
2 0 0 1 0 0 3 2 2 0 5 31 1
0 2 1 0 0 1 2 1 0 1 4 32 2
0 0 0 1 0 0 1 1 0 0 1 1

CR

− − − −     
     − − −     = =

− −     
     − −     

M , (11.46) 

and we can express the pieces of the Catmull-Rom spline as 

 ( ) [ ]1 1 2 2

3

1

i i i i i CR
t

t
t
t

− + +

 
 
 =
 
 
 

C P P P P M , (11.47) 

where the geometry matrix is [ ]1 1 2CR i i i i− + +=G P P P P . Figure 11.8 shows an 
example of a Catmull-Rom spline and illustrates how the tangent at each point is 
parallel to the line segment connecting the two neighboring points. 



11.5  Cubic Splines 331 
 

0P

1P

2P

3P

4P

5P

6P

 
Figure 11.8. A Catmull-Rom spline interpolates a set of points in such a way that the 
tangent direction at each point is parallel to the line segment connecting the two neigh-
boring points. 

11.5  Cubic Splines 

The piecewise cubic curves that we have examined up to this point exhibit local 
control, meaning that if the geometrical constraints are modified for one of the 
cubic functions composing the curve, then only that piece of the curve and its 
immediate neighbors can be affected. We now examine a different kind of curve 
called a cubic spline. Cubic splines exhibit global control through the fact that 
moving one of the control points affects the entire curve. 
 A cubic spline is a set of piecewise cubic polynomials that interpolate a given 
set of points and maintain 2C  continuity everywhere. Cubic splines require no 
geometrical constraints, such as tangent directions or control points, in addition 
to the points that they interpolate. We derive the cubic spline as a set of scalar 
functions ( )iS x . This can be extended to a parametric interpolation of a set of 3D 
points by constructing cubic splines for each coordinate independently. 
 Suppose we have a set of 1n +  points { }0 0 1 1, , , , , ,n nx y x y x y  where 

1i ix x +<  for 0 1i n≤ ≤ − . We wish to find a set of n cubic polynomial functions 
( ) ( ) ( ){ }0 1 1, , , nS x S x S x−  where each function ( )iS x  is defined on the interval 

[ ]1,i ix x + . 
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 ( ) ( )1 1 1i i i iS x S x+ + +=  (11.48) 

 ( ) ( )1 1 1i i i iS x S x+ + +′ ′=  (11.49) 

 ( ) ( )1 1 1i i i iS x S x+ + +′′ ′′=  (11.50) 

 We define the constants ih  and ik  as follows for 0 1i n≤ ≤ − . 

 
1

1

i i i

i i i

h x x
k y y

+

+

= −
= −  (11.51) 

We construct the cubic spline interpolating the points { } 0, n
i i ix y =  by choosing 

values for the second derivatives of the functions ( ){ } 1
0

n
i iS x −

=  that cause the condi-
tions listed in Equations (11.48), (11.49), and (11.50) to be satisfied. We begin 
with the set of functions 

 ( ) ( ) ( )1
1

i i
i i i

i i

y yS x x x x x
h h

+
+

′′ ′′′′ = − + − , (11.52) 

where the constants 0 1, , ny y y′′ ′′ ′′  have not yet been determined, but Equation 
(11.50) is satisfied regardless of their eventual values. Integrating ( )iS x′′  twice, 
we have 

 ( ) ( ) ( )13 3
16 6

i i
i i i i i

i i

y yS x x x x x C x D
h h

+
+

′′ ′′
= − + − + + , (11.53) 

where iC  and iD  are the constants of integration. For later convenience, we re-
place the arbitrary linear polynomial i iC x D+  with a different linear polynomial, 

 ( ) ( )1i i i iA x x B x x+ − + − , (11.54) 

to obtain 

 ( ) ( ) ( ) ( ) ( )13 3
1 16 6

i i
i i i i i i i

i i

y yS x x x x x A x x B x x
h h

+
+ +

′′ ′′
= − + − + − + − . (11.55) 

Applying the requirements that ( )i i iS x y=  and ( )1 1i i iS x y+ +=  allows us to write 
the pair of equations 

 

2

1 2
1

6

6

i
i i i i

i
i i i i

yy h A h

yy h B h+
+

′′
= +

′′
= + , (11.56) 
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from which we can deduce the following values of iA  and iB . 

 1 1

6

6

i i i
i

i

i i i
i

i

y y hA
h
y y hB
h

+ +

′′
= −

′′
= −  (11.57) 

Plugging these values into Equation (11.55) gives us 

 

( ) ( ) ( )

( ) ( )

13 3
1

1 1
1

6 6

6 6

i i
i i i

i i

i i i i i i
i i

i i

y yS x x x x x
h h
y y h y y hx x x x
h h

+
+

+ +
+

′′ ′′
= − + −

′′ ′′   + − − + − −   
   

. (11.58) 

Differentiating, we have 

 ( ) ( ) ( ) ( )12 2
1 12 2 6

i i i i
i i i i i

i i i

y y k hS x x x x x y y
h h h

+
+ +

′′ ′′′ ′′ ′′= − − + − + + − . (11.59) 

By applying the requirement that ( ) ( )1 1 1i i i iS x S x+ + +′ ′= , we arrive at the following 
system of 1n −  equations. 

 ( ) 1
1 1 1 2

1
2 6 ; 0 2i i

i i i i i i i
i i

k kh y h h y h y i n
h h

+
+ + + +

+

 ′′ ′′ ′′+ + + = − ≤ ≤ − 
 

 (11.60) 

Since there are 1n +  unknowns 0 1, , , ny y y′′ ′′ ′′ , the solution set to the system given 
by Equation (11.60) is a two-dimensional space. We can reduce this to a single 
solution by choosing any values we like for the second derivatives 0y′′ and ny′′ at 
the endpoints and moving the terms in which they appear to the right side of 
Equation (11.60) for 0i =  and 2i n= − . The resulting system of 1n −  equations 
having 1n −  unknowns is written in matrix form as 

 

0 1 1 0 0 0

1 1 2 2 1

3 3 2 2 3

2 2 1 2 1

0 0 0 0
0 0 0

0 0 0
0 0 0 0

n n n n n

n n n n n n

m h y p h y
h m h y p

h m h y p
h m y p h y

− − − − −

− − − − −

′′ ′′−     
     ′′
     

=     
     ′′     
     ′′ ′′−     




    



, (11.61) 

where 
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Figure 11.9. A natural cubic spline interpolates a set of points with 2C  continuity. 

 

( )1

1

1

2

6

i i i

i i
i

i i

m h h
k kp
h h

+

+

+

= +

 = − 
 

. (11.62) 

The matrix appearing in Equation (11.61) is tridiagonal and diagonally dominant, 
so the values { } 1

1
n

i iy −
=′′  can easily be found using the method described in 

Section 16.2.5. 
 Plugging the values { } 0

n
i iy =′′  into Equation (11.58) gives us the pieces of the 

cubic spline. The second derivatives 0y′′ and ny′′ at the ends of the curve may be 
arbitrarily chosen and are usually set to zero. When 0 0ny y′′ ′′= = , the curve is 
called a natural cubic spline. An example of a natural cubic spline is shown in 
Figure 11.9. 

11.6  B-Splines 

The Catmull-Rom spline and the natural cubic spline both interpolate a set of 
points without requiring any information in excess of the points themselves. The 
Catmull-Rom spline exhibits the local control property and provides 1C  continui-
ty. The natural cubic spline provides 2C  continuity, but at the cost of local control 
since moving one point changes the entire curve. We now examine the B-spline, 
a curve that possesses the local control property and provides 2C  continuity eve-
rywhere. The trade-off is that a B-spline does not generally interpolate a set of 
points, but only approximates their positions. 
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11.6.1  Uniform B-Splines 

Like Hermite and Bézier curves, each piece of a B-spline can be expressed as a 
cubic curve in terms of a basis matrix and geometry matrix. The letter “B” in 
B-spline stands for “basis” and distinguishes the curve from the natural cubic 
spline, which does not use the basis and geometry matrix formulation. The ge-
ometry matrix BSG  used by the B-spline is the same as that used by the Catmull-
Rom spline: 

 [ ]1 1 2BS i i i i− + +=G P P P P . (11.63) 

Given a set of 1n +  control points { }0 1, , , nP P P , a B-spline is composed of 2n −  
cubic curves ( )i tQ  corresponding to the pair of points iP  and 1i+P . Each of these 
pieces is expressed as the weighted sum 

 ( ) ( )
3

1
0

i k i k
k

t B t + −
=

=Q P , (11.64) 

where the blending functions ( )kB t  are determined by imposing the constraint 
that the entire curve possess 2C  continuity. 
 The set of points ( ) ( ) ( ){ }2 3 20 , 0 , , 0n−Q Q Q  where the pieces of the 
B-spline join together are called knots. We also classify as knots the endpoints of 
the curve, ( )1 0Q  and ( )2 1n−Q , and thus a curve having 1n +  control points pos-
sesses 1n −  knots. A B-spline is called uniform if the knots are spaced at equal 
parameter values along the entire curve. At this point, we are only considering 
the case that each piece ( )i tQ  of the curve corresponds to a parameter range of 
[ ]0,1 , so we are dealing with uniform B-splines. Nonuniform B-splines, in which 
the knots may not be equally spaced with respect to the parameterization, are dis-
cussed in Section 11.6.3. Figure 11.10 shows the six knots belonging to a 
B-spline curve having eight control points and thus five cubic pieces. 
 The blending functions ( )kB t  are found by requiring 2C  continuity at each 
knot, leading to the following equations. 

 

( ) ( )
( ) ( )
( ) ( )

1

1

1

1 0
1 0
1 0

i i

i i

i i

+

+

+

=
′ ′=
′′ ′′=

Q Q

Q Q

Q Q  (11.65) 

Expanding the first of these requirements with Equation (11.64), we have 
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Figure 11.10. A B-spline curve constructed using the eight control points iP . The gray 
diamonds indicate the positions of the six knots corresponding to the values of ( )0iQ  and 

( )1iQ . 
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= + + +
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P P P P . (11.66) 

Since this equation must be satisfied for arbitrary choices of the control points iP , 
the coefficients of each point in the equation must be equal on both the left and 
right sides. Three points appear on both sides of Equation (11.66) and two more 
appear only on one side, so we obtain the following five equalities. 

 

( )
( ) ( )
( ) ( )
( ) ( )

( )

0

1 0

2 1

3 2

3

1 0
1 0 0
1 0 0
1 0 0

0 0

B
B B
B B
B B

B

=
− =
− =
− =
− =  (11.67) 

Applying the same procedure to the first and second derivatives, we also have 
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and 
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( ) ( )
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1 0 0

0 0

B
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B B

B

′′ =
′′ ′′− =
′′ ′′− =
′′ ′′− =

′′− = . (11.69) 

This gives us 15 equations, but the coefficients of ( )0B t , ( )1B t , ( )2B t , and ( )3B t  
amount to 16 unknowns. We remedy this deficiency by forcing the blending 
functions to sum to unity at 0t = , giving us the final equation 

 ( ) ( ) ( ) ( )0 1 2 30 0 0 0 1B B B B+ + + = . (11.70) 

By solving the linear system represented by Equations (11.67), (11.68), (11.69), 
and (11.70), we obtain the following blending functions for the uniform B-spline. 
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+ + −=

=  (11.71) 

The basis matrix BSM  is thus 

 

1 3 3 1
4 0 6 31
1 3 3 36
0 0 0 1

BS

− − 
 − =

− 
 
 

M . (11.72) 
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Figure 11.11. The blending functions for the uniform B-spline. 

 The blending functions ( )0B t , ( )1B t , ( )2B t , and ( )3B t  are shown in Fig-
ure 11.11. A major difference between these blending functions and those for 
Hermite curves, Bézier curves, and Catmull-Rom splines is that more than one 
function is nonzero at both endpoints. The fact that the control points are not in-
terpolated, but only approximated by the knots, is a consequence of this property 
of the blending functions. 
 Control points may be replicated, but doing so incurs the cost of one degree 
of continuity each time the same control point appears consecutively along a 
B-spline curve. The benefit is that more control over where the curve goes is ac-
quired. One location at which control point replication is particularly useful is at 
the endpoints. Consider the case in which the first control point is replicated three 
times so that 0 1 2= =P P P . The first component ( )1 tQ  of the B-spline curve is 
then given by 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )[ ] ( )
1 0 0 1 1 2 2 3 3

0 1 2 0 3 3 .
t B t B t B t B t

B t B t B t B t
= + = +
= + + +

Q P P P P

P P  (11.73) 

This is a linear interpolation between the two points 0P  and 3P . Plugging in the 
values 0t =  and 1t = , we see that ( )1 00 =Q P  and ( ) 5 1

1 0 36 61 = +Q P P . The curve 
( )1 tQ  traces out the first sixth of the straight line running from 0P  to 3P . Similar-

ly, replicating the last control point nP  of a B-spline curve three times results in 
the final component ( )2n t−Q  tracing out the last sixth of the straight line running 
from 3n−P  to nP . Figure 11.12 shows the same B-spline shown in Figure 11.10 
with its first and last control points both replicated three times. 
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Figure 11.12. The same B-spline shown in Figure 11.10 with its first and last control 
points replicated three times each. The green diamonds represent the knots. The compo-
nents ( )1 tQ  and ( )9 tQ  are straight lines. 
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Figure 11.13. The same B-spline shown in Figure 11.10 with one of its interior control 
points replicated three times. The green diamonds represent the knots. 



340 11. Curves and Surfaces 
 

 Figure 11.13 shows the same B-spline curve again, but this time with one of 
its interior points replicated three times. The curve interpolates the replicated 
control point, but only exhibits 0C  continuity at that point. This is equivalent to 
two separate B-spline curves for which the last control point of the first curve is 
equal to the first control point of the second curve and each is replicated three 
times. 

11.6.2  B-Spline Globalization 

Each piece ( )i tQ  of a uniform B-spline is defined over the range of parameter 
values [ )0,1t ∈ . For a curve having 1n +  control points, we can define each piece 
in terms of a global parameter u by assigning it i=  and writing 

 ( ) ( )i i iu u t= −Q Q . (11.74) 

The pieces ( )i uQ  compose the same curve using the range of parameter values 
[ )1, 1u n∈ − . We can write Equation (11.74) in terms of the B-spline basis func-

tions as follows. 

 ( ) ( )
3

1
0

i k i i k
k

u B u t + −
=

= −Q P  (11.75) 

Any one of the control points iP  affects at most four pieces of the curve, and few-
er than four only if it occurs near the beginning or end of the sequence of control 
points. For the piece ( )i uQ , the point iP  is weighted by the blending function 1B . 
The same point is weighted by the blending function 0B  for the piece ( )1i u+Q , the 
blending function 2B  for the piece ( )1i u−Q , and the blending function 3B  for the 
piece ( )2i u−Q . Since the point iP  does not contribute to any other piece of the 
curve, we can say that its weight is zero for any piece ( )j uQ  where 2j i< −  or 

1j i> + . It is possible for us to construct a weighting function ( )iN u  that is al-
ways used as the weight for the point iP  for every piece of the curve. Since each 
piece ( )i uQ  is defined over the parameter range [ )1,i iu t t +∈ , we define ( )iN u  as 

 ( )

( ) [ )
( ) [ )
( ) [ )
( ) [ )

0 1 1 2

1 1

2 1 1

3 2 2 1

, if , ;
, if , ;

, if , ;
, if , ;

0, otherwise.

i i i

i i i

i i i i

i i i

B u t u t t
B u t u t t

N u B u t u t t
B u t u t t

+ + +

+

− −

− − −

− ∈
 − ∈= − ∈
 − ∈


 (11.76) 
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This allows us to express the entire curve as the following weighted sum of all of 
the 1n +  control points. 

 ( ) ( )
0

n

k k
k

u N u
=

=Q P  (11.77) 

Of course, any single piece ( )i uQ  is still only affected by four control points, so 
we can write 

 ( )
3

1 1
0

i i k i k
k

u N + − + −
=

=Q P . (11.78) 

The shape of the blending function ( )iN u  is shown in Figure 11.14. Since it is 
composed of shifted versions of the four blending functions shown in Figure 
11.11, the function ( )iN u  possesses 2C  continuity. 
 The values it  are called knot values since they correspond to the global pa-
rameter value at each of the curve’s knots. The collection of knot values 
{ }0 1, , , nt t t  is called the knot vector. The uniformity of the B-spline corresponds 
to the fact that the difference 1i it t+ −  is the same for any choice of i. This limita-
tion is removed for nonuniform B-splines—the only restriction is that the differ-
ence between consecutive knot values be nonnegative. 

u

2it − 1it − it 1it + 2it +  
Figure 11.14. The global blending function ( )iN u  given by Equation (11.76). Each of 
the four components is a shifted version of one of the uniform B-spline blending func-
tions shown in Figure 11.11. 
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11.6.3  Nonuniform B-Splines 

A nonuniform B-spline is a generalization of the uniform B-spline in which the 
knot values are not required to be equally spaced. As with uniform B-splines, a 
nonuniform B-spline defined by a set of 1n +  control points { }0 1, , , nP P P  is 
composed of 2n −  cubic curves ( )i uQ  where 1 2i n≤ ≤ − . The only restriction on 
the knot value it  corresponding to the control point iP  is that it is not less than the 
preceding knot value 1it − . Each piece ( )i uQ  of the spline is expressed as the 
weighted sum 

 ( ) ( )
3

1,3 1
0

i i k i k
k

u N u+ − + −
=

=Q P , (11.79) 

where the per-control-point blending functions ( ),3iN u  are given by the following 
recursive formula, known as the Cox-de Boor algorithm. 

 

( ) [ )

( ) ( ) ( ) ( ) ( )

2 1
,0

, 1 1, 1
, 2 1

2 2 1 1

1, if ,
0, otherwise

i i
i

i k i k
i k i i k

i k i i k i

u t t
N u

N u N uN u u t t u
t t t t

− −

− + −
− + −

+ − − + − −

∈= 


= − + −
− −

 (11.80) 

It is allowable for consecutive knot values to be equal, so the convention that di-
vision by zero yields zero is used in Equation (11.80). As with the global blend-
ing function ( )iN u  given by Equation (11.76), the function ( ),3iN u  used to 
weight the control point iP  has four separate components covering the ranges 
[ )2 1,i it t− − , [ )1,i it t− , [ )1,i it t + , and [ )1 2,i it t+ + . These components can be precomputed 
for a particular knot vector and control point index. Outside the range ( )2 2,i it t− + , 
the function ( ),3iN u  is zero. The blending functions ( ),3iN u  are always nonnega-
tive and always sum to unity, so a nonuniform B-spline is contained within the 
convex hull determined by its control points. 
 Maintaining consistency with globally-parameterized uniform B-splines, a 
piece ( )i uQ  of a nonuniform B-spline depends only on the control points 1i−P  
through 2i+P  and is defined only over the range [ )1,i iu t t +∈ . However, the four 
blending functions corresponding to ( )i uQ  collectively require the eight knot 
values 3it −  through 4it + . The first piece ( )1 uQ  depends on the knot values 2t−  
through 5t , and the last piece ( )2n u−Q  depends on the knot values 5nt −  through 

2nt + . Thus, a nonuniform B-spline having 1n +  control points requires 5n +  knot 
values. We begin the knot vector at the index 2−  so that the piece ( )i uQ  conven-
iently begins at it . 
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Figure 11.15. A nonuniform B-spline possessing the 8 control points 0P  through 7P  and 
using the knot vector { }0,0,0,0,1,2,3,4,5,5,5,5  representing knot values 2t −  through 9t . 
These are the same control points used by the uniform B-spline shown in Figure 11.10, 
but the curve has now been modified so that it interpolates its first and last control points. 
The green diamonds represent the knots corresponding to the knot values shown next to 
them. 

 Although it is by no means a necessity, the first four and last four knot values 
are usually set to 1t  and 1nt − , respectively. This guarantees the nice property that 
the first and last knots are coincident with the first and last control points, as 
shown in Figure 11.15. We recover the uniform B-spline by assigning it i=  for 
every i. We may modify this so that the spline interpolates its first and last con-
trol points by setting 

 
1, if 2 1;
, if 2 2;

1, if 1 2.
i

i
t i i n

n n i n

− ≤ ≤
= ≤ ≤ −
 − − ≤ ≤ +

 (11.81) 

 A knot value that is repeated m times is said to have multiplicity m. As the 
difference between knot values it  and 1it +  decreases, the length of the piece ( )i uQ  
becomes shorter. When 1i it t += , the piece ( )i uQ  is reduced to a single point. Eve- 
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Figure 11.16. A nonuniform B-spline having an interior knot value of multiplicity 3. The 
knot vector is { }0,0,0,0,1,2,2,2,3,3,3,3 . The curve interpolates the control point 4P , but 
only with 0C  continuity. 

ry time a knot value is repeated, a degree of continuity is lost at the correspond-
ing knot. As shown in Figure 11.16, if the knot value it  has multiplicity 3 (so that 

1 2i i it t t+ += = ), then the control point 1i+P  is interpolated by the curve, but there is 
only 0C  continuity at that point. If the multiplicity is increased to 4, as shown in 
Figure 11.17, then the curve actually breaks at 1i+P . 
 For the knot vector { }0,0,0,0,1,1,1,1 , the blending functions ,3iN  given by the 
Cox-de Boor algorithm are equivalent to the Bernstein polynomials ,3iB . Thus, a 
curve having this knot vector is a Bézier curve. The two separate components of 
the curve shown in Figure 11.17 are both Bézier curves since the multiplicities of 
the knot values at their endpoints are 4. 
 A major advantage that nonuniform B-splines have over uniform B-splines is 
that it is possible to insert a control point corresponding to a new knot value 
without changing the shape of the curve. Suppose that we have a knot vector 
{ }2 2, , nt t− +  and control points 0P  through nP . To add a new knot value 

( ]1,j jt t t +′∈ , we must find a new set of control points 0′P  through 1n+′P  such that the 
curves determined by the original control points and the new control points are 
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Figure 11.17. A nonuniform B-spline having an interior knot value of multiplicity 4. The 
knot vector is { }0,0,0,0,1,1,1,1,2,2,2,2 . There is a discontinuity at 2u t= . 

coincident. The new control points are given by the following formulas, a process 
known as Böhm subdivision. 

 2 2
1

1 2 1 2

1

, if 1

1 , if 2

, if 3

i

i i
i i i

i i i i

i

i j
t t t t j i j

t t t t
i j

− −
−

+ − + −

−

≤ −
 ′ ′− − ′ = − + ≤ ≤ + − − 
 ≥ +

P

P P P

P

 (11.82) 

(We again use the convention that division by zero yields zero.) This process re-
places two original control points with three new control points and leaves the 
rest alone. Böhm subdivision can be used to increment the multiplicity of a knot 
by setting 1jt t +′ = . 

11.6.4  NURBS 

Nonuniform B-splines can be made even more flexible by extending them to ho-
mogeneous coordinates. A weight iw  is assigned to each control point iP , and we 
express each control point as 
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 , , ,i i i i i i i iw x w y w z w=P . (11.83) 

As usual, the control point’s position in 3D space is obtained by dividing by the 
w coordinate. Since a piece ( )i uQ  of the nonuniform B-spline is expressed as 

 ( ) ( )
3

1,3 1
0

i i k i k
k

u N u+ − + −
=

=Q P , (11.84) 

the w coordinate at some point along the curve is given by 

 ( )[ ] ( )
3

1,3 1
0

i w i k i k
k

u N u w+ − + −
=

=Q . (11.85) 

The 3D position ( )i uQ  at the parameter value u is therefore 

 ( )
( )

( )

3

1,3 1 1 1 1
0

3

1,3 1
0

, ,i k i k i k i k i k
k

i

i k i k
k

N u w x y z
u

N u w

+ − + − + − + − + −
=

+ − + −
=

=



Q . (11.86) 

This can also we written as 

 ( ) ( )
3

1 1 1 1
0

, ,i i k i k i k i k
k

u R u x y z+ − + − + − + −
=

=Q , (11.87) 

where 

 ( ) ( )

( )

1,3 1
1 3

1,3 1
0

i k i k
i k

i l i l
l

N u wR u
N u w

+ − + −
+ −

+ − + −
=

=


. (11.88) 

Since points on the curve are expressed as a ratio of two polynomials, these 
curves are called nonuniform rational B-splines, or NURBS. 
 The weights affect how strongly the associated control points influence the 
shape of the curve. As shown in Figure 11.18, a larger weight iw  causes the curve 
to be pulled toward the control point iP , and a smaller weight causes the curve to 
move away from the control point. Like the control points, the weights only af-
fect at most four pieces of the entire curve, so the influence of a single weight is 
isolated to a local portion of the entire curve. 
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Figure 11.18. A nonuniform rational B-spline. The different curves show what happens 
as the weight corresponding to the control point 3P  changes. 

 All of the curves described in this chapter are invariant with respect to any 
translation, rotation, or scaling transformation. That is, transforming the geomet-
rical constraints (e.g., the control points) and generating the curve produces the 
same results as generating the curve using the untransformed geometrical con-
straints and then transforming the result. NURBS are also invariant with respect 
to a homogeneous projection transformation. The curve generated by the homo-
geneous control points after projection is the same as the projection of the curve 
generated using the unprojected control points. This property can be gained by a 
nonuniform B-spline by promoting it to a NURBS curve in which every weight 
has been assigned a value of 1. 
 NURBS have been widely adopted by computer modeling systems because 
of their generality. NURBS can represent any of the other types of curves dis-
cussed in this chapter, and unlike nonrational curves, can represent conic sections 
exactly.1 

                                                      
1 See David F. Rogers and J. Alan Adams, Mathematical Elements for Computer 
Graphics, Second Edition, McGraw-Hill, 1990. 
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11.7  Bicubic Surfaces 

Our knowledge of cubic curves can be readily extended to bicubic surfaces. 
Whereas a single component ( )i tQ  of a cubic curve required four geometrical 
constraints iG  through 3i+G , a single component ( ),ij s tQ  of a bicubic surface, 
called a patch, requires 16 geometrical constraints ,i jG  through 3, 3i j+ +G . The gen-
eral parametric representation of a surface patch is given by 

 ( ) ( ) ( )
3 3

,
0 0

,ij k l i k j l
k l

s t B s B t + +
= =

=Q G , (11.89) 

where the parameters s and t range from 0 to 1, and the functions 0B , 1B , 2B , and 
3B  are the blending functions for the type of cubic curve on which the surface 

patch is based. Calling the basis matrix corresponding to the blending functions 
M, we can write Equation (11.89) in the form 

 ( ) ( ) ( )

, , 1 , 2 , 3

1, 1, 1 1, 2 1, 3T T

2, 2, 1 2, 2 2, 3

3, 3, 1 3, 2 3, 3

,

r r r r
i j i j i j i j

r r r r
i j i j i j i jr

ij r r r r
i j i j i j i j
r r r r
i j i j i j i j

G G G G
G G G G

Q s t s t
G G G G
G G G G

+ + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

 
 
 =
 
 
 

S M MT , (11.90) 

where ( ) 2 31, , ,s s s s≡S , ( ) 2 31, , ,t t t t≡T , and the index r represents one of the 
x, y, or z coordinates of ( ),ij s tQ . The geometrical constraint matrix G for a bicu-
bic surface patch is a 4 4 3× ×  array of coordinates. 
 A bicubic Bézier surface patch is defined by 16 control points. The surface 
passes through four of these points at the corners of the patch, and the remaining 
12 control points influence the shape of the interior of the patch. A simple exam-
ple is shown in Figure 11.19. Two adjacent Bézier patches have 0C  continuity at 
the edge where they meet whenever they share the same four control points along 
that edge. They have 1G  continuity across the edge if the adjacent control points 
on either side of the edge are collinear with the control points on the edge, and 1C  
is achieved if the distances to the control points on either side of the edge are 
equal, ensuring that the tangent vectors have equal magnitude. When four Bézier 
patches meet at a single point P, 1C  continuity at that point requires that each pair 
of adjacent patches meet with 1C  continuity and that the eight nearest control 
points are coplanar with P. 
 The normal vector at a point on a bicubic surface patch ( ),ij s tQ  is obtained 
by finding two tangent vectors and then calculating their cross product. The tan- 
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Figure 11.19. A Bézier surface patch is defined by 16 control points. This particular sur-
face passes through the 12 control points lying on the boundary of the patch. The remain-
ing four control points determine the shape of the patch’s interior. In general, a Bézier 
surface passes through only the four control points at the corners of the patch. 

gent vectors are found by taking the derivatives of ( ),ij s tQ  with respect to s and 
t. Using Equation (11.90), we can write the derivatives as 

 

( ) ( ) ( )

( ) ( ) ( )

T T

T T

,

,

r r
ij

r r
ij

dQ s t s t
s ds

dQ s t s t
t dt

∂  =  ∂  
∂  =  ∂  

S M G MT

S M G M T , (11.91) 

where r again represents one of the x, y, or z coordinates. The normal vector 
( ),ij s tN  is then given by 

 ( ) ( ) ( ), , ,ij ij ijs t s t s t
s t

∂ ∂= ×
∂ ∂

N Q Q . (11.92) 
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11.8  Curvature and Torsion 

In this section, we investigate quantities that characterize the amounts by which 
an arbitrary path through space curves and twists. In the process, we are able to 
construct an orthogonal coordinate system at each point along a curving path 
such that one axis is parallel to the tangent direction. 
 Let ( )tP  represent a twice-differentiable parametric curve. The curvature 

( )κ t  of ( )tP  is defined to be the magnitude of the rate at which the unit tangent 
direction ( )ˆ tT  changes with respect to distance s traveled along the curve. That 
is, 

 ( ) ( )
( )ˆ

ˆ
d td dtκ t t dsds

dt

= =
T

T , (11.93) 

where ds is the differential length given by 

 ( )dds t dt
dt

= P , (11.94) 

and the unit tangent vector ( )ˆ tT  can be expressed as 

 ( ) ( )
( )

( )

( )

( )
ˆ

d dt tt dt dtt d dst t
dt dt

= = =
P PT

T
T P

. (11.95) 

Intuitively, the curvature ( )κ t  quantifies how much a curve bends at the point 
( )tP . For a straight line, whose tangent vector always points in the same direc-

tion, the curvature is zero as would be expected. 
 Rearranging Equation (11.95), we can write the first derivative of ( )tP  as 

 ( ) ( )ˆd dst t
dt dt

=P T . (11.96) 

Since the curvature depends on the derivative of the tangent direction, we would 
like to see how it relates to the second derivative of ( )tP . The derivative of the 
unit tangent vector ( )ˆ tT  points in a direction ( )tN  that is orthogonal to the tan-
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gent vector itself (assuming that the derivative is not zero). This can be seen by 
first observing that ( ) ( )ˆ ˆ 1t t⋅ ≡T T  and then calculating 

 ( ) ( )( ) ( ) ( )ˆ ˆ ˆ ˆ0 2d dt t t t
dt dt

= ⋅ = ⋅T T T T . (11.97) 

The direction ( )tN  can be thought of as a normal direction to the curve ( )tP . It 
always points inward with respect to the direction in which the curve is bending. 
 Evaluating the derivative of ( )ˆ tT , we have 

 ( )
( ) ( )

2 2

2 2

2
ˆ

ds d d s dt td dt dt dt dtt
dt ds

dt

−
=

 
 
 

P P
T . (11.98) 

Using Equation (11.96) to replace the first derivative of ( )tP  gives us 

 ( )
( ) ( )

2 2

2 2
ˆ

ˆ
d d st td dt dtt dsdt

dt

−
=

P T
T . (11.99) 

Solving for the second derivative of ( )tP  yields 

 ( ) ( ) ( )
2 2

2 2
ˆ ˆd d s ds dt t t

dt dt dt dt
= +P T T . (11.100) 

Since the derivative of ( )ˆ tT  points in the direction ( )tN , we can write 

 ( ) ( ) ( )ˆ ˆ ˆd dt t t
dt dt

=T T N , (11.101) 

where ( )ˆ tN  has unit length. Using the definition of ( )κ t  given by Equation 
(11.93), we rewrite Equation (11.100) as 

 ( ) ( ) ( ) ( )
22 2

2 2
ˆ ˆd d s dst t κ t t

dt dt dt
 = +  
 

P T N . (11.102) 

If we take the cross product of the first and second derivatives of ( )tP  given by 
Equations (11.96) and (11.102), we obtain 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22 2

2 2

3

ˆ ˆ ˆ

ˆ ˆ .

d d ds d s dst t t t κ t t
dt dt dt dt dt

dsκ t t t
dt

  × = × +     
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T N  (11.103) 

Since ( )ˆ tT  and ( )ˆ tN  are both unit vectors, the magnitude of their cross product is 
unity. Thus, upon using Equation (11.94) to replace the quantity ds dt , we arrive 
at the following expression for ( )κ t . 

 ( ) ( ) ( )
( ) 3

t tκ t
t

′ ′′×
=

′
P P

P
 (11.104) 

 Let us consider the curvature of a circle of radius ρ. Such a circle lying in the 
x-y plane can be expressed parametrically as 

 ( ) cos , sin ,0t ρ t ρ t=P . (11.105) 

Applying Equation (11.104), we see that the curvature is 

 ( ) 3

sin , cos ,0 cos , sin ,0 1
sin , cos ,0

ρ t ρ t ρ t ρ tκ t
ρρ t ρ t

− × − −= =
−

, (11.106) 

or simply the reciprocal of the radius of the circle. For a general curve, we call 
the quantity ( ) ( )1ρ t κ t=  the radius of curvature. As shown in Figure 11.20, the 
radius of curvature at a point ( )tP  corresponds to the radius of a circle that is 
tangent to the curve at ( )tP  and lies in the plane determined by the directions 

( )ˆ tT  and ( )ˆ tN . This plane is called the osculating plane, and the circle is called 
the osculating circle. 
 The second derivative of the position vector ( )tP  gives the acceleration of a 
particle following the path at time t. Examining Equation (11.102) more closely, 
we observe 

 ( ) ( ) ( ) ( ) ( )[ ]
( )

( )
22

2
ˆ ˆv td dt t v t t t

dt dt ρ t
= = +a P T N , (11.107) 

where ( )v t ds dt=  is the scalar speed at time t. The coefficients Ta  and Na  de-
fined by 
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Figure 11.20. The osculating circle lies in the plane determined by the tangent direction 
( )ˆ tT  and the normal direction ( )ˆ tN . The radius of the osculating circle is the reciprocal of 

the curvature ( )κ t . 

 

( )

( )[ ]
( )

2

T

N

da v t
dt
v ta
ρ t

=

=  (11.108) 

are called the tangential and centrifugal components of the acceleration, respec-
tively. The centrifugal component agrees with the acceleration corresponding to 
the centrifugal force given by Equation (14.8). 

 We can complete a three-dimensional orthonormal basis at a point ( )tP  by 
defining the unit binormal ( )ˆ tB  as 

 ( ) ( ) ( )ˆ ˆ ˆt t t= ×B T N . (11.109) 

The coordinate system having the axes ( )ˆ tT , ( )ˆ tN , and ( )ˆ tB  is called the Frenet 
frame. The derivatives of the axes with respect to the distance s along a path can 
be written in terms of the axes themselves. For the tangent direction ( )ˆ tT , we 
have 



354 11. Curves and Surfaces 
 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆd dt t t κ t t
ds ds

= =T T N N . (11.110) 

The derivative of the binormal can be written as 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆd d dt t t t t
ds ds ds

= × + ×B T N T N . (11.111) 

Since the derivative of the tangent direction is parallel to the normal direction, 
the first cross product is zero. The derivative of the normal direction must be 
perpendicular to the normal direction itself (because it has constant length) and 
can therefore be expressed as a linear combination of the tangent and binormal 
directions. Thus, using the functions ( )α t  and ( )τ t , we simplify Equation 
(11.111) as follows. 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ

ˆ

d t t α t t τ t t
ds

τ t t

 = × + 

= −

B T T B

N  (11.112) 

Finally, the derivative of the normal direction yields 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ .

d dt t t
ds ds

d dt t t t
ds ds
τ t t t t κ t t

τ t t κ t t

 = × 

= × + ×

= − × + ×

= −

N B T

B T B T

N T B N

B T  (11.113) 

(This shows that the value of ( )α t  in Equation (11.112) is ( )κ t− .) Taken together, 
the three relations 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

d t κ t t
ds
d t τ t t κ t t
ds
d t τ t t
ds

=

= −

= −

T N

N B T

B N  (11.114) 

are called the Frenet formulas. 
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 The quantity ( )τ t  is called the torsion of the curve and pertains to the amount 
by which the Frenet frame twists about the tangent direction as it travels along a 
path. By taking the dot product of both sides of Equation (11.112) with ( )ˆ tN , we 
obtain the following explicit formula for the torsion. 

 ( ) ( ) ( )ˆ ˆdτ t t t
ds

= − ⋅N B  (11.115) 

For a planar curve, the vectors ( )ˆ tT  and ( )ˆ tN  always lie in the plane containing 
the curve, so ( )ˆ tB  is constant except for discontinuities that occur when ( ) 0κ t = . 
Thus, the torsion of planar curves is zero everywhere. 

Chapter 11 Summary 

Cubic Curves 

Several classes of cubic curves can be expressed in the form 

 ( ) ( )t t=Q GMT , 

where G is the geometrical constraint matrix associated with the class of cubic 
curve, M is the constant basis matrix, and ( ) 2 31, , ,t t t t≡T . Table 11.1 summa-
rizes the geometrical constraint matrices and basis matrices discussed in this 
chapter. 

Nonuniform B-Splines 

A nonuniform B-spline having the 1n +  control points { }0 1, , , nP P P  and the knot 
vector { }2 1 0 2, , , , nt t t t− − +  is composed of 2n −  cubic curves ( )i uQ , where 
1 2i n≤ ≤ − . Each piece ( )i uQ  is defined as 

 ( ) ( )
3

1,3 1
0

i i k i k
k

u N u+ − + −
=

=Q P , 

where the blending functions ( ),3iN u  are given by the Cox-de Boor algorithm: 

 

( ) [ )

( ) ( ) ( ) ( ) ( )

2 1
,0

, 1 1, 1
, 2 1

2 2 1 1

1, if ,
0, otherwise

i i
i

i k i k
i k i i k

i k i i k i

u t t
N u

N u N uN u u t t u
t t t t

− −

− + −
− + −

+ − − + − −

∈= 


= − + −
− −

. 
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Class Geometrical Constraint 
Matrix G 

Basis Matrix M 

Hermite [ ]1 2 1 2P P T T  

1 0 3 2
0 0 3 2
0 1 2 1
0 0 1 1

− 
 − 

− 
 − 

 

Bézier [ ]0 1 2 3P P P P  

1 3 3 1
0 3 6 3
0 0 3 3
0 0 0 1

− − 
 − 

− 
 
 

 

Catmull-Rom [ ]1 1 2i i i i− + +P P P P  

0 1 2 1
2 0 5 31
0 1 4 32
0 0 1 1

− − 
 − 

− 
 − 

 

Uniform B-spline [ ]1 1 2i i i i− + +P P P P  

1 3 3 1
4 0 6 31
1 3 3 36
0 0 0 1

− 
 − 

− 
 
 

 

Table 11.1. Geometrical constraint matrices and basis matrices for various classes of 
parametric cubic curves. 

NURBS 

For a set of control points { }, , ,i i i i i i i iw x w y w z w=P , a nonuniform rational 
B-spline is defined as 

 ( ) ( )
3

1 1 1 1
0

, ,i i k i k i k i k
k

u R u x y z+ − + − + − + −
=

=Q , 

where 

 ( ) ( )

( )

1,3 1
1 3

1,3 1
0

i k i k
i k

i l i l
l

N u wR u
N u w

+ − + −
+ −

+ − + −
=

=


. 
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Bicubic Surfaces 

A bicubic surface patch is defined as 

 ( ) ( ) ( )T T,r r
ijQ s t s t= S M G MT , 

where ( ) 2 31, , ,s s s s≡S , ( ) 2 31, , ,t t t t≡T , M is the 4 4×  basis matrix corre-
sponding to the class of cubic curve on which the patch is based, and r represents 
one of the x, y, or z coordinates of ( ),ij s tQ . G is the 4 4 3× ×  array of control 
point coordinates. 

The normal vector ( ),ij s tN  to the surface of a bicubic patch ( ),ij s tQ  is given by 

 ( ) ( ) ( ), , ,ij ij ijs t s t s t
s t

∂ ∂= ×
∂ ∂

N Q Q . 

Curvature and Torsion 

The curvature ( )κ t  of a curve ( )tP  is given by 

 ( ) ( ) ( )
( ) 3

t tκ t
t

′ ′′×
=

′
P P

P
. 

The radius of curvature is ( ) ( )1ρ t κ t= . 

The torsion ( )τ t  is defined as 

 ( ) ( ) ( )ˆ ˆdτ t t t
ds

= − ⋅N B , 

where ( )ˆ tN  is the unit normal vector given by the normalized derivative of the 
unit tangent direction ( )ˆ tT , and ( ) ( ) ( )ˆ ˆ ˆt t t= ×B T N . 

Exercises for Chapter 11 

1. Suppose that ( )2 tB  is a quadratic Bézier curve having the three control 
points 0P , 1P , and 2P . That is, 

 ( ) ( ) ( )2 2
2 0 1 21 2 1t t t t t= − + − +B P P P . 

 Determine the four control points 0′P  through 3′P  such that the cubic Bézier 
curve 
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 ( ) ( ) ( ) ( )3 2 2 3
3 0 1 2 31 3 1 3 1t t t t t t t′ ′ ′ ′= − + − + − +B P P P P  

 is exactly coincident with the quadratic Bézier curve ( )2 tB . (This process is 
called degree elevation.) 

2. Suppose that the de Casteljau algorithm is used to split a Bézier curve hav-
ing the control points 0P , 1P , 2P , and 3P  at the parameter value 1

2t = . Find the 
matrix QM  that transforms the control points of the original curve into the 
control points 0Q , 1Q , 2Q , and 3Q  for the curve coinciding with the interval 
[ ]1

20, , and find the matrix RM  that transforms the control points of the origi-
nal curve into the control points 0R , 1R , 2R , and 3R  for the curve coinciding 
with the interval [ ]1

2 ,1 . That is, find matrices QM  and RM  such that 

 [ ] [ ]0 1 2 3 0 1 2 3 Q=Q Q Q Q P P P P M  

 and 

 [ ] [ ]0 1 2 3 0 1 2 3 R=R R R R P P P P M . 

3. A Kochanek-Bartels spline extends the formulation of the Catmull-Rom 
spline by allowing three parameters, tension iτ , continuity iγ , and bias iβ , to 
be specified at each control point iP . (Hence, Kochanek-Bartels splines are 
sometimes called TCB splines.) For a cubic curve interpolating the points iP  
and 1i+P , the tangent direction ,1iT  corresponding to iP  and the tangent direc-
tion ,2iT  corresponding to the point 1i+P  are given by 

 

( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

,1 1

1

1 1 1
,2 1

1 1 1
2 1

1 1 1
2

1 1 1
2

1 1 1
2

1 1 1
2

i i i
i i i

i i i
i i

i i i
i i i

i i i
i i

τ γ β

τ γ β

τ γ β

τ γ β

−

+

+ + +
+

+ + +
+ +

− + +
= −

− − −+ −

− − +
= −

− + −
+ −

T P P

P P

T P P

P P . 

 (Note that the tangent direction used at a point iP  is not necessarily the same 
for both of the curves for which iP  is an endpoint.) 

 (a) For what values of iτ , iγ , and iβ  does the Kochanek-Bartels spline re-
duce to the Catmull-Rom spline? 
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 (b) Under what conditions does the tangent direction ,2iT  for the curve in-
terpolating iP  and 1i+P  match the tangent direction 1,1i+T  for the curve in-
terpolating 1i+P  and 2i+P ? 

 (c) Find the basis matrix KBM  corresponding to the curve interpolating iP  
and 1i+P  that describes the Kochanek-Bartels blending functions. As-
sume that the geometry matrix is [ ]1 1 2KB i i i i− + +=G P P P P . [Hint. 
Use a method similar to that which produces the Catmull-Rom basis 
matrix in Equation (11.46).] 

4. Let ( )uQ  be a nonuniform B-spline lying in the x-y plane having control 
points 0 0,0=P , 1 1,2=P , 2 2,2=P , and 3 3,0=P . Suppose the knot 
vector is { }0,0,0,0,1,1,1,1 . Use Böhm subdivision to insert a new knot at 

1
2t′ =  and determine the new control points 0′P  through 4′P . 

5. Calculate the curvature ( )κ t  and the torsion ( )τ t  of the helix given by 

 ( ) cos , sin ,t r t r t ct=P . 

6. Given a path ( )tP  having 3C  continuity, show that 

 ( ) ( ) ( ) ( )[ ] ( )
2 3

2
2 3

d d dt t t κ t τ t
ds ds ds

 ⋅ × =  
P P P , 

 where ( )κ t  is the curvature of the path and ( )τ t  is the torsion of the path. 
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12 

Collision Detection 

Every 3D game is filled with the action of moving objects. Except when an ob-
ject is emitting a force field that affects its surroundings, interaction between two 
objects generally occurs only when they attempt to occupy the same space at the 
same time. The process by which game engines determine when such events oc-
cur is called collision detection. With the exception of those that take place in 
deep space, most games need to determine when a collision occurs between a 
moving object and the environment. The complex geometrical shapes that mov-
ing objects may possess are usually approximated by simple bounding volumes 
in order to reduce the cost of collision detection calculations. 
 Suppose that the position of a moving object is known at the time that a 
frame is rendered, and that we are able to calculate the position to which the ob-
ject would move if it is unobstructed before the next frame is rendered. Since the 
time between frames is usually small, it is commonly assumed that objects travel 
along straight lines during the time between frames, even if it is known that an 
object is following a curved path. Thus, the general collision detection problem is 
determining whether the extrusion of an object’s surface along a line segment 
intersects some part of the environment. Very small moving objects are often 
treated as points, reducing the collision detection problem to a ray intersection 
calculation. For larger objects, finding the exact point where the object makes 
contact with a complex environment can be extremely difficult. For that reason, 
surfaces of moving objects are often approximated by simpler bounding volumes. 

12.1  Plane Collisions 

Detecting a collision between a moving object and a single infinite plane 
amounts to the problem of determining what point on the object would be in con-
tact with the plane at the time of a collision. We can then represent the entire 
moving object by that point in a ray intersection calculation. Being able to detect 
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collisions with infinite planes is useful in environments that are partitioned in 
some way (see Section 12.1.3), so we examine the calculations involved in de-
termining when a sphere or box collides with an infinite plane in this section. 
Later, we discuss the more difficult, but very practical method of determining the 
collision of a sphere with an arbitrary environment. 

12.1.1  Collision of a Sphere and a Plane 

As shown in Figure 12.1, when a sphere is in contact with a plane L (on the posi-
tive side), the distance from the center of the sphere P to the plane is r, so 

r⋅ =L P . Writing the plane L as the 4D vector 

 , D=L N , (12.1) 

the relationship r⋅ =L P  can be written as 

 D r⋅ + =N P . (12.2) 

If we move r to the left side of the equation, then this is equivalent to 

 0D r⋅ + − =N P , (12.3) 

which is the same as stating that the point P lies on the plane ′L  given by 

 , D r′ = −L N . (12.4) 

The plane ′L  is parallel to L, but it has been shifted by the distance r in the direc-
tion of its normal. 
 Suppose that the center of a sphere of radius r moves from the point 1P  at 
time 0t =  to the point 2P  at the time 1t = , and that we wish to determine whether 

P
r

L

′L

 
Figure 12.1. A sphere of radius r is in contact with a plane L when its center lies on the 
plane ′L  that has been shifted by a distance r. 
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it collides with a plane L. We assume that the sphere is not initially intersecting 
the plane and that the starting point 1P  lies on the positive side of a plane since 
the negative side represents the interior of some structure. Thus, 1 r⋅ ≥L P . If it is 
also the case that 2 r⋅ ≥L P , then the sphere remains on the positive side of the 
plane during the time interval 0 1t≤ < , in which case we know that no collision 
occurs. 
 The position ( )tP  of the sphere’s center at time t is then given by 

 ( ) 1t t= +P P V, (12.5) 

where V is the velocity of the sphere: 

 2 1= −V P P . (12.6) 

A collision occurs between the sphere and the plane , D=L N  if the equation 

 ( ) 0t′ ⋅ =L P  (12.7) 

(where ′L  is defined by Equation (12.4)) has a solution t such that 0 1t≤ < . Sub-
stituting the value given by Equation (12.5) for ( )tP , we have 

 ( )1 0t′ ′⋅ + ⋅ =L P L V . (12.8) 

Solving for t yields 

 1t
′ ⋅= −
′ ⋅

L P

L V
. (12.9) 

Remember that the vector V represents a direction and therefore has a w coordi-
nate of 0, so the denominator is equal to ⋅N V. If 0⋅ =N V , then the sphere is 
moving parallel to the plane, so no intersection occurs. Otherwise, the sphere col-
lides with the plane at the time t given by Equation (12.9). The point C at which 
the sphere makes contact with the plane is given by 

 ( )t r= −C P N (12.10) 

since this point lies at a distance r from the sphere’s center in the direction oppo-
site that of the plane’s normal N. 



364 12. Collision Detection 
 

12.1.2  Collision of a Box and a Plane 

Determining whether a moving box collides with a plane can be accomplished 
using a method similar to that used to determine whether a sphere collides with a 
plane. The difference is that we must offset the plane by the effective radius of 
the box, introduced in Section 8.2.4. Furthermore, the box can make contact with 
the plane at more than one point. It is possible that an edge of the box collides 
with the plane or that the box meets the plane directly parallel to one of its faces. 
 Suppose that a box has edges whose lengths and orientations are described 
by the vectors R, S, and T. The effective radius effr  of the box with respect to a 
plane having normal direction N is given by 

 ( )1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N . (12.11) 

Let 1Q  be the position of the box’s center at time 0t = , and let 2Q  be its position 
at time 1t = , as shown in Figure 12.2. Then the position ( )tQ  of the box is given 
by 

 ( ) 1t t= +Q Q V, (12.12) 

where V is the velocity of the box: 

 2 1= −V Q Q . (12.13) 

To find an intersection with the plane , D=L N , we calculate 

L

′L

effr

1Q

2Q

 
Figure 12.2. Whether a moving box collides with a plane can be determined by shifting 
the plane by the box’s effective radius. 
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 1t
′ ⋅= −
′ ⋅

L Q

L V
, (12.14) 

where ′L  is the plane parallel to L that has been offset by a distance effr : 

 eff, D r′ = −L N . (12.15) 

Again, we assume that the box is not initially intersecting the plane and that its 
center lies on the positive side of ′L  at time 0t =  (i.e., 1 0′ ⋅ ≥L Q ). Therefore, if 
the condition 2 0′ ⋅ ≥L Q  is also satisfied, then the box remains on the positive 
side of the plane L, and no collision occurs. 
 Once we have determined that a collision between the box and the plane has 
occurred (because the value of t given by Equation (12.14) satisfies 0 1t≤ < ), we 
must determine the point or set of points at which contact has been made. If all 
three of the quantities ⋅R N , ⋅S N , and ⋅T N  are nonzero, then no edge of the 
box is parallel to the plane L. In this case, the collision must occur at one of the 
box’s vertices. We can find a general formula for the position of the vertex that 
makes contact with the plane by examining expressions for all eight of the box’s 
vertices. The position Z of each vertex of the box is given by 

 ( ) 1 1 1
2 2 2t= ± ± ±Z Q R S T. (12.16) 

To find the vertex closest to the plane, we choose signs such that the dot product 
⋅L Z is minimized. This occurs when the quantities ± ⋅R N, ± ⋅S N, and ± ⋅T N are 

all negative; so if any one is positive, we choose the corresponding negative sign 
in Equation (12.16). The point of contact C is then given by 

 ( ) ( ) ( ) ( )[ ]1
2 sgn sgn sgnt= − ⋅ + ⋅ + ⋅C Q R N R S N S T N T . (12.17) 

 In the case that exactly one of the quantities ⋅R N , ⋅S N , and ⋅T N  is zero, 
the corresponding axis of the box is parallel to the plane, and any collision must 
occur at an edge. The endpoints 1C  and 2C  of the edge are given by modifying 
Equation (12.17) so that both signs are chosen for the term containing the zero 
dot product. For instance, if 0⋅ =T N , then we have 

 ( ) ( ) ( )[ ]1
1,2 2 sgn sgnt= − ⋅ + ⋅ ±C Q R N R S N S T . (12.18) 

This modification is taken one step further when two of the quantities ⋅R N , 
⋅S N , and ⋅T N  are zero. In this case, the collision occurs at a face of the box 

whose vertices are given by modifying Equation (12.17) so that both signs are 
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chosen for both of the terms containing zero dot products. For instance, if 
0⋅ =S N  and 0⋅ =T N , then the vertices 1C , 2C , 3C , and 4C  of the face in contact 

with the plane are given by 

 ( ) ( )[ ]1
1,2,3,4 2 sgnt= − ⋅ ± ±C Q R N R S T . (12.19) 

12.1.3  Spatial Partitioning 

Being able to determine whether an object collides with a plane is essential to 
fast collision detection in a spatially partitioned environment. Since regions of 
octrees and BSP trees are separated by planes, we can usually tell that a moving 
object does not collide with large parts of the world without having to perform 
collision detection tests with the actual geometry in those regions. 
 Suppose that an object moves from the point 1P  to the point 2P  during a single 
frame. Let , D=L N  represent a plane that partitions the world geometry in 
some way, and suppose that the moving object has an effective radius of effr  with 
respect to that plane. We say that the object lies completely on the positive side 
of the plane L if its position P satisfies 

 effr⋅ ≥L P , (12.20) 

and we say that the object lies completely on the negative side of the plane L if 
its position P satisfies 

 effr⋅ ≤ −L P . (12.21) 

If both of the points 1P  and 2P  represent positions of the object for which it lies 
completely on the positive side of the plane, then we know that no part of the 
object ever crosses into the negative side of the plane L. Similarly, if both of the 
points 1P  and 2P  represent positions of the object for which it lies completely on 
the negative side of the plane, then we know that no part of the object ever cross-
es into the positive side of the plane L. When these cases occur, we can avoid 
performing collision detection calculations between the moving object and any 
geometry that lies on the opposite side of the plane L. 

12.2  General Sphere Collisions 

We now study a powerful technique for determining when a moving sphere col-
lides with an arbitrary static environment. The method presented in this section is 
quite capable of serving as the entire collision detection system for a 3D game 
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engine, so long as it is acceptable to approximate moving objects by their bound-
ing spheres. It can also be employed to detect collisions between a moving sphere 
and any other arbitrarily complex moving object by subtracting velocities. 
 The collision detection method is based on the fact that the center of a sphere 
of radius r in contact with another object lies at exactly the distance r from the 
surface of the object. If we consider a sphere in contact with a polygonal model, 
the set of all possible centers forms a surface having three kinds of components. 
First, the set of centers for which a sphere is in contact with a single face of the 
model consists of the interior of the face moved outward in the face’s normal 
direction by the radius r. Second, the center of a sphere in contact with a single 
edge of the model lies on the cylinder of radius r having the edge as its axis. 
Third, the center of a sphere in contact with a single vertex of the model lies on 
the sphere of radius r centered at the vertex position. We can determine when a 
moving sphere collides with the model by determining when the ray representing 
the motion of the sphere’s center intersects the expanded surface of the model, as 
illustrated in Figure 12.3. 
 The procedure for determining whether a sphere of radius r collides with a 
polygonal model is summarized by the following three steps. 

A. Determine whether the sphere’s center intersects any of the faces of the mod-
el after they have been moved outward by the distance r. If it does intersect a 
face, then skip the next two steps. 

C

r

 
Figure 12.3. A sphere of radius r collides with a polygonal model when its center C in-
tersects the expansion of the surface by the distance r. 
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B. Determine whether the sphere’s center intersects any of the cylinders of radi-
us r corresponding to the expanded edges of the model. If it does intersect an 
edge, skip the third step. 

C. Determine whether the sphere’s center intersects any of the spheres of radius 
r corresponding to the expanded vertices of the model. 

 When performing intersections with the edge cylinders, we do not have to 
worry about whether the intersection occurs on the exterior surface because an 
intersection with the interior surface would be preceded along the ray by a face 
intersection (see Figure 12.4). Likewise, an interior intersection with a vertex 
sphere would be preceded by either a face intersection or an edge cylinder inter-
section. 
 A ray intersection with a triangular face of a model can be accomplished us-
ing the method discussed in Section 6.2.1. Each face’s plane needs to be offset by 
the distance r to determine the point of ray intersection. The barycentric coordi-
nates of that point can then be calculated using the original vertex positions of the 
triangle (see Chapter 6, Exercise 5). A ray intersection with a vertex sphere can 
be performed using the method discussed in Section 6.2.3 after translating the 
vertex’s position to the origin. Calculating the intersection of a ray and an edge 
cylinder is slightly more complicated since the cylinder can have an arbitrary 
orientation. 

 
Figure 12.4. A ray intersection with the interior surface of an edge cylinder must be pre-
ceded by a face intersection, in which case the cylinder intersection calculation would 
never have been performed. Thus, cylinder intersections can be assumed to lie on the 
exterior of the expanded surface. A similar argument applies to vertex spheres. 
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 Suppose we need to determine at what parameter value t the ray given by 
( )t t= +P S V intersects a cylinder of radius r corresponding to the edge having 

endpoints 1E  and 2E . It is convenient to translate our coordinate system by 1−E  so 
that one end of the cylinder is centered at the origin. A point P lies on the lateral 
surface of the infinite cylinder aligned to the edge if its distance from the axis 

2 1= −A E E  is equal to r. Using the distance formula derived in Section 5.1.1, we 
can describe the set of points on the surface of the infinite cylinder as follows. 

 

( )
( )

2 2 2

2
2

2

projr P

P
A

= −

⋅
= −

A P

P A  (12.22) 

Replacing P with the translated ray ( ) 1t −P E  gives us 

 ( ) ( )[ ] 2
02 2

0 2

tr t
A

+ ⋅
= + −

S V A
S V , (12.23) 

where 0 1= −S S E . Expanding this and collecting terms, we obtain the quadratic 
equation 2 2 0at bt c+ + = , where 

 

( )

( )( )

( )

2
2

2

0
0 2

2
02 2

0 2 .

a V
A

b
A

c r
A

⋅
= −

⋅ ⋅
= ⋅ −

⋅
= − −

V A

S A V A
S V

S A
S  (12.24) 

 The discriminant 24D b ac= −  tells us whether the ray intersects the infinite 
cylinder. If 4 0D > , we must also check that the point of intersection falls within 
the edge. Since the value of a is always positive, the parameter t corresponding to 
the first intersection along the path followed by the ray is given by 

 
2b b act

a
− − −= . (12.25) 

The signed length L of the projection of ( ) 1t −P E  onto the vector A is equal to 

 ( )[ ]1tL − ⋅
=

P E A

A
. 
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The ray intersects the portion of the cylinder corresponding to the edge if L is 
positive and less than A , so we simply need to check that 

 ( )[ ] 2
10 t A< − ⋅ <P E A . 

 When determining whether a swept sphere collides with a complex geomet-
rical model, we want to avoid as many ray-triangle, ray-cylinder, and ray-sphere 
intersects as possible. The first step should always be to determine whether a col-
lision would occur with the model’s bounding sphere. For a moving sphere of 
radius r and a model having a bounding sphere of radius R, we need to intersect a 
ray with a sphere of radius R r+ . The point of intersection is irrelevant—we only 
need to know whether an intersection occurs. 
 If the bounding sphere test passes, we must determine whether the swept 
sphere collides with a face, edge, or vertex of the model. To avoid unnecessary 
intersection tests, these components of a model should be sorted into some kind 
of hierarchical structure, such as an octree, and stored in an efficiently traversable 
format ahead of time. Creating separate structures for faces, edges, and vertices 
helps reduce memory access costs since edge and vertex intersects do not need to 
be performed if a face intersection is found. 
 Not all of a model’s edges and vertices need to be considered for collision 
detection. As shown in Figure 12.5, the cylinder surrounding an edge where two 
faces meet at an exterior angle of less than or equal to 180 degrees lies complete-
ly inside the expanded surface. Thus, no part of the cylinder contributes to the 
collision surface, and the edge can be safely ignored. A similar principle applies 
to vertices. If a particular vertex is not the endpoint of any eligible edge, then it 
must also lie completely inside the expanded surface. 
 To determine whether two faces sharing an edge with endpoints 1E  and 2E  
meet at an exterior angle less than or equal to 180 degrees, we need to know for 

 
Figure 12.5. When two faces meet at an exterior angle of less than 180 degrees, the cyl-
inder surrounding the shared edge lies completely inside the expanded collision surface. 
In this case, the cylinder does not need to be considered for collision detection. 
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which of the two faces the vertices 1E  and 2E  occur in counterclockwise order. 
(For each edge structure created by the BuildEdges() function shown in List-
ing 10.1, the triangle for which the vertices occur counterclockwise is always 
listed first.) Let 1N  be the normal to the face for which the vertices 1E  and 2E  oc-
cur in counterclockwise order, and let 2N  be the normal to the face for which the 
vertices 1E  and 2E  occur in clockwise order. The two faces meet at an exterior 
angle less than or equal to 180 degrees if 

 ( )[ ]1 2 1 2 0× − ⋅ ≥N E E N . (12.26) 

12.3  Sliding 

When a moving object collides with a stationary part of the environment and is 
not destroyed as a consequence of the collision, most games allow the object to 
slide along the surface of the geometry that it hit. This is especially useful when 
the moving object is a character under user control, since sliding avoids the frus-
tration of getting stuck whenever a player runs into something. 
 The distance by which an object slides over a surface during the single frame 
that it collides with part of the environment is determined by the angle with 
which the object struck the surface. As shown in Figure 12.6, a typical sliding 
implementation may choose to move an object to the point on the surface that is 
closest to the point at which it would have reached had the surface not been there 

N

Q

1P

2P

3P

 
Figure 12.6. The part of the path from 1P  to 2P  that lies beyond the point of collision Q is 
projected onto the direction perpendicular to the normal vector N to determine how far an 
object should slide. 
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to obstruct its motion. The difference between this point and the point at which 
the object hits the surface is perpendicular to the normal direction at the point of 
collision. 
 Suppose an object attempts to move from the point 1P  to the point 2P  during a 
single frame, but collides with the expansion of some surface at the point Q. If 
the unit normal direction to the surface at the point Q is N, then we can project 
the untraveled portion of the object’s path onto the direction perpendicular to the 
surface to find a new destination 3P  by calculating 

 ( )[ ]3 2 2= − − ⋅P P P Q N N. (12.27) 

Of course, we need to consider possible collisions between Q and 3P , so the pro-
cess repeats until either no collision occurs or the sliding distance falls below 
some minimum threshold. 
 When an object collides with a face of a model at a point Q, one may be 
tempted to interpolate the vertex normal vectors using the barycentric coordinates 
of the point Q to obtain the normal direction there. This should be avoided not 
only because it creates a discontinuity in the normal direction at the cylindrical 
edges and spherical vertices, but because it prevents the calculation of an accu-
rate sliding direction. Using a normal vector that is not truly perpendicular to the 
expanded surface causes the sliding direction to either take the moving object 
away from the surface or causes it to point inward, in which case another colli-
sion occurs immediately when attempting to slide. 

12.4  Collision of Two Spheres 

Suppose that two spheres are in motion and have a constant linear velocity during 
a time interval beginning at 0t =  and ending at 1t = . We assume that the spheres 
are not already intersecting and that neither sphere contains the other. Let the 
points 1P  and 2P  represent the initial and final positions of the first sphere’s cen-
ter, and let 1Q  and 2Q  be the initial and final positions of the second sphere’s cen-
ter, as shown in Figure 12.7. We define the velocity vectors PV  and QV  as 

 
2 1

2 1

P

Q

= −
= −

V P P

V Q Q . (12.28) 

The position ( )tP  of the first sphere’s center and the position ( )tQ  of the second 
sphere’s center are then given by 
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1P

2P

1Q

2Q PV

QV

 
Figure 12.7. Detecting a collision between two moving spheres. 

 
( )
( )

1

1

P

Q

t t
t t

= +
= +

P P V

Q Q V . (12.29) 

 Let Pr  and Qr  be the radii of the two spheres. We wish to determine whether 
the distance d between the centers ( )tP  and ( )tQ  is ever equal to P Qr r+  at some 
time [ )0,1t ∈ . If so, then the spheres are tangent to each other at time t, and a col-
lision has taken place. We examine the squared distance between ( )tP  and ( )tQ  
given by 

 ( ) ( )2 2d t t= −P Q . (12.30) 

Substituting the values given by Equation (12.29) for ( )tP  and ( )tQ , we have 

 2 2
1 1P Qd t t= + − −P V Q V . (12.31) 

For convenience, we define 

 
1 1

P Q

= −
= −

A P Q

B V V  (12.32) 

so that Equation (12.31) can be written as 
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 ( )

2 2

2 2 22

d t
A t t B

= +

= + ⋅ +

A B

A B . (12.33) 

Using the quadratic formula to solve for t gives us the formulas 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

1 2

2 2 2 2

2 2

B A d
t

B
B A d

t
B

− ⋅ − ⋅ − −
=

− ⋅ + ⋅ − −
=

A B A B

A B A B
. (12.34) 

Setting P Qd r r= +  gives us the times 1t  and 2t  when the two spheres are tangent, if 
ever. It is possible that the value inside the radical is negative, in which case the 
spheres never collide. It is also possible that 2 0B = , meaning that either both 
spheres are stationary or that both are traveling in the same direction at the same 
speed and thus cannot collide. 
 Since 2B  is not negative, the value of 1t  is always less than or equal to the 
value of 2t . The time 1t  represents the instant at which the spheres are tangent 
while they are still approaching each other. The time 2t , however, represents the 
instant at which the spheres are tangent while they are moving away from each 
other. Since we assume that the spheres are not intersecting to begin with, we are 
only interested in the time 1t  when they first collide. Thus, we only need to calcu-
late the following time t to determine when a collision occurs. 

 
( ) ( ) ( )2 2 2 2

2
P QB A r r

t
B

− ⋅ − ⋅ − − +  =
A B A B

 (12.35) 

If t does not fall in the range [ )0,1 , then no collision occurs during our time inter-
val of interest. 
 It is possible to determine that a collision cannot occur without evaluating 
Equation (12.35). The time t at which the squared distance 2d  is minimized can 
be found by setting the derivative of the right side of Equation (12.33) to zero as 
follows. 

 ( )22 2 0B t + ⋅ =A B  (12.36) 

Solving for t produces the following time at which the distance between the cen-
ters of the spheres is the least. 
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 2t
B
⋅= − A B  (12.37) 

Plugging this time into Equation (12.33) yields the smallest distance ever separat-
ing the centers of the two spheres: 

 ( ) 2
2 2

2d A
B
⋅

= −
A B

. (12.38) 

If ( )2 2
P Qd r r> + , then we know that the two spheres can never collide. 

 Once we have determined that a collision has occurred at time t, we can cal-
culate the centers ( )tP  and ( )tQ  of the two spheres at that time by plugging t into 
Equations (12.29). As shown in Figure 12.8, the point of contact C lies on the 
line segment connecting ( )tP  and ( )tQ  at a distance Pr  from ( )tP , and is thus 
given by 

 ( ) Pt r= +C P N, (12.39) 

where N is the unit length normal vector pointing from ( )tP  to ( )tQ : 

 ( ) ( )
( ) ( )
t t
t t

−
=

−
Q P

N
Q P

. (12.40) 

N

C
Pr

( )tP

( )tQ

 
Figure 12.8. The point of contact C where two spheres meet lies on the line connecting 
their centers at the time of the collision. 
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Chapter 12 Summary 

Collision of a Sphere and a Plane 

A sphere of radius r whose center moves from the point 1P  at time 0t =  to the 
point 2P  at time 1t =  collides with a plane , D=L N  at time 

 1t
′ ⋅= −
′ ⋅

L P

L V
, 

where , D r′ = −L N . 

Collision of a Box and a Plane 

A box described by the vectors R, S, and T whose center moves from the point 
1Q  at time 0t =  to the point 2Q  at time 1t =  collides with a plane , D=L N  at 

time 

 1t
′ ⋅= −
′ ⋅

L Q

L V
, 

where eff, D r′ = −L N  and effr  is the effective radius of the box, given by 

 ( )1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N . 

When a box collides with the plane at a point, the position C of the vertex mak-
ing contact with the plane is given by 

 ( ) ( ) ( ) ( )[ ]1
2 sgn sgn sgnt= − ⋅ + ⋅ + ⋅C Q R N R S N S T N T , 

where ( ) ( )1 2 1t t= + −Q Q Q Q . 

General Sphere Collisions 

Two faces sharing an edge with endpoints 1E  and 2E  meet at an exterior angle 
less than or equal to 180 degrees if 

 ( )[ ]1 2 1 2 0× − ⋅ ≥N E E N , 

where 1N  is the normal to the face for which the vertices 1E  and 2E  occur in coun-
terclockwise order, and 2N  is the normal to the face for which the vertices 1E  and 

2E  occur in clockwise order. 
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A ray ( )t t= +P S V intersects an infinite cylinder of radius r representing the 
edge with endpoints 1E  and 2E  at the parameter value 

 
2b b act

a
− − −= , 

where 
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The intersection occurs between the edge’s endpoints if 

 ( )[ ] 2
10 t A< − ⋅ <P E A . 

Sliding 

If an object traveling from the point 1P  to 2P  collides with a surface at the point 
Q, then the point 3P  to which it should slide is given by 

 ( )[ ]3 2 2= − − ⋅P P P Q N N, 

where N is the unit normal vector at the point Q. 

Collision of Two Spheres 

A sphere of radius Pr  moving from the point 1P  at time 0t =  to the point 2P  at time 
1t =  collides with another sphere of radius Qr  moving from the point 1Q  to the 

point 2Q  at time 

 
( ) ( ) ( )2 2 2 2

2
P QB A r r

t
B

− ⋅ − ⋅ − − +  =
A B A B

, 

where 

 ( ) ( )
1 1

2 1 2 1

= −
= − − −

A P Q

B P P Q Q . 
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Exercises for Chapter 12 

1. Determine the time t when a sphere having a radius of two meters collides 
with the plane 10 mx =  if its center lies at the origin at time 0t =  and it 
moves with a constant velocity of 2,0,1 m s. 

2. Suppose a collision occurs at the point Q on the surface of a cylinder of ra-
dius r whose ends are centered at the origin and the point A. Find an expres-
sion for the unit normal vector N at the point Q. 

3. Write a program that determines whether two spheres collide within a given 
time interval. The program should take as parameters the initial positions 
and velocities of the two spheres. If a collision occurs, the program should 
calculate the point of contact at the time of collision. 
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Chapter 13 

Linear Physics 

Simulating the accurate motion and interaction of dynamic objects adds a perva-
sive feeling of realism to a game and can usually be achieved without overly 
complex mathematics. This chapter and Chapter 14 discuss several general topics 
in classical mechanics that apply to game programming. We begin with an exam-
ination of linear motion, which refers to any motion that is not taking place in a 
rotating environment. 

13.1  Position Functions 

A position function provides the 3D position of an object as a function of time. 
Time is usually measured relative to some starting point when the position of an 
object is known. For instance, suppose that an object is traveling in a straight line 
with a constant velocity 0v . If the position of the object at time 0t =  is known to 
be 0x , then its position ( )tx  at any time afterward is given by 

 ( ) 0 0t t= +x x v . (13.1) 

 A velocity function describes the 3D velocity of an object as a function of 
time. The velocity function ( )tv  of an object is given by the derivative of the po-
sition function with respect to time. The time derivative is commonly denoted by 
placing a dot above the function being differentiated: 

 ( ) ( ) ( )dt t t
dt

= =v x x . (13.2) 

Since the velocity of the object whose position is given by Equation (13.1) is 
constant, its velocity function ( )tv  is simply given by 

 ( ) 0t =v v . (13.3) 
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An object undergoing a constant acceleration 0a  has the velocity function 

 ( ) 0 0t t= +v v a . (13.4) 

The acceleration function ( )ta  of an object, which describes the object’s 3D ac-
celeration as a function of time, is given by the derivative of the velocity 
function: 

 ( ) ( ) ( ) ( )
2

2

dt t t t
dt

= = =a v x x  . (13.5) 

 We can integrate any velocity function to determine the distance d that an 
object has traveled between times 1t  and 2t  as follows. 

 ( )
2

1

t

t

d t dt=  v  (13.6) 

Integrating Equation (13.4) from time zero to time t, we have 

 

( )0 0
0

21
0 02 .

t

d t dt

t t

= +

= +

 v a

v a  (13.7) 

Adding the distance d to an initial position 0x , the position function ( )tx  of a uni-
formly accelerating object is given by 

 ( ) 21
0 0 02t t t= + +x x v a . (13.8) 

 It is often the case that we are aware of the forces acting on an object, and we 
want to find a function that predicts the future position of the object. The sum of 
the forces 1 2, , , NF F F  acting on an object is equal to the object’s mass m times 
its acceleration ( )ta : 

 ( ) ( ) ( )
1

N

i
i

t m t m t
=

= =F a x . (13.9) 

Each force ( )i tF  may be a constant, a function of the object’s position, or a func-
tion of the object’s velocity. Equation (13.9) is a second-order differential equa-
tion whose solution ( )tx  is the object’s position function. The next section re-
views the general solutions to second-order differential equations, and solutions 
to specific force equations are discussed at various places throughout this chapter 
and Chapter 14. 
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13.2  Second-Order Differential Equations 

A second-order linear ordinary differential equation in the function ( )x t  is one of 
the following form. 

 ( ) ( ) ( ) ( )
2

2

d dx t a x t bx t f t
dt dt

+ + =  (13.10) 

Using prime symbols to denote derivatives, we can write this in a slightly more 
compact form as 

 ( ) ( ) ( ) ( )x t ax t bx t f t′′ ′+ + = . (13.11) 

In this chapter, a and b are always constants; but in general, they may be func-
tions of t. 

13.2.1  Homogeneous Equations 

The function ( )f t  is identically zero in many situations, in which case the differ-
ential equation is called homogeneous. Before attempting to find a solution ( )x t  
to the equation 

 ( ) ( ) ( ) 0x t ax t bx t′′ ′+ + = , (13.12) 

we make a couple of important observations. First, suppose that the functions 
( )1x t  and ( )2x t  are solutions to Equation (13.12). Then the functions ( )1Ax t  and 

( )2Bx t  are also solutions, where A and B are arbitrary constants. Furthermore, the 
function ( ) ( )1 2Ax t Bx t+  is also a solution to Equation (13.12) since we can write 

 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

1 2 1 2 1 2

1 1 1 2 2 2

0 0 0.

Ax t Bx t a Ax t Bx t b Ax t Bx t
A x t ax t bx t B x t ax t bx t
A B

′′ ′′ ′ ′+ + + + +
′′ ′ ′′ ′= + + + + +

= ⋅ + ⋅ =  (13.13) 

 A general solution ( )x t  to Equation (13.12) becomes evident upon making 
the substitution 

 ( ) rtx t e= . (13.14) 

The first and second derivatives of ( )x t  are given by 
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( )
( ) 2

rt

rt

x t re

x t r e

′ =
′′ = , (13.15) 

and substitution into Equation (13.12) yields 

 2 0rt rt rtr e are be+ + = . (13.16) 

Multiplying both sides by rte−  eliminates the exponentials, and we have 

 2 0r ar b+ + = . (13.17) 

Equation (13.17) is called the auxiliary equation and has the solutions 

 

2
1

2
2

1 4
2 2

1 4
2 2

ar a b

ar a b

= − + −

= − − − . (13.18) 

Unless 1 2r r= , the general solution to Equation (13.12) is thus given by 

 ( ) 1 2r t r tx t Ae Be= + . (13.19) 

Example 13.1. Solve the differential equation  
 
  ( ) ( ) ( )5 6 0x t x t x t′′ ′− + = . (13.20) 

Solution. The auxiliary equation is 

 2 5 6 0r r− + = , (13.21) 

which has the solutions 1 2r =  and 2 3r = . The general solution to Equation (13.20) 
is therefore given by 

 ( ) 2 3t tx t Ae Be= + , (13.22) 

where A and B are arbitrary constants.  

 If 1 2r r= , then it must be true that 2 4a b= , so Equation (13.12) can be written 
as 
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 ( ) ( ) ( )
2

0
4

ax t ax t x t′′ ′+ + = . (13.23) 

It is a simple task to verify that the function 

 ( ) ( )2a tx t te −=  (13.24) 

is a solution to Equation (13.23), so the general solution to Equation (13.12) 
when 1 2r r=  is given by 

 ( ) rt rtx t Ae Bte= + , (13.25) 

where we have set 1 2r r r= = . 
 If 2 4 0a b− < , then the roots of the auxiliary equation are complex. The solu-
tion given by Equation (13.19) is still correct, but it requires the use of complex 
arithmetic. We can express the solution entirely in terms of real-valued functions 
by using the formula 

 ( )cos sinα βi αe e β i β+ = +  (13.26) 

(see Appendix A, Section A.4). Assuming that a and b are real numbers, the roots 
1r  and 2r  of the auxiliary equation are complex conjugates, so we may write 

 
1

2

r α βi
r α βi

= +
= − , (13.27) 

where 

 2

2
1 4
2

aα

β b a

= −

= − . (13.28) 

The solution given by Equation (13.19) can now be written as 

 

( ) ( ) ( )

( ) ( )
( ) ( )[ ]

cos sin cos sin

cos sin .

α βi t α βi t

αt αt

αt

x t Ae Be
Ae βt i βt Be βt i βt
e A B βt A B i βt

+ −= +

= + + −

= + + −  (13.29) 

This solution can be expressed using two real constants 1C  and 2C  by setting 
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( )
( )

1
1 22

1
1 22

A C C i
B C C i

= +
= − . (13.30) 

Plugging these values into Equation (13.29) yields 

 ( ) ( )1 2cos sinαtx t e C βt C βt= + . (13.31) 

Example 13.2. Solve the differential equation  
 
  ( ) ( )4 0x t x t′′ + = .  (13.32) 

Solution. The auxiliary equation is 

 2 4 0r + = , (13.33) 

which has the solutions 1 2r i=  and 2 2r i= − . The solution to Equation (13.32) giv-
en by 

 ( ) 2 2it itx t Ae Be −= +  (13.34) 

is valid, but we can also express the solution entirely in terms of real-valued 
functions by using Equation (13.31) with 0α =  and 2β =  as 

 ( ) 1 2cos2 sin 2x t C t C t= + , (13.35) 

where 1C  and 2C  are arbitrary constants.  

 Equation (13.31) can be transformed into an alternate solution involving only 
a single trigonometric function by introducing the constant ( )2 2 1 2

1 2D C C= +  and 
writing 

 ( ) 1 2cos sinαt C Cx t De βt βt
D D

 = + 
 

. (13.36) 

Suppose that 1C  and 2C  are the lengths of the legs of a right triangle and that δ is 
the angle opposite the side of length 1C  (see Figure 13.1). Then D is the length of 
the hypotenuse, so 
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D

δ

1C

2C  
Figure 13.1. In this triangle, 1sin δ C D=  and 2cosδ C D= . This enables us to write 
Equation (13.36) in the form given by Equation (13.39). 

 

1

2

sin

cos

C δ
D

C δ
D

=

= . (13.37) 

Plugging these into Equation (13.36) yields 

 ( ) ( )cos sin sin cosαtx t De βt δ βt δ= + . (13.38) 

Using an angle sum identity (see Appendix B, Section B.4), this is equivalent to 

 ( ) ( )sinαtx t De βt δ= + . (13.39) 

13.2.2  Nonhomogeneous Equations 

Differential equations of the form 

 ( ) ( ) ( ) ( )x t ax t bx t f t′′ ′+ + =  (13.40) 

for which the function ( )f t  is not identically zero are called nonhomogeneous. 
The solution to a nonhomogeneous differential equation has the form 

 ( ) ( ) ( )x t g t p t= + , (13.41) 

where the function ( )g t  is the general solution to the corresponding homogene-
ous equation 

 ( ) ( ) ( ) 0x t ax t bx t′′ ′+ + = . (13.42) 

The function ( )p t  is called a particular solution to the nonhomogeneous equa-
tion and satisfies 
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 ( ) ( ) ( ) ( )p t ap t bp t f t′′ ′+ + = . (13.43) 

To see that ( ) ( )g t p t+  is in fact a solution to Equation (13.40), we simply plug it 
in: 

 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )0 .

g t p t a g t p t b g t p t
g t ag t bg t p t ap t bp t

f t f t

′′ ′′ ′ ′+ + + + +
′′ ′ ′′ ′= + + + + +

= + =  (13.44) 

 There are several methods for finding the particular solution to a nonhomo-
geneous differential equation. The method that we present in this section is called 
the method of undetermined coefficients and is sufficient for the nonhomogene-
ous equations encountered later in this chapter. The general idea upon which the 
method of undetermined coefficients is based is to guess at the form of the par-
ticular solution ( )p t  using the knowledge that we possess about the form of the 
function ( )f t . It is usually effective to choose ( )p t  to be a sum of terms that 
have the same form as ( )f t  or whose derivatives have the same form as ( )f t . 
Each term is multiplied by an unknown coefficient for which we attempt to find a 
solution by plugging ( )p t  into the nonhomogeneous equation. If coefficients can 
be determined for which ( )p t  satisfies Equation (13.40), then a particular solu-
tion has been found. The following examples illustrate this technique in detail. 

Example 13.3. Solve the differential equation  
 
  ( ) ( ) ( )5 6 12 4x t x t x t t′′ ′− + = − . (13.45) 

Solution. We have already found the general solution ( )g t  to the homogeneous 
equation in Example 13.1: 

 ( ) 2 3t tg t Ae Be= + . (13.46) 

The nonhomogeneous portion of Equation (13.45) is a linear polynomial, so we 
presume that the particular solution has the form 

 ( ) 2p t Dt Et F= + + , (13.47) 

where the coefficients D, E, and F need to be determined. Plugging ( )p t  into 
Equation (13.45) produces 
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( ) ( )
( )

2

2

12 4 2 5 2 6

6 10 6 2 5 6

t D Dt E Dt Et F

Dt D E t D E F

− = − + + + +

= + − + + − + . (13.48) 

Equating the coefficients of like terms from each side, we find that 

 0D = , 2E = , and 1F = . (13.49) 

Thus, the function ( ) 2 1p t t= +  is a particular solution to Equation (13.45). The 
complete solution is given by 

 
( ) ( ) ( )

2 3 2 1t t

x t g t p t

Ae Be t

= +

= + + + , (13.50) 

where A and B are arbitrary constants.  

Example 13.4. Solve the differential equation  
 
  ( ) ( )4 12sinx t x t t′′ + = .  (13.51) 

Solution. We have already found the general solution ( )g t  to the homogeneous 
equation in Example 13.2: 

 ( ) cos2 sin 2g t A t B t= + . (13.52) 

Equivalently, we could write ( )g t  in the form 

 ( ) ( )sin 2g t C t δ= + . (13.53) 

Since the nonhomogeneous portion of Equation (13.51) is a sine function, we 
presume that the particular solution has the form 

 ( ) sin cosp t D t E t= + , (13.54) 

where the coefficients D and E need to be determined. Plugging ( )p t  into Equa-
tion (13.51) produces 

 
( )12sin sin cos 4 sin cos

3 sin 3 cos .
t D t E t D t E t

D t E t
= − − + +
= +  (13.55) 
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Equating the coefficients of the sine and cosine terms from each side, we find 
that 

 4D =  and 0E = . (13.56) 

Thus, the function ( ) 4sinp t t=  is a particular solution to Equation (13.51). The 
complete solution is given by 

 ( ) cos 2 sin 2 4sinx t A t B t t= + +  (13.57) 

or, equivalently, 

 ( ) ( )sin 2 4sinx t C t δ t= + + , (13.58) 

where A, B, C, and δ are arbitrary constants.  

13.2.3  Initial Conditions 

In every solution to a second-order differential equation presented so far, there 
have been two arbitrary constants. These constants allow for the specification of 
certain initial conditions that dictate the values of ( )x t  and ( )x t′  when 0t = . Sup-
pose that the initial value of ( )x t  is required to be 0x  and the initial value of ( )x t′  
is required to be 0v . Then the arbitrary constants appearing in the function ( )x t  
can be determined by examining the following system of equations. 

 
( )
( )

0

0

0
0

x x
x v

=
′ =  (13.59) 

This is demonstrated in the following examples. 

Example 13.5. Solve the differential equation  
 
  ( ) ( ) ( )5 6 0x t x t x t′′ ′− + =  (13.60) 
 
subject to the initial conditions  
 

  
( )
( )
0 3
0 0

x
x

=
′ = .  (13.61) 
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Solution. The general solution to the differential equation has already been found 
in Example 13.1: 

 ( ) 2 3t tx t Ae Be= + . (13.62) 

The derivative of ( )x t  is given by 

 ( ) 2 32 3t tx t Ae Be′ = + . (13.63) 

Imposing the initial conditions given by Equation (13.61), we have 

 
( )
( )
0 3
0 2 3 0

x A B
x A B

= + =
′ = + = . (13.64) 

Solving this linear system yields 

 9A =  and 6B = − . (13.65) 

Thus, the solution to the differential equation that satisfies the initial conditions is 
given by 

 ( ) 2 39 6t tx t e e= − .  (13.66) 

Example 13.6. Solve the differential equation  
 
  ( ) ( )4 12sinx t x t t′′ + =   (13.67) 
 
subject to the initial conditions  
 

  
( )
( )
0 0
0 6

x
x

=
′ = .  (13.68) 

Solution. The general solution to the differential equation has already been found 
in Example 13.4: 

 ( ) cos2 sin 2 4sinx t A t B t t= + + . (13.69) 

The derivative of ( )x t  is given by 

 ( ) 2 sin 2 2 cos2 4cosx t A t B t t′ = − + + . (13.70) 
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Imposing the initial conditions given by Equation (13.68), we have 

 
( )
( )
0 0
0 2 4 6

x A
x B

= =
′ = + = , (13.71) 

from which we immediately deduce that 1B = . Thus, the solution to the differen-
tial equation that satisfies the initial conditions is given by the simplified function 

 ( ) sin 2 4sinx t t t= + .  (13.72) 

13.3  Projectile Motion 

In this section, we examine the motion of objects that are influenced only by the 
force of gravity. The convention used in this chapter is that the z axis points up-
ward in world space, so the downward acceleration of gravity g is the vector 

 0,0, g= −g , (13.73) 

where the scalar g is approximately 29.8 m s  on the surface of the earth. An ob-
ject in a gravitational field experiences a downward force of mg . 
 The position ( )tx  of a projectile having initial position 0x  and initial velocity 

0v  at time 0t =  is given by 

 ( ) 21
0 0 2t t t= + +x x v g . (13.74) 

Since the x and y components of g are 0, only the z component of Equation 
(13.74) is quadratic. Using ( )x t , ( )y t , and ( )z t  to represent the components of 

( )tx , we have 

 

( )
( )
( )

0

0

21
0 2

x

y

z

x t x v t
y t y v t

z t z v t gt

= +
= +

= + − , (13.75) 

where 0x , 0y , and 0z  are the components of the initial position and xv , yv , and zv  
are the components of the initial velocity. 
 When a projectile attains its maximum height, its vertical velocity is zero. 
We can determine the time t at which this occurs by solving the equation 

 ( ) 0zz t v gt= − = . (13.76) 
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Thus, a projectile reaches its maximum height at time 

 zvt
g

= . (13.77) 

Plugging this time into the function ( )z t  gives us the following expression for the 
maximum height h attained by a projectile. 

 
2

0 2
zvh z
g

= +  (13.78) 

Example 13.7. A projectile is launched from a platform 10 meters above the 
ground with an initial speed of 50 m s in a direction forming an angle of 70 de-
grees with the horizontal plane (see Figure 13.2). What is the maximum height 
above the ground attained by the projectile? 

0v

70°

10 m

 
Figure 13.2. The projectile used in Example 13.7. 

Solution. The projectile’s initial height 0z  and initial upward velocity zv  are given 
by 

 
0 10 m

50sin 70 47.0 m sz

z
v

=
= ° ≈ . (13.79) 

Plugging these values into Equation (13.78) and using the value 29.8 m s  for g, 
we have 123 mh ≈ .  
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 The horizontal distance that a projectile travels before returning to the height 
from which it was launched is called the projectile’s range. If a projectile is 
launched from a horizontal plane at 0 0z = , then the time t at which it lands is 
given by the solution to the equation 

 21
2 0zv t gt− = . (13.80) 

One solution to this equation is 0t = , corresponding to the time when the projec-
tile was launched. The other solution is 

 2 zvt
g

= , (13.81) 

and as we would expect, this is twice as long as it takes for the projectile to reach 
its maximum height. If we assume that the projectile follows a path lying in the 
x-z plane, then plugging this time into the function ( )x t  and subtracting the initial 
x coordinate 0x  gives us the following expression for the range r of a projectile. 

 2 x zv vr
g

=  (13.82) 

Example 13.8. A projectile is launched with an initial speed of 30 m s in a di-
rection forming an angle of 40 degrees with the ground (see Figure 13.3). As-
suming the ground is flat down range, how far does the projectile travel before 
landing? 

40°

0v

 
Figure 13.3. The projectile used in Example 13.8. 

Solution. We assume that the projectile is launched from the origin and that the 
path of the projectile lies in the x-z plane. The xv  and zv  components of the initial 
velocity are given by 
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30cos 40 23.0 m s
30sin 40 19.3 m s.

x

z

v
v

= ° ≈
= ° ≈  (13.83) 

Plugging these values into Equation (13.82) and using the value 29.8 m s  for g, 
the range of the projectile is 90.4 meters.  

 Given an initial speed s at which a projectile is launched, we can determine at 
what angle the initial velocity vector should point in order for the projectile to 
reach a particular maximum height or to have a particular range. For motion in 
the x-z plane, the components of the initial velocity are given by 

 
cos
sin ,

x

z

v s α
v s α

=
=  (13.84) 

where α is the angle formed between the initial trajectory and the horizontal 
plane. Given a desired maximum height h, we can plug the value of zv  into Equa-
tion (13.78) and solve for α to obtain 

 ( )1
0

1sin 2α g h z
s

−  = − 
 

. (13.85) 

Given a desired range r, we can plug the values of xv  and zv  into Equation (13.82) 
as follows. 

 
2 22 sin cos sin 2s sr α α α

g g
= =  (13.86) 

Solving for α gives us 

 1
2

1 sin
2

rgα
s

−= . (13.87) 

Since ( )sin sinπ α α− = , there are two angles that produce the range r in Equation 
(13.86): the angle α given by Equation (13.87) and its complementary angle 

2π α− . If the values inside the inverse sine functions in Equations (13.85) and 
(13.87) are greater than 1, then the initial speed s is not great enough to achieve 
the desired maximum height or range. 
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Example 13.9. A projectile is launched from the ground with an initial speed 
of 65 m s (see Figure 13.4). Assuming that the ground is flat, at what angle α 
should the projectile be launched so that it lands 400 meters down range? 

0v

α
400 m

 
Figure 13.4. The projectile used in Example 13.9. 

Solution. Plugging the values 65s =  and 400r =  into Equation (13.87), we have 
34α ≈ °. The complementary angle 56β = ° would also result in the projectile 

traveling a distance of 400 m. If we use the angle α, then the initial velocity is 
given by 

 
65cos34 53.9 m s
65sin 34 36.3 m s.

x

z

v
v

= ° ≈
= ° ≈   (13.88) 

13.4  Resisted Motion 

In the previous section, we neglected any kind of resistance to the motion of an 
object. In reality, an object’s velocity is slowed by the medium through which it 
is moving, whether it be air, water, or some other substance. A precise physical 
formulation of resisted motion is complicated, but a decent approximation is 
achieved by assuming that resistance produces a force that acts in the direction 
opposite that in which an object is moving and is proportional to the magnitude 
of the object’s velocity. 
 The force equation for an object of mass m influenced by gravity and experi-
encing resistance from the surrounding medium is given by 

 ( ) ( )m mk t m t− =g x x  , (13.89) 

where mk  is a constant describing the strength of the resistance. This can be re-
written as the following second-order nonhomogeneous differential equation. 
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 ( ) ( )t k t+ =x x g   (13.90) 

The method of undetermined coefficients provides the following particular solu-
tion to Equation (13.90). 

 ( )t t
k

= g
x  (13.91) 

Adding the general solution to the homogeneous differential equation, we have 

 ( ) ktt e t
k

−= + + g
x A B , (13.92) 

where the vectors A and B are arbitrary constants that can be determined by es-
tablishing initial conditions. Specifying the initial position 0x  and initial velocity 

0v , we have 

 
( )
( )

0

0

0
0

=
=

x x

x v . (13.93) 

Setting these equal to the values given by the functions ( )tx  and ( )tx  at time 0t =  
gives us the system 

 

0

0k
k

+ =

− + =

A B x

g
B v , (13.94) 

from which we can derive the following expressions for A and B. 

 

0
0 2

0
2

k k

k k

= − +

= −

g v
A x

g v
B  (13.95) 

The position function ( )tx  for an object moving through a resistive medium is 
given by 

 ( ) ( )0
0 2 1 ktkt t e

k k
−−= + + −g v g

x x . (13.96) 

The velocity function ( )tv  is given by the derivative of ( )tx : 
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 ( ) ( ) 0
ktt t e

k k
− = = + − 

 
g g

v x v . (13.97) 

 Over time, the velocity of an object whose motion is being resisted ap-
proaches a constant called the terminal velocity. The terminal velocity Tv  is given 
by the limit of the velocity function ( )tv  as t tends to infinity: 

 ( )limT
t

t
k→∞

= = g
v v . (13.98) 

 Although it is not apparent from Equation (13.96), the position function for 
an object moving through a resistive medium does converge to the familiar Equa-
tion (13.74) as the constant k approaches zero. This can be seen by evaluating the 
limit 

 ( ) ( )0
0 20

lim 1 kt

k

kt t e
k k

−

→

− = + + −  
g v g

x x . (13.99) 

Replacing the exponential function with its power series (see Appendix D, Equa-
tion (D.11)), we have 

 

( )

( )

( )

2 2 3 3 4 4
0

0 20

2 3 2 4

0 0
0

3 2 4
2 21 1

0 0 0 02 20

21
0 0 2

lim
2! 3! 4!

lim
2! 3! 4!

lim
3! 4!

.

k

k

k

k k t k t k tt t kt
k k

t t kt k tt k
k k

kt k tt k t t k

t t

→

→

→

−  = + + − + − + −    
  = + + − − + − + −    
  = + − + + − − + −    

= + +

g v g
x x

g
x v g

x v v g v g

x v g







 (13.100) 

13.5  Friction 

Friction is the well-known force that arises when two surfaces are in contact. We 
discuss two types of friction in this section: kinetic friction and static friction. 
Kinetic friction occurs between two surfaces that are in motion relative to each 
other and has the effect of resisting that motion. Static friction refers to the force 
that holds a stationary object in place when it is in contact with another surface. 
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 The forces resisting the motion of one object sliding across the surface of 
another object are very complex, but it turns out that the net kinetic frictional 
force KF  can usually be approximated quite accurately using the simple formula 

 K KF μ N= − , (13.101) 

where N is the normal component of the force by which the object is bound to the 
surface (usually gravity), and Kμ  is called the coefficient of kinetic friction. The 
minus sign appears in Equation (13.101) because the kinetic friction force always 
acts in the direction opposite that in which an object is moving across a surface. 
The coefficient of kinetic friction Kμ  is a positive constant that depends on the 
types of the surfaces in contact with each other. Typical values of Kμ  for various 
surfaces are listed in Table 13.1 at the end of this section. 

Example 13.10. Suppose that a 10-kg block is sliding down a plane that is in-
clined at an angle of 30 degrees. If the coefficient of kinetic friction is 0.5Kμ = , 
determine the block’s acceleration. 

θmgcosmg θ

sinmg θ

Kμ N−

 
Figure 13.5. The block used in Example 13.10. 

Solution. Let m be the mass of the block, and let θ  be the angle by which the 
plane is inclined. As shown in Figure 13.5, the block is acted on by a gravitation-
al force and a resisting force due to friction. The gravitational force can be divid-
ed into components that are parallel to the plane and perpendicular to the plane. 
The parallel component GF  is given by 

 sinGF mg θ=  (13.102) 
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and pulls the block across the plane. The perpendicular component produces the 
force holding the block to the plane: 

 cosN mg θ= . (13.103) 

The force KF  due to kinetic friction is given by 

 cosK K KF μ N μ mg θ= − = −  (13.104) 

and acts in the direction opposite that of GF . The acceleration a of the block is 
equal to the net force acting on it divided by its mass: 

 sin cosG K
K

F Fa g θ μ g θ
m
+= = − . (13.105) 

Plugging in the angle of inclination and coefficient of kinetic friction, we obtain 
the result 

 ( ) ( )2 2 21 39.8 m s 0.5 9.8 m s 0.656 m s
2 2

a = ⋅ − ⋅ ⋅ ≈ . (13.106) 

Notice that the mass of the block is inconsequential.  

 The static friction force prevents an object on a surface from moving by op-
posing any tangential force that may be acting on it. The maximum force SF  that 
can be exerted due to static friction is given by 

 S SF μ N= − , (13.107) 

where N is the normal force and Sμ  is called the coefficient of static friction. 
Again, we use a minus sign to indicate that the force acts in the direction opposite 
that of any force trying to move the object. Typical values of Sμ  for various sur-
faces are listed in Table 13.1. 
 As soon as a force on an object exceeds the maximum value of SF  given by 
Equation (13.107), the object begins to move, and the static friction force is re-
placed by the kinetic friction force KF . It is often the case that K SF F< , so less 
force is required to move an object once it has been set in motion than was re-
quired to initiate the motion. 
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Surfaces Kμ  Sμ  

Aluminum on aluminum 1.40 1.10 

Aluminum on steel 0.47 0.61 

Copper on steel 0.36 0.53 

Steel on steel 0.57 0.74 

Nickel on nickel 0.53 1.10 

Glass on glass 0.40 0.94 

Copper on glass 0.53 0.68 

Oak on oak (parallel to grain) 0.48 0.62 

Oak on oak (perpendicular to grain) 0.32 0.54 

Rubber on concrete (dry) 0.90 1.00 

Rubber on concrete (wet) 0.25 0.30 

Table 13.1. Typical values of the coefficient of kinetic friction Kμ  and coefficient of 
static friction Sμ . 

Example 13.11. A block is resting on a horizontal plane for which the coeffi-
cient of static friction is given by 0.5Sμ = . Determine by what angle the plane 
needs to be inclined before the block begins sliding under the influence of 
gravity. 

Solution. We need to determine when the component of the gravitation force that 
is parallel to the plane exceeds the static friction force. This occurs when 

 sin cosS Smg θ μ N μ mg θ= = , (13.108) 

where θ  is the angle of inclination. Solving for θ , we have 

 1tan 26.6Sθ μ−= ≈ °.  (13.109) 
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Chapter 13 Summary 

Force Equation 

The acceleration ( )ta  of an object multiplied by its mass m is equal to the sum of 
the forces acting on it: 

 ( ) ( ) ( )
1

N

i
i

t m t m t
=

= =F a x . 

Second-Order Differential Equations 

The general solution to the homogeneous second-order differential equation 

 ( ) ( ) ( ) 0x t ax t bx t′′ ′+ + =  

is given by 

 ( ) 1 2r t r tx t Ae Be= + , 

where 

 

2
1

2
2

1 4
2 2

1 4
2 2

ar a b

ar a b

= − + −

= − − − . 

If 1 2r r r= = , then the general solution is given by 

 ( ) rt rtx t Ae Bte= + . 

If 1r  and 2r  are complex numbers, then the general solution can also be written as 

 ( ) ( )1 2cos sinαtx t e C βt C βt= + , 

where 

 2

2
1 4
2

aα

β b a

= −

= − . 
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This is equivalent to the solution 

 ( ) ( )sinx t D βt δ= + , 

where 

 

2 2
1 2

11sin .

D C C
Cδ
D

−

= +

=  

Projectile Motion 

The position ( )tx  of a projectile is given by the function 

 ( ) 21
0 0 2t t t= + +x x v g , 

where 0x  is the initial position, 0v  is the initial velocity, and 0,0, g= −g  is the 
acceleration of gravity. The maximum height h attained by the projectile is given 
by 

 
2

0 2
zvh z
g

= + , 

and the range r of the projectile is given by 

 2 x zv vr
g

= . 

Resisted Motion 

The position function ( )tx  for an object moving through a resistive medium is 
given by 

 ( ) ( )0
0 2 1 ktkt t e

k k
−−= + + −g v g

x x , 

where k represents the intensity of the damping force. The terminal velocity Tv  is 
given by 

 T k
= g

v . 
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Friction 

The force of kinetic friction KF  is given by 

 K KF μ N= − , 

where Kμ  is the coefficient of kinetic friction. The kinetic friction force acts in 
the direction opposite that of the motion. 

The maximum force of static friction SF  is given by 

 S SF μ N= − , 

where Sμ  is the coefficient of static friction. The static friction force acts in the 
direction opposite that of any tangential force trying to move an object. 

Exercises for Chapter 13 

1. Solve the differential equation 

 ( ) ( ) ( )6 9 9 3x t x t x t t′′ ′− + = + . 

2. Solve the differential equation 

 ( ) ( )16 0x t x t′′ + =  

 subject to the initial conditions ( )0 3x =  and ( )0 1x′ = . 

3. A projectile is launched from a platform 20 meters above the ground with an 
initial speed of 20 m s in a direction forming an angle of 45 degrees with the 
horizontal plane. What is the maximum height above the ground attained by 
the projectile? Assume that the acceleration of gravity has magnitude g. 

4. For what period of time does the projectile in Exercise 3 travel before it 
lands on the ground? 

5. Suppose a projectile is launched from the origin and travels toward a point P 
in the x-z plane as shown in Figure 13.6. Assuming an acceleration of gravi-
ty 0,0, g= −g , at what initial velocity 0v  would the projectile have to be 
launched so that it strikes the point P under the constraint that its path at-
tains a maximum vertical difference h with the straight line connecting the 
origin and the point P? 
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O

P
h

0v

x

z

 
Figure 13.6. The projectile launched in Exercise 5. 

6. A rock is dropped from rest at 50 meters above the ground and allowed to 
fall straight down through a resistive medium. Suppose that 11sk −= , and use 
Newton’s method (see Section 6.1.4) to approximate the time t when the 
rock hits the ground. 

7. An object of mass M is hanging from a rope that runs over a frictionless pul-
ley and connects to another object of mass m lying on an inclined plane that 
forms an angle θ  with the horizontal (see Figure 13.7). The coefficient of 
kinetic friction on the incline is Kμ . Assuming that M is much larger than m, 
determine the downward acceleration a of the hanging object. [Hint. Both 
masses are being accelerated, so the sum of the forces acting on the system 
should be set equal to ( )M m a+ .] 

m

M

 
Figure 13.7. The system used in Exercise 7. 
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Chapter 14 
Rotational Physics 

This chapter continues the survey of physics that begins in Chapter 13. We now 
enter the domain of rotational mechanics to examine the behavior of rotating ob-
jects and the forces experienced in a rotating environment. Rotational physics has 
a wide range of applications in game programming, from interaction between 
players and objects in the environment to space combat simulations. Virtually 
any object that is flying through the air or otherwise not resting on a surface is 
probably rotating, and thus would benefit from an accurate simulation of its 
motion. 

14.1  Rotating Environments 

This section discusses the physics that apply to an object in a rotating environ-
ment. A rotating environment refers to any frame of reference that is rotating 
about some axis and includes everything from a merry-go-round to the planet 
Earth. We begin with the introduction of angular velocity, and then we investi-
gate the forces experienced by an object in the rotating reference frame. 

14.1.1  Angular Velocity 

Suppose that a particle of mass m is rotating about an axis parallel to the unit vec-
tor A because it is attached to the axis by a string of length r (see Figure 14.1). 
Let the vectors X and Y be unit vectors lying in the plane perpendicular to A 
such that the axes X, Y, and A form a right-handed coordinate system (i.e., 

× =X Y A). Let ( )θ t  represent the counterclockwise angle that the projection of 
the string onto the X-Y plane makes with the vector X at time t. The angular ve-
locity of the particle is defined to be the rate at which this angle is changing, and 
is usually denoted by ω: 

 ( ) ( ) ( )dω t θ t θ t
dt

= = . (14.1) 
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Figure 14.1. The angular velocity of a particle is a vector that is parallel to the axis of 
rotation A and whose magnitude is equal to the rate of change of the angle formed in the 
plane perpendicular to the axis. 

The angular velocity is often written as a vector that is parallel to the axis of rota-
tion A and has the magnitude ( )ω t . The vector angular velocity ( )tω  is defined 
as 

 ( ) ( ) ( )t ω t θ t= =ω A A . (14.2) 

 The speed at which a rotating particle moves through space is calculated by 
multiplying the particle’s angular velocity by its distance from the axis of rota-
tion. For the particle shown in Figure 14.1, the speed ( )v t  is given by 

 ( ) ( )v t ω t r= . (14.3) 

However, this tells us nothing about what direction the particle is moving. Let the 
vector function ( )tr  represent the position of the particle relative to a fixed origin 
lying on the axis of rotation. As illustrated in Figure 14.2, the linear velocity vec-
tor ( )tv  of the particle is given by 

 ( ) ( ) ( )t t t= ×v ω r  (14.4) 
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α

( )tr

( )tω
( ) ( )t t×ω r

 
Figure 14.2. The linear velocity ( )tv  is equal to the cross product of the angular velocity 

( )tω  and the position ( )tr . 

since the distance from the particle to the axis of rotation is equal to ( ) sint αr , 
and the velocity ( )tv  is always perpendicular to the direction pointing toward the 
axis. 

14.1.2  The Centrifugal Force 

We continue to consider the example in which a particle is fastened by a string to 
the axis about which it is rotating. The linear acceleration ( )ta  of the particle is 
equal to the derivative of its linear velocity with respect to time. Taking the time 
derivative of the function ( )tv  given by Equation (14.4), we have 

 ( ) ( ) ( ) ( ) ( ) ( )t t t t t t= = × + ×a v ω r ω r  . (14.5) 

Since ( )tr  is equal to the linear velocity ( )tv  of the particle, we can write 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]t t t t t t= × + × ×a ω r ω ω r . (14.6) 

If the angular velocity is constant, then the ( ) ( )t t×ω r  term of the acceleration is 
zero. The ( ) ( ) ( )[ ]t t t× ×ω ω r  term, however, is always present and points in the 
direction from the particle toward the axis of rotation (see Figure 14.3). This part 
of the acceleration arises from the tension in the string connecting the particle to 
the axis of rotation. The particle itself experiences an equal but opposite force 
known as the centrifugal force. The centrifugal force, given by 

 ( ) ( ) ( )[ ]( )centrifugal m t t t= − × ×F ω ω r , (14.7) 
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( ) ( ) ( )[ ]( )m t t t× ×ω ω r

 
Figure 14.3. The centrifugal force. 

is responsible for the well-known effect that causes objects in a rotating system 
to move away from the axis of rotation. In the case that ( )tr  and ( )tω  are per-
pendicular, the centrifugal force can be expressed as the scalar 

 
2

2
centrifugal

mvF mω r
r

= = , (14.8) 

where r is the radial distance from the particle to the axis of rotation. 

14.1.3  The Coriolis Force 

We now consider a somewhat more complicated situation in which a particle is 
moving on the surface of a rotating object. Suppose that a particle of mass m is 
rotating about some axis with angular velocity ( )tω . Further suppose that the 
particle is also moving relative to the rotating system with a velocity ( )r tv . Then 
the velocity ( )tv  of the particle for a stationary observer outside the system is 
given by 

 ( ) ( ) ( ) ( )rt t t t= × +v ω r v , (14.9) 

where ( )tr  is the position of the particle relative to some origin lying on the axis 
of rotation. Since the velocity ( )r tv  is rotating with the system, a stationary ob-
server sees the particle accelerating with respect to a fixed coordinate system ac-
cording to the function 

 ( ) ( ) ( ) ( )f r rt t t t= × +a ω v a , (14.10) 
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where ( ) ( )r rt t=a v  is the acceleration of the particle in the rotating reference 
frame. The total linear acceleration ( )ta  of the particle is thus given by 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
f

r r

t t t t t t t
t t t t t t t

= = × + × +
= × + × + × +

a v ω r ω r a

ω r ω r ω v a

 
  . (14.11) 

Since ( )tr  is equal to the linear velocity ( )tv  of the particle, we can write 

 ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )2 r rt t t t t t t t t= × + × × + × +a ω r ω ω r ω v a . (14.12) 

The force ( )tF  experienced by the particle is therefore 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )2 .r r

t m t m t t m t t t
m t t m t

= = × + × ×
+ × +

F a ω r ω ω r

ω v a


 (14.13) 

In the reference frame of the rotating system, the force ( )r tF  on the object ap-
pears to be the following. 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( )2
r r

r

t m t t m t t m t t t
m t t

= = − × − × ×
− ×

F a F ω r ω ω r

ω v


 (14.14) 

As expected, the centrifugal force shows up again, but there is also a new term 
called the Coriolis force that acts on the particle in a direction perpendicular to its 
velocity in the rotating reference frame (see Figure 14.4). The Coriolis force, 
given by 

 ( ) ( )Coriolis 2 rm t t= − ×F ω v , (14.15) 

O

α

( )tr

( )tω

( )r tv

( ) ( )2 rm t t×ω v

 
Figure 14.4. The Coriolis force. 
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arises only when the particle is moving within the rotating system. It is this force 
that is responsible for the large-scale cyclonic motion of certain weather phe-
nomena. For instance, hurricanes rotate counterclockwise in the northern hemi-
sphere and clockwise in the southern hemisphere because the cross product in 
Equation (14.15) changes sign at the equator. 

14.2  Rigid Body Motion 

We define a rigid body to be a system of particles that are absolutely fixed with 
respect to each other and thus share the same angular velocity. A solid object can 
be thought of as a collection of an infinite number of particles, each having an 
infinitesimal mass. Since the particles composing a rigid body do not move with 
respect to each other, the centrifugal and Coriolis forces do not apply when the 
object is rotating. The only motions that a rigid body may undergo are the linear 
motion associated with the path along which it travels through space and the an-
gular motion that it experiences because it is rotating about some axis. In this 
section, we investigate the rotational properties of a rigid body and the effects of 
external forces on this rotation. 

14.2.1  Center of Mass 

When a rigid body rotates freely in the absence of any external forces, it does so 
about an axis that passes through the body’s center of mass. The center of mass is 
the point within the rigid body at which a force could be applied in any direction 
without causing any net torque when that point is considered the origin. 
 Suppose that a rigid body is composed of some number of particles whose 
position and mass are known. The total mass M of the system of particles is given 
by 

 k
k

M m= , (14.16) 

where km  is the mass of the k-th particle, and the summation is taken over all of 
the particles belonging to the system. Let kr  denote the position of the k-th parti-
cle. The center of mass C of the system is defined to be 

 1
k k

k
m

M
= C r . (14.17) 

For a solid object, we compute the total mass of a continuous volume using the 
integral 
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 ( )
V

M dm=  r , (14.18) 

where ( )dm r  represents the differential mass at the position r, and V is the vol-
ume occupied by the object. If the density at the position r is described by the 
function ( )ρ r , then this integral can be written as 

 ( )
V

M ρ dV=  r . (14.19) 

The center of mass for a solid object is then computed using the integral 

 ( )1
V
ρ dV

M
= C r r . (14.20) 

Example 14.1. Calculate the center of mass of a cone of radius R, height h, and 
constant density ρ, whose base is centered at the origin on the x-y plane (see 
Figure 14.5). 

h

R

z

x y
 

Figure 14.5. The cone used in Example 14.1. 

Solution. We use cylindrical coordinates. The radius ( )r z  of a cross section of 
the cone at a height z above the x-y plane is given by 

 ( ) ( ) Rr z h z
h

= − . (14.21) 
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We calculate the total mass of the cone using Equation (14.19) to integrate over 
the volume it occupies. The differential volume dV  in cylindrical coordinates is 
given by 

 dV r dr dθ dz= , (14.22) 

so the integral that we need to evaluate is 

 ( )[ ] 2

0

h

M ρπ r z dz=  , (14.23) 

where the integrand represents the differential mass of a disk at height z above 
the x-y plane. Replacing ( )r z  with the value given by Equation (14.21), we have 

 

( )
2

2
2

0

21
3 .

hRM ρπ h z dz
h

ρπR h

= −

=


 (14.24) 

Due to the cylindrical symmetry of the cone, the x and y components of the cen-
ter of mass are clearly zero. The z component of the center of mass is found by 
applying Equation (14.20): 

 
( )2

0 0 0

1 h π r z

zC ρzr dr dθ dz
M

=    . (14.25) 

Evaluating the integral over θ  leaves us with 

 
( )

0 0

2 h r z

z
ρπC zr dr dz

M
=   . (14.26) 

We next integrate over r and replace ( )r z  with the value given by Equation 
(14.21): 

 

( )

( )

2
2

2
0

2
2 2 3

2
0

2 .

h

z

h

ρπRC z h z dz
Mh

ρπR h z hz z dz
Mh

= −

= − +



  (14.27) 
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Finally, integrating over z, we obtain 

 
2 2

12 4z
ρπR h hC

M
= = . (14.28) 

Thus, the center of mass of the cone is given by 0,0, 4h=C .  

14.2.2  Angular Momentum and Torque 

Recall that the linear momentum p of a particle having mass m moving at a ve-
locity v is given by m=p v. Just as angular velocity is the rotational analog of 
linear velocity, there exists a quantity called angular momentum that serves as 
the rotational analog of linear momentum. 
 Suppose that a particle of mass m is rotating about some axis with an angular 
velocity of ( )tω  and that the position of the particle is given by the function ( )tr . 
The angular momentum ( )tL  of the particle is defined to be 

 ( ) ( ) ( )t t t= ×L r p , (14.29) 

where ( ) ( )t m t=p v  is the linear momentum of the particle. 
 Differentiating both sides of Equation (14.29) gives us 

 ( ) ( ) ( ) ( ) ( )t t t t t= × + ×L r p r p   . (14.30) 

Since ( ) ( )t t=r v , the vectors ( )tr  and ( )tp  point in the same direction, so the 
cross product ( ) ( )t t×r p  is zero. Thus, 

 ( ) ( ) ( ) ( ) ( )t t t t m t= × = ×L r p r v   . (14.31) 

The vector ( )m tv  is equal to the net force ( )tF  acting on the particle, so we can 
write 

 ( ) ( ) ( )t t t= ×L r F . (14.32) 

 The quantity on the right side of Equation (14.32) is called the torque ( )tτ  
being applied to the particle: 

 ( ) ( ) ( )t t t= ×τ r F . (14.33) 
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Torque is the rotational analog to linear force and induces an angular accelera-
tion. If the net torque acting on a particle is zero, then the angular momentum 
remains constant because 

 ( ) ( )t t=L τ . (14.34) 

14.2.3  The Inertia Tensor 

Angular momentum is related to angular velocity in a much more complicated 
way than linear momentum is related to linear velocity. In fact, the angular mo-
mentum vector and the associated angular velocity vector do not necessarily 
point in the same direction. The relationship between these two quantities is the 
topic of this section. 
 The angular momentum of a rigid body composed of a set of particles is 
equal to the sum 

 ( ) ( ) ( )k k
k

t t t= ×L r p , (14.35) 

where ( )k tr  represents the position of the k-th particle, ( )k tp  represents the mo-
mentum of the k-th particle, and the summation is taken over all the particles be-
longing to the system. Since the linear momentum ( )k tp  can be written as 

 ( ) ( ) ( ) ( )k k k k kt m t m t t= = ×p v ω r , (14.36) 

the angular momentum becomes 

 ( ) ( ) ( ) ( )[ ]k k k
k

t m t t t= × ×L r ω r . (14.37) 

Using the vector identity given by Theorem 2.9(f), 

 ( ) ( )2P× × = × × = − ⋅P Q P P Q P Q P Q P, (14.38) 

the angular momentum can also be written as 

 ( ) ( ) ( ) ( ) ( )[ ] ( )( )2 .k k k k
k

t m r t t t t t= − ⋅L ω r ω r  (14.39) 

Dropping the function-of-t notation for the moment, we can express the i-th 
component of L by 
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 ( ) ( )
3

2

1
i k k i k i k j j

k j
L m r ω ω

=

 
= − 

 
 r r . (14.40) 

We can express the quantity iω  as 

 
3

1
i j ij

j
ω ω δ

=

= , (14.41) 

where ijδ  is the Kronecker delta defined by Equation (2.42). This substitution al-
lows us to write iL  as 

 

( ) ( )

( ) ( )

3
2

1

3
2

1
.

i k k j ij k i k j j
k j

j k ij k k i k j
j k

L m r ω δ ω

ω m δ r

=

=

= −  

= −  

 

 

r r

r r  (14.42) 

The sum over k can be interpreted as the ( ),i j  entry of a 3 3×  matrix : 

 ( ) ( )2
ij k ij k k i k j

k
m δ r= −   r r . (14.43) 

This allows us to express iL  as 

 
3

1
i j ij

j
L ω

=

=  , (14.44) 

and thus the angular momentum ( )tL  can be written as 

 ( ) ( )t t=L ω . (14.45) 

 The entity  is called the inertia tensor and relates the angular velocity of a 
rigid body to its angular momentum. The inertia tensor also relates the torque 

( )tτ  acting on a rigid body to the body’s angular acceleration ( ) ( )t t=α ω . Dif-
ferentiating both sides of Equation (14.45) gives us 

 ( ) ( ) ( )t t t= =L τ α  . (14.46) 

 Written as a 3 3×  matrix, the inertia tensor is given by 
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2 2

2 2

2 2

k k k k k k

k k k k k k k
k

k k k k k k

y z x y x z
m x y x z y z

x z y z x y

 + − −
 = − + − 
 − − + 

 , (14.47) 

where , ,k k k kx y z=r . Clearly,  is a symmetric matrix. The diagonal entries 
11 , 22 , and 33  are called the moments of inertia with respect to the x, y, and z 

axes, respectively. The off-diagonal entries are called the products of inertia. 
Equation (14.47) can also be expressed as 

 ( )2
3k k k k

k
m r= − ⊗I E r r , (14.48) 

where 3E  is the 3 3×  identity matrix, and the operation ⊗ is the tensor product 
giving 

 

2

2

2

k k k k k

k k k k k k k

k k k k k

x x y x z
x y y y z
x z y z z

 
 ⊗ =  
  

r r . (14.49) 

 For a continuous mass distribution, Equation (14.43) is formulated as the 
integral 

 ( ) ( )2
ij ij i j

V
δ r r r dm= − r , (14.50) 

where ( )dm r  represents the differential mass at the position r, and V is the vol-
ume occupied by the rigid body. If the density at the position r is described by 
the function ( )ρ r , then this integral can be written as 

 ( ) ( )2
ij ij i j

V
δ r r r ρ dV= − r . (14.51) 

 Because the inertia tensor is a summation, the inertia tensor for a collection 
of objects is simply the sum of the inertia tensors for each object calculated indi-
vidually. This property is sometimes useful in the calculation of inertia tensors 
for complex objects that can be broken into simpler pieces. (See Exercise 5.) 

Example 14.2. Calculate the moment of inertia about the z axis of a solid 
sphere of radius R that is centered at the origin and has a uniform density ρ. 
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Solution. The moment of inertia about the z axis is equal to the ( )3,3  entry of the 
inertia tensor . We need to evaluate the integral 

 ( )2 2
33

V
r z ρdV= − . (14.52) 

The quantity 2 2r z−  is equal to the squared distance from the z axis, which in 
spherical coordinates is equal to 2 2sinr φ, where φ is the polar angle. The differ-
ential volume dV  in spherical coordinates is given by 

 2 sindV r φdr dθ dφ= , (14.53) 

so Equation (14.52) becomes 

 

( )
2

2 2 2
33

0 0 0
2

4 3

0 0 0

sin sin

sin .

π π R

π π R

r φ ρr φdr dθ dφ

ρ r φdr dθ dφ

=

=

  

  



 (14.54) 

Evaluating the integrals over r and θ , we have 

 ( )5 3 5 22 2
33 5 5

0 0

sin 1 cos sin
π π

πρR φdφ πρR φ φdφ= = −  . (14.55) 

By making the substitutions cosu φ= −  and sindu φdφ= , we can evaluate the re-
maining integral as follows. 

 

( )
1

5 22
33 5

1
58

15

1πρR u du

πρR
−

= −

=



 (14.56) 

The volume of the sphere is given by 34
3V πR= , so we can write the moment of 

inertia as 

 2 22 2
33 5 5ρVR mR= = , (14.57) 

where m ρV=  is the mass of the sphere.  
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 Due to the symmetry of the sphere, its moments of inertia about the x and y 
axes are also equal to 22

5 mR . Furthermore, the products of inertia are zero, so the 
inertia tensor  of a sphere has the form 

 

22
5

22
5

22
5

0 0
0 0
0 0

mR
mR

mR

 
 =  
  

 . (14.58) 

Consequently, the angular momentum of a rotating sphere may be written in 
terms of a scalar moment of inertia 22

5I mR= : 

 ( ) ( )t I t=L ω . (14.59) 

Example 14.3. Calculate the inertia tensor of a solid cylinder of radius R and 
height h that is aligned to the z axis, centered at the origin, and has a uniform 
density ρ (see Figure 14.6). 

R

y
x

z

2h

2h

 
Figure 14.6. The cylinder used in Example 14.3. 

Solution. We first calculate the moment of inertia about the z axis using cylindri-
cal coordinates to evaluate the integral 

 ( )2 2
33

V
s z ρdV= − . (14.60) 
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(We have used 2s  to represent the squared distance from the origin to avoid con-
fusion with the radial distance r in cylindrical coordinates.) The quantity 2 2s z−  
is equal to the squared distance from the z axis, which in cylindrical coordinates 
is simply 2r . The differential volume dV  in cylindrical coordinates is given by 

 dV r dr dθ dz= , (14.61) 

so Equation (14.60) becomes 

 

2 2
3

33
2 0 0

41
2 .

h π R

h

ρ r dr dθ dz

πρhR
−

=

=

  

 (14.62) 

The volume of the cylinder is given by 2V πhR= , so we can write the moment of 
inertia as 

 2 21 1
33 2 2ρVR mR= = , (14.63) 

where m ρV=  is the mass of the cylinder. Since a cylinder is symmetric about the 
z axis, we must have 11 22=  . We can calculate the moment of inertia about the 
x axis by evaluating the integral 

 ( )2 2
11

V
s x ρdV= − . (14.64) 

Making the substitutions 2 2 2s r z= +  and 2 2 2cosx r θ= , we have 

 

( )
2 2

2 2 2 2
11

2 0 0

2 2 2 2
3 2 2

2 0 0 2 0 0

cos

sin

h π R

h

h π R h π R

h h

ρ r z r θ r dr dθ dz

ρ r θ dr dθ dz ρ z r dr dθ dz

−

− −

= + −

= +

  

     



. (14.65) 

Evaluating the integrals for the variables r and z in the first term, and evaluating 
all three integrals in the second term gives us 

 
2

4 2 3 21 1
11 4 12

0

sin
π

ρhR θ dθ πρh R= + . (14.66) 

Using the trigonometric identity 
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 2 1 cos 2sin
2

θθ −=  (14.67) 

(see Appendix B, Section B.4), we can evaluate the remaining integral: 

 

( )

]

2 2
2 1 1

2 2
0 0

21 1
2 4 0

sin cos2

sin 2
.

π π

π

θ dθ θ dθ

θ θ
π

= −

= −
=

 

 (14.68) 

The moment of inertia about the x and y axes is therefore given by 

 

4 3 21 1
11 22 4 12

2 21 1
4 12 .

πρhR πρh R

mR mh

= = +

= +

 

 (14.69) 

The product of inertia 12  is equal to the integral 

 
2 2

3
12

2 0 0

sin cos
h π R

V
h

xyρdV ρ r θ θ dr dθ dz
−

= − = −    . (14.70) 

Since 

 
2

0

sin cos 0
π

θ θ dθ = , (14.71) 

it is the case that 12 21 0= =  . It can also be shown that all of the other products 
of inertia are equal to zero, so the inertia tensor  of a cylinder has the form 

 

2 21 1
4 12

2 21 1
4 12

21
2

0 0
0 0
0 0

mR mh
mR mh

mR

+ 
 = + 
  

 , (14.72) 

where m ρV=  is the mass of the cylinder.  

 Nonzero products of inertia arise when we consider a solid box that rotates 
about an axis passing through one of its vertices. The significance of an inertia 
tensor that is not diagonal is discussed in Section 14.2.4. 
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Example 14.4. Calculate the inertia tensor of a solid box having dimensions a, 
b, and c that is aligned to the coordinate axes, has one vertex at the origin, and 
has a uniform density ρ (see Figure 14.7). 

a b

c

x y

z

 

Figure 14.7. The box used in Example 14.4. 

Solution. The moment of inertia about the x axis 11  is given by the integral 

 

( )

( )

( )

2 2
11

2 2

0 0 0

2 2

0 0
3 31 1

3 3
2 21

3 .

V
c b a

b c

r x ρdV

ρ y z dx dy dz

ρac y dy ρab z dz

ρab c ρabc

ρabc b c

= −

= +

= +

= +

= +



  

 



 (14.73) 

The volume of the box is given by V abc= , so we can write the moment of inertia 
as 
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 ( )2 21
11 3 m b c= + , (14.74) 

where m ρV=  is the mass of the box. Similar calculations yield the moments of 
inertia about the y and z axes: 

 

( )
( )

2 21
22 3

2 21
33 3

m a c

m a b

= +

= +



 . (14.75) 

The product of inertia 12  is given by the integral 

 

12

0 0 0

0 0

2 21 1
4 4

V
c b a

b a

xyρdV

ρ xy dx dy dz

ρc xy dx dy

ρa b c mab

= −

= −

= −

= − = −



  

 



. (14.76) 

Similar calculations yield the remaining two unique products of inertia: 

 

1
13 4

1
23 4

mac
mbc

= −
= −



 . (14.77) 

The inertia tensor  of a box is therefore given by 

 
( )

( )
( )

2 21 1 1
3 4 4

2 21 1 1
4 3 4

2 21 1 1
4 4 3

m b c mab mac
mab m a c mbc
mac mbc m a b

+ − − 
 = − + − 
 − − + 

 , (14.78) 

where m ρV=  is the mass of the box.  

14.2.4  Principal Axes of Inertia 

Because the angular momentum ( )tL  and angular velocity ( )tω  are related by the 
equation 

 ( ) ( )t t=L ω , (14.79) 
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the two vectors are parallel precisely when ( )tω  is an eigenvector of the inertia 
tensor . Since the inertia tensor is a symmetric matrix, it has three real eigen-
values, and the associated eigenvectors are orthogonal (see Section 3.5). The ei-
genvalues of the inertia tensor are called the principal moments of inertia, and the 
associated eigenvectors are called the principal axes of inertia. If a rigid body is 
rotating about one of its principal axes of inertia, then its angular momentum is 
given by 

 ( ) ( )t I t=L ω , (14.80) 

where I is the principal moment of inertia associated with the principal axis. 
 If the inertia tensor is a diagonal matrix, as it is for a sphere and a cylinder, 
then the principal moments of inertia are the same as the diagonal entries, and the 
principal axes of inertia are simply the x, y, and z axes. If the inertia tensor is not 
a diagonal matrix, then we must calculate its eigenvalues and eigenvectors to de-
termine the principal axes, as demonstrated in the following example. 

Example 14.5. Determine the principal axes of inertia for a solid cube having 
side length a that is aligned to the coordinate axes and has one vertex at the 
origin. 

Solution. The inertia tensor  for a box is given by Equation (14.78). Setting the 
lengths in all three dimensions equal to each other produces the inertia tensor for 
a cube: 

 

2 2 22 1 1
3 4 4

2 2 21 2 1
4 3 4

2 2 21 1 2
4 4 3

ma ma ma
ma ma ma
ma ma ma

− − 
 = − − 
 − − 

 . (14.81) 

The determinant 

 

2 2 22 1 1
3 4 4

2 2 21 2 1
4 3 4

2 2 21 1 2
4 4 3

0
ma I ma ma

ma ma I ma
ma ma ma I

− − −
− − − =
− − −

, (14.82) 

yields the characteristic polynomial whose roots are the eigenvalues of . Since 
the determinant is not affected by adding a multiple of one row to another row, 
we can subtract the first row from the second row to simplify our calculations: 
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2 2 22 1 1
3 4 4

2 211 11
12 12

2 2 21 1 2
4 4 3

0 0
ma I ma ma
ma I ma I

ma ma ma I

− − −
− + − =

− − −
. (14.83) 

Factoring 211
12 ma I−  out of the second row and setting 21

4b ma=  gives us 

 ( )
8
3

11
3

8
3

1 1 0 0
b I b b

b I
b b b I

− − −
− − =

− − −
. (14.84) 

Evaluating the resulting determinant, we have 

 

( ) ( ) ( )
( )( )
( )( )( )

2 28 811
3 3 3

2 21311 22
3 3 9

11 11 2
3 3 3

0 2

.

b I b I b b I b

b I I bI b

b I b I b I

 = − − − − − 
= − − +

= − − −  (14.85) 

The principal moments of inertia 1I , 2I , and 3I  are thus given by 

 

211 11
1 3 12

211 11
2 3 12

22 1
3 3 6 .

I b ma

I b ma

I b ma

= =

= =

= =  (14.86) 

To find the principal axis of inertia corresponding to the eigenvalue 3I , we need 
to solve the homogeneous linear system 

 

2 2 22 1 1
33 4 4

2 2 21 2 1
34 3 4

2 2 21 1 2
34 4 3

ma I ma ma x
ma ma I ma y
ma ma ma I z

− − −   
   − − − =   
   − − −   

0. (14.87) 

Again using the constant 21
4b ma=  and substituting the value 2

3 3I b= , we have 

 
2

2
2

b b b x
b b b y
b b b z

− −   
   − − =   
− −      

0. (14.88) 

The reduced form of this system is 
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1 0 1
0 1 1
0 0 0

x
y
z

−   
   − =   
      

0, (14.89) 

and thus x y z= = . This tells us that the vector 1,1,1 , a diagonal of the cube, rep-
resents the principal axis corresponding to the principal moment of inertia 3I . The 
principal axes corresponding to the eigenvalues 1I  and 2I  are found by solving the 
system 

 

8
13

8
13

8
13

b I b b x
b b I b y
b b b I z

− − −   
   − − − =   
   − − −   

0. (14.90) 

Every entry of this matrix is the same, so the reduced form of the system is 

 
1 1 1
0 0 0
0 0 0

x
y
z

   
    =   
      

0. (14.91) 

Therefore, the y and z components of each principal axis may be chosen arbitrari-
ly (but not such that both are zero). The value of x is then given by x y z= − − . 
Any vector of the form , ,y z y z− −  is perpendicular to the vector 1,1,1 , so the 
principal axes corresponding to the principal moments of inertia given by 1I  and 

2I  can be any orthogonal pair in the plane perpendicular to the cube’s diagonal.  

 If a rigid body is not rotating about one of its principal axes, then the angular 
velocity vector ( )tω  and the angular momentum vector ( )tL  are not parallel. In 
this situation, the vector ( )tL  rotates about the axis ( )tω  at the rate 

 ( ) ( ) ( ) 0t t t= × ≡/L ω L . (14.92) 

The resulting angular acceleration changes the axis of rotation, an effect called 
precession. Since ( ) ( )t t=L α  , the angular acceleration ( )tα  is given by 

 ( ) ( ) ( ) ( )[ ]1 1t t t t− −= = ×α L ω L  . (14.93) 

To counter this angular acceleration and prevent the axis of rotation from chang-
ing, a torque equal in magnitude to ( ) ( )t t×ω L  must be applied in the opposite 
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direction. Therefore, the motion of a rotating rigid body can be described by the 
equation 

 ( ) ( ) ( ) ( ) ( )
1

N

i
i

t t t t t
=

− × = =τ ω L α θ  , (14.94) 

where 1 2, , , Nτ τ τ  represent the external torques acting on the body. Equation 
(14.94) is the rotational analog of Equation (13.9). 

14.2.5  Transforming the Inertia Tensor 

Given an invertible 3 3×  transformation matrix M that transforms points from one 
coordinate system to another coordinate system with the same origin, an inertia 
tensor  is transformed according to the formula 

 1−′ = M M  . (14.95) 

It’s useful to think of this product as first transforming in reverse from the new 
coordinate system to the original coordinate system using 1−M , applying the iner-
tia tensor  in that coordinate system, and then transforming back into the new 
coordinate system using M. 
 To transform an inertia tensor into a coordinate system with a different 
origin, we can use a formula known as the parallel axis theorem. Let s be an off-
set vector representing the difference between the new origin and the old origin. 
Then, starting with the formula for the inertia tensor given in Equation (14.48), 
we replace r with +r s to obtain 

 ( ) ( ) ( )2
3k k k k

k
m  ′ = + − + ⊗ +  r s E r s r s . (14.96) 

Expanding this summation, we have 

 

( ) ( )
( ) ( )

2 2
3 3 32k k k k k

k k k

k k k k k k k k
k k k k

m r m m s

m m m m

′  = + ⋅ +
  

− ⊗ − ⊗ − ⊗ − ⊗

  

   

E r s E E

r r r s s r s s



. (14.97) 

This equation contains the two terms from the original summation given by 
Equation (14.48) for , so we can substitute  for these terms to get 
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( ) ( )
( ) ( )

2
3 32 k k k

k k

k k k k k
k k k

m m s

m m m

′  = + ⋅ +
  

− ⊗ − ⊗ − ⊗

 

  

r s E E

r s s r s s

 

. (14.98) 

Now, if the origin of the coordinate system coincides with the center of mass, 
then the summation k kk

m r  is equal to the point 0,0,0 . This allows us to make 
a tremendous simplification because all of the terms in Equation (14.98) contain-
ing this summation vanish. We therefore can use the formula 

 ( )2
3m s′ = + − ⊗E s s   (14.99) 

to transform an inertia tensor from a coordinate system in which the center of 
mass lies at the origin to another coordinate system in which the new origin lies 
at the point s in the original coordinate system. Note that the sign of s does not 
matter because it is squared in both terms where it appears in Equation (14.99). A 
translation by a certain distance in one direction produces the same inertia tensor 
as a translation by the same distance in the opposite direction. 
 It’s important to understand that Equation (14.99) can only be applied once 
to an inertia tensor in order to move it away from the center of mass. After the 
inertia tensor has been moved, it no longer uses a coordinate system in which the 
origin coincides with the center of mass, but that condition must be true for 
Equation (14.99) to be valid. However, it is possible to recover the inertia tensor 
 from the offset inertia tensor ′  if the vector s is known, once again allowing 
Equation (14.99) to be used to perform a new offset. 

Example 14.6. Determine the inertia tensor for an axis-aligned box of constant 
density ρ in a coordinate system where the box’s center of mass lies at the 
origin. 

Solution. We already calculated the inertia tensor for a box in Example 14.4, but 
it was in a coordinate system where the origin coincided with one of the corners 
of the box. We can treat this as the transformed inertia tensor ′  in Equation 
(14.99) and recover the inertia tensor about the center of mass by solving for  
with an offset 2 2 2, ,a b c=s . This gives us 
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( )
( )

( )

2 21 1 1
3 4 4

2 21 1 1
4 3 4

2 21 1 1
4 4 3

2

3, , , , , ,
2 2 2 2 2 2 2 2 2

m b c mab mac
mab m a c mbc
mac mbc m a b

a b c a b c a b cm

+ − − 
 = − + − 
 − − + 

 
− − ⊗ 

 
E



. 

After adding corresponding matrix entries, we have for the inertia tensor of a box 
(with side lengths a, b, and c) about its center of mass 

 
( )

( )
( )

2 21
12

2 21
12

2 21
12

0 0
0 0
0 0

m b c
m a c

m a b

+ 
 = + 
 + 

 .  

Example 14.7. Find the inertia tensor of a dome, having constant density ρ and 
semiaxis lengths a, b, and c as shown in Figure 14.8, in a coordinate system 
where center of mass coincides with the origin. 

a b

c

 

Figure 14.8. The dome used in Example 14.7. 

Solution. The total mass of the dome is 2
3m ρπabc= , and the z coordinate of the 

center of mass can be calculated using the integral 

 

2 2 2

2 2 2

1 1 1

2 2

0 1 1
4

w v w

z

w v w

πmC ρabc wdu dv dw abc
− − −

− − − − −

= =   , (14.100) 

where we have made the substitutions 
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1

1

1 .

xu du dx
a a
yv dv dy
b b
zw dw dz
c c

= =

= =

= =

 (14.101) 

After dividing by m, we find the center of mass to be located at the point 
3
80,0, c . Instead of calculating the inertia tensor  about the center of mass, we 

calculate the inertia tensor ′  about the origin at the center of the dome’s base 
and then use Equation (14.99) to find  when the offset is 3

80,0, c=s . The mo-
ments of inertia for a dome with the origin at the center of the base are given by 
the integrals 

 ( ) ( )
2 2 2

2 2 2

1 1 1

2 2 2 2 2 2
11

0 1 1

2
15

w v w

w v w

πρabc b v c w du dv dw ρabc b c
− − −

− − − − −

= + = +   , 

 ( ) ( )
2 2 2

2 2 2

1 1 1

2 2 2 2 2 2
22

0 1 1

2
15

w v w

w v w

πρabc a u c w du dv dw ρabc a c
− − −

− − − − −

= + = +   , 

 ( ) ( )
2 2 2

2 2 2

1 1 1

2 2 2 2 2 2
33

0 1 1

2
15

w v w

w v w

πρabc a u b v du dv dw ρabc a b
− − −

− − − − −

= + = +   . (14.102) 

Substituting the mass m, this gives us the inertia tensor 

 

( )
( )

( )

2 21
5

2 21
5

2 21
5

0 0
0 0
0 0

m b c
m a c

m a b

 +
 ′ = + 
 + 

 . (14.103) 

In order to obtain the inertia tensor  about the center of mass, we must solve 
Equation (14.99) with 3

80,0, c=s . The adjustment to the inertia tensor is given 
by 

 

29
64

2 29
3 64

0 0
0 0
0 0 0

c
s c

 
 − ⊗ =  
  

E s s , (14.104) 
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and so 

 
( )

2 2191
5 320

2 2191
5 320

2 21
5

0 0
0 0
0 0

mb mc
ma mc

m a b

 +
 = + 
 + 

 .  (14.105) 

14.3  Oscillatory Motion 

The motion of an object is oscillatory if it repeats over a period of time by mov-
ing back and forth through the same region of space. Such behavior is often 
caused by a restoring force that may be constant or may act on an object with 
greater magnitude as the object moves further away from some equilibrium posi-
tion. We examine oscillatory motion in this chapter because it shares some char-
acteristics with rotational motion, such as angular velocity. The motion of a pen-
dulum, discussed in Section 14.3.2, is an example of an object that rotates about a 
point with an oscillatory nature. 

14.3.1  Spring Motion 

Oscillatory motion is exhibited by an object having mass m that is attached to the 
end of a spring whose natural length is d (see Figure 14.9). Suppose that the 
spring is aligned to the z axis and that one end is attached to an immovable object 
at z d= . Let the mass be attached to the other end, which coincides with the 
origin. Ignoring gravity for the moment, when the spring is stretched or com-
pressed so that its length is greater than or less than d, a restoring force is exerted 
by the spring that is proportional to the displacement of the mass from its natural 
resting position. If the position of the mass along the z axis is z, then the restoring 
force F in that direction is given by 

 F kz= − . (14.106) 

This formula is known as Hooke’s law. The constant k is a property of the spring 
corresponding to its stiffness. A larger value of k means that more work is re-
quired to move the mass attached to the end of the spring. 
 The position of a mass attached to the end of a spring can be determined as a 
function of time by examining the differential equation 

 ( ) ( )mz t kz t= − . (14.107) 
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z

m

0z =

z d=

 
Figure 14.9. A mass attached to the end of a spring. 

The general solution to this equation is 

 ( ) sin cosz t A ωt B ωt= + , (14.108) 

where ω k m=  is called the angular frequency of the oscillations, measured in 
radians per unit time. The frequency f corresponding to the number of oscilla-
tions per unit time, measured in hertz (Hz) when the unit of time is the second, is 
related to the angular frequency by the equation 

 
2
ωf
π

= . (14.109) 

The period P of the oscillations is equal to the time that passes between each rep-
etition of the motion and is given by the reciprocal of the frequency: 

 2 2π mP π
ω k

= = . (14.110) 

 The constants A and B in Equation (14.108) must be determined by imposing 
initial conditions. Suppose that the initial position of the mass is 0z  and the initial 
velocity of the mass is 0v . Since 
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( )
( )
0
0

z B
z Aω

=
= , (14.111) 

we can easily deduce 

 

0

0 .

vA
ω

B z

=

=  (14.112) 

As discussed in Section 13.2.1, we may express Equation (14.108) in the form 

 ( ) ( )sinz t C ωt δ= + , (14.113) 

where 

 

2
0 2

02

01sin .

vC z
ω

zδ
C

−

= +

=  (14.114) 

The constant C represents the amplitude of the oscillations and corresponds to the 
largest distance that the mass is ever displaced from its equilibrium position. The 
constant δ represents the phase of the oscillations and corresponds to the initial 
position of the mass. 

Example 14.8. Determine the frequency and amplitude of a 2-kg mass attached 
to a spring having a restoring constant of 23 kg sk = . Suppose that the mass 
was previously being pulled downward and that it is released at time 0t =  with 
an initial displacement of 0 4 mz = −  and an initial velocity of 0 1 m sv = − . 

Solution. The angular frequency ω is given by 

 6 rad s
2

kω
m

= = . (14.115) 

Dividing by 2π radians gives us the frequency f in oscillations per second: 

 6 0.195 Hz
2 4
ωf
π π

= = ≈ . (14.116) 
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The amplitude C of the oscillations can be found by using Equation (14.114): 

 
2
0 2

02

5 6 4.08 m
3

vC z
ω

= + = ≈ .  (14.117) 

 Suppose that a mass m attached to the end of a vertical spring is now acted 
upon by gravity. Adding the constant downward gravitational force mg−  to Equa-
tion (14.107) gives us 

 ( ) ( )mz t kz t mg= − − . (14.118) 

The restoring force of the spring and the gravitational force are balanced when 
they are equal in magnitude and act in opposite directions. Thus, the mass expe-
riences no net force when 

 ( )kz t mg− = . (14.119) 

Solving for ( )z t  gives us the equilibrium position of the hanging mass: 

 ( ) mgz t
k

= − . (14.120) 

If the mass lies at the position z mg k= −  and has no velocity, then it will never 
move. 
 Equation (14.120) is in fact a particular solution to Equation (14.118). Add-
ing this to the general solution to the homogeneous problem given by Equation 
(14.108), we have 

 ( ) sin cos mgz t A ωt B ωt
k

= + − . (14.121) 

Imposing the same initial conditions as before, ( ) 00z z=  and ( ) 00z v= , produces 
the same value for A but a different value for B: 

 

0

0

vA
ω

mgB z
k

=

= + . (14.122) 

When we write Equation (14.121) in the form 
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 ( ) ( )sin mgz t C ωt δ
k

= + − , (14.123) 

the amplitude C and phase δ are given by Equation (14.114) with the modifica-
tion that 0z  is replaced by 0z mg k+ . The influence of gravity has the effect of 
increasing the oscillation amplitude and advancing the phase angle corresponding 
to the initial displacement. 

14.3.2  Pendulum Motion 

Suppose that an object of mass m under the influence of gravity is attached to a 
massless rod of length L hanging from a fixed point coinciding with the origin as 
shown in Figure 14.10. We assume that the rod is able to pivot freely about its 
fixed end and that the mass is able to move in the x-z plane. Let I be the moment 
of inertia of the object with respect to the y axis (about which the mass rotates). If 
all of the mass is concentrated at a single point, then 2I mL= . 
 Let ( )tr  represent the position of the object. Gravity pulls downward on the 
object with the force mg , exerting a torque ( )tτ  given by 

 ( ) ( )t t m= ×τ r g. (14.124) 

The resulting angular acceleration ( )tα  is 

 ( ) ( ) ( )t t mt
I I

×= =τ r g
α . (14.125) 

Since ( )tτ  and ( )tα  are always perpendicular to the x-z plane in which the pendu-
lum rotates, we can write them as scalar quantities ( )τ t  and ( )α t . Equation 
(14.125) can then be written as 

 ( ) ( ) ( )sinmgLα t θ t θ t
I

= = − , (14.126) 

where ( )θ t  is the counterclockwise angle between the pendulum and the negative 
z axis. 
 Equation (14.126) cannot be solved analytically for the function ( )θ t  due to 
the presence of the sine function. We can, however, transform the equation into a 
form that can be solved by replacing ( )sinθ t  with the first term of its power 
series: 

 ( ) ( )mgLθ t θ t
I

= − . (14.127) 
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Figure 14.10. The plane pendulum. 

Equation (14.127) approximates the motion of a pendulum for which the angle 
( )θ t  is always small. The solution to Equation (14.127) is given by 

 ( ) ( )sinθ t A ωt δ= + , (14.128) 

where the angular frequency ω is 

 mgLω
I

= , (14.129) 

and the constants A and δ are determined by initial conditions. The period P of 
the oscillations is given by 

 2 2π IP π
ω mgL

= = . (14.130) 

For a point mass, we have 

 2

gω
L

LP π
g

=

= . (14.131) 
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Chapter 14 Summary 

Centrifugal Force 

The centrifugal force experienced by an object in a rotating environment is given 
by 

 ( ) ( ) ( )[ ]( )centrifugal m t t t= − × ×F ω ω r , 

where ( )tω  is the angular velocity and ( )tr  is the position of the object relative to 
an origin through which the axis of rotation passes. In the case that ( )tω  and ( )tr  
are perpendicular, the centrifugal force can be expressed as the scalar 

 
2

2
centrifugal

mvF mω r
r

= = . 

Coriolis Force 

The Coriolis force experienced by an object in a rotating environment is given by 

 ( ) ( )Coriolis 2 rm t t= − ×F ω v , 

where ( )r tv  is the velocity of the object relative to the rotating reference frame. 

Center of Mass 

The center of mass C of a solid object whose density at the point r is ( )ρ r  is giv-
en by 

 ( )1
V
ρ dV

M
= C r r , 

where M is the total mass of the object. 

Angular Momentum 

The angular momentum ( )tL  of a particle is given by 

 ( ) ( ) ( )t t t= ×L r p , 

where ( )tr  is the position of the object relative to an origin through which the 
axis of rotation passes, and ( ) ( )t m t=p v  is the linear momentum of the particle. 
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Torque 

The torque ( )tτ  acting on a particle is given by 

 ( ) ( ) ( )t t t= ×τ r F , 

where ( )tF  is the force applied at the position ( )tr . The net torque acting on a 
particle is equal to the time rate of change of its angular momentum: 

 ( ) ( )t t=L τ . 

Inertia Tensor 

The ( ),i j  entry of the inertia tensor  of a rigid body is given by 

 ( ) ( )2
ij ij i j

V
δ r r r ρ dV= − r , 

where ( )ρ r  is the density at the point r. 

The inertia tensor  for an object of mass m can be translated from a coordinate 
system in which the center of mass lies at the origin to a coordinate system in 
which the center of mass lies at a point s using the parallel axis theorem: 

 ( )2
3m s′ = + − ⊗E s s  . 

The inertia tensor relates the angular velocity to the angular momentum and the 
angular acceleration to the torque: 

 

( ) ( )
( ) ( ).
t t
t t

=
=

L ω

τ α


  

Spring Motion 

The position ( )z t  of a mass m attached to an oscillating spring having restoration 
constant k is given by 

 ( ) ( )sinz t C ωt δ= + , 

where 

 

2
0 2

0

01sin ,

mvC z
k

zδ
C

−

= +

=  
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0z  is the initial position, and 0v  is the initial velocity. 

Pendulum Motion 

A pendulum consisting of a mass m suspended from a rod of length L obeys the 
equation of motion 

 ( ) ( ) ( )sinmgLα t θ t θ t
I

= = − , 

where ( )θ t  is the angle formed with the vertical direction, and I is the moment of 
inertia of the mass. Small oscillations of the pendulum have an angular frequency 
ω given by 

 mgLω
I

= . 

Exercises for Chapter 14 

1. An ant is walking radially outward with a velocity v on the surface of a disk 
rotating counterclockwise with an angular velocity ω. At a distance r from 
the center of the disk, what is the total magnitude F of the forces experi-
enced by the ant? 

2. Suppose that a block of mass m is resting on the surface of a rotating disk at 
a distance r from the axis of rotation. If the coefficient of static friction at 
the surface is Sμ , determine the angular velocity at which the disk must ro-
tate to cause the block to begin sliding outward. 

3. Calculate the center of mass C of a cylinder of radius R and height h whose 
base is resting at the origin on the x-y plane if the density is given by 

( ) 1 zρ r h= +r . 

4. Calculate the moment of inertia about the z axis for the annular cylinder of 
inner radius 1R , outer radius 2R , and height h shown in Figure 14.11. Let m 
be the mass of the cylinder, and assume a uniform density ρ. 

5. Calculate the inertia tensor of an axis-aligned capsule about its center of 
mass. A capsule is a solid cylinder with height h (in the z direction) and 
semiaxis lengths a and b (along the x and y axes, respectively) that has two 
identical dome-shaped endcaps with semiaxis lengths a, b, and c, as shown 
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Figure 14.11. The annular cylinder used in Exercise 4. 

a b

c

h

 
Figure 14.12. The capsule used in Exercise 5. 

 in Figure 14.12. Let m be the total mass of the capsule and assume a uniform 
density ρ. [Hint. Combine the inertia tensors for a cylinder and two domes 
in the appropriate way.] 

6. Suppose that an object of mass m is hanging from a rope of negligible mass 
that is wrapped around a cylindrical spool many times (see Figure 14.13). If 
the cylinder has mass M and radius R, determine at what rate a the object 
accelerates downward under the influence of gravity. Assume that the rope 
does not slip as it unwinds from the spool. [Hint. As gravity pulls on the ob-
ject, it creates a tension T in the rope that is counteracted by the cylinder, so 
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m

R

M

 
Figure 14.13. The system used in Exercise 6. 

 the force equation is ma mg T= − . The tension T exerts a torque on the cyl-
inder that induces an angular acceleration α. Use the fact that a Rα= .] 

7. A spherical ball of mass m and radius R is placed on an incline that forms an 
angle θ  with the ground (see Figure 14.14). The coefficient of static friction 
at the surface is Sμ . If the ball rolls down the incline under the influence of 
gravity without slipping, determine its acceleration a. [Hint. Two forces are 
acting on the ball, gravity and the frictional force, whose sum is equal to ma . 
The frictional force also exerts torque on the ball, inducing an angular accel-
eration α. Use the fact that a Rα=  as the ball rolls down the incline.] 

8. Suppose that a box of uniform density having mass m is resting on the 
ground where the coefficient of static friction is Sμ  (see Figure 14.15). The 
box has a square base of length and width d, and the box’s height is h. De-
termine the minimum height z at which a force SF μ mg<  applied directly to 
the horizontal center of a side of the box would cause the box to begin top-
pling over. [Hint. Equate the torques induced by the pull of gravity on the 
center of mass and the force F about the bottom edge on the side opposite 
that where the force is applied.] 
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Figure 14.14. The ball used in Exercise 7. 
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Figure 14.15. The box used in Exercise 8. 
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Chapter 15 
Fluid and Cloth Simulation 

The animation of a two-dimensional fluid and a two-dimensional cloth are two 
effects that can be added to a game engine to provide a large visual impact for a 
relatively small amount of implementation effort. Although both fluid and cloth 
simulation can become very complex in advanced implementations, an elemen-
tary simulator for each type of animation is not difficult to construct. The math-
ematics behind these kinds of systems turn out to be somewhat simple, and the 
bulk of the implementation ends up being the bookkeeping for the actual triangle 
meshes composing the fluid and cloth surfaces. In this chapter, we describe basic 
ways of achieving fluid and cloth simulation, and we provide sample implemen-
tations that can be used to animate triangle meshes. 

15.1  Fluid Simulation 

The worlds presented by many games contain regions covered by a fluid surface. 
Whether it be a pool of water, a vat of deadly acid, or a pit of molten lava, we 
would like the fluid surface to behave in a physically realistic manner. We can 
accomplish this by modeling the way in which disturbances propagate through 
the fluid as waves. In this section, we introduce the well-known wave equation 
and apply it to real-time simulation of fluid surfaces. 

15.1.1  The Wave Equation 

The wave equation is a partial differential equation that describes the motion of 
each point on a one-dimensional string or a two-dimensional surface experienc-
ing a constant tension. We can derive the one-dimensional wave equation by 
considering a flexible elastic string that is tightly bound between two fixed end-
points lying on the x axis (see Figure 15.1). We assume that the string has a con-
stant linear density (mass per unit length) ρ and experiences a constant tension T 
that acts in the tangential direction. 
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z

x

 
Figure 15.1. A string having linear density ρ is tightly bound between two endpoints and 
experiences a constant tension T. 

 Let the function ( ),z x t  represent the vertical displacement of the string at the 
horizontal position x and at time t. When the string is displaced in the z direction, 
the tension produces a force at each point along the string that results in an accel-
eration. Newton’s second law dictates that the net force ( ),x tF  experienced by a 
small segment of the string lying between x s=  and Δx s x= +  at any time t is 
equal to the product of its mass and its acceleration ( ),x ta . Since the linear densi-
ty of the string is ρ, the mass of the segment is equal to Δρ x, and we have 

 ( ) ( ),,
Δ

x tx t
ρ x

=
F

a . (15.1) 

As shown in Figure 15.2, we can divide the force experienced by each endpoint 
of the segment lying between x s=  and Δx s x= +  into horizontal and vertical 
components ( ),H x t  and ( ),V x t . Let θ  represent the angle between the tangent to 
the string and the x axis at the endpoint where x s= . Since the tension T acts in 
the tangential direction, the horizontal component ( ),H s t  and vertical component 

( ),V s t  are given by 

 
( )
( )

, cos
, sin .

H s t T θ
V s t T θ

=
=  (15.2) 

Let Δθ θ+  represent the angle between the tangent to the string and the x axis at 
the endpoint where Δx s x= + . The horizontal component ( )Δ ,H s x t+  and verti-
cal component ( )Δ ,V s x t+  of the tension experienced at this endpoint are given 
by 
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T( ),V s t

( ),H s t
θ

x s=

Δx s x= +

Δθ θ+

 
Figure 15.2. The forces experienced at each endpoint of the segment lying between x s=  
and Δx s x= +  can be divided into horizontal and vertical components. 

 
( ) ( )
( ) ( )

Δ , cos Δ

Δ , sin Δ .
H s x t T θ θ
V s x t T θ θ

+ = +
+ = +  (15.3) 

 For small motions, we assume that the net horizontal force is zero so that the 
segment accelerates only in the vertical direction. Thus, for the segment lying 
between x s=  and Δx s x= + , we require that 

 ( ) ( )Δ , , 0H s x t H s t+ − = . (15.4) 

Consequently, the function H is independent of x, so we can write ( )H t  instead 
of ( ),H x t . 
 The net vertical force acting on the segment lying between x s=  and 

Δx s x= +  produces an acceleration that is given by the z component of Equation 
(15.1). Since the vertical acceleration is equal to the second derivative of the po-
sition function ( ),z x t , we have 

 ( ) ( ) ( ) ( )2

2

Δ , ,, ,
Δ

z
V s x t V s ta s t z s t

t ρ x
+ −∂= =

∂
. (15.5) 

Multiplying both sides by the density ρ and taking the limit as Δx approaches 
zero gives us 

 ( ) ( ) ( )2

2 Δ 0

Δ , ,, lim
Δx

V s x t V s tρ z s t
t x→

+ −∂ =
∂

. (15.6) 

The right side of Equation (15.6) is equal to the definition of the partial deriva-
tive of V with respect to x evaluated at s, so we can rewrite it as 
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 ( ) ( )
2

2 , ,ρ z s t V s t
t x

∂ ∂=
∂ ∂

. (15.7) 

 Using the values of ( )H t  and ( ),V s t  given by Equation (15.2), we can ex-
press ( ),V s t  in terms of ( )H t  as follows. 

 ( ) ( ), tanV s t H t θ=  (15.8) 

Since θ  is the angle formed between the tangent to the string and the x axis, tanθ  
is equal to the slope of the function ( ),z x t  at s. Therefore, 

 ( ) ( ) ( ), ,V s t H t z s t
x

∂=
∂

, (15.9) 

and Equation (15.7) becomes 

 ( ) ( ) ( )
2

2 , ,ρ z s t H t z s t
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
. (15.10) 

Since ( )H t  does not depend on x, we can write 

 ( ) ( ) ( )
2 2

2 2, ,ρ z s t H t z s t
t x

∂ ∂=
∂ ∂

. (15.11) 

 For small motions, cosθ is close to 1, so we approximate ( )H t  with the ten-
sion T. Letting 2c T ρ= , we now arrive at the one-dimensional wave equation: 

 
2 2

2
2 2

z zc
t x

∂ ∂=
∂ ∂

. (15.12) 

The two-dimensional wave equation is obtained by adding a second spatial term 
to Equation (15.12) as follows. 

 
2 2 2

2
2 2 2

z z zc
t x y

∂ ∂ ∂ = + ∂ ∂ ∂ 
 (15.13) 

The constant c has dimensions of distance per unit time and thus represents a ve-
locity. A fact that we do not prove here is that c is actually the velocity at which 
waves propagate along a string or through a surface. This makes sense since the 
wave speed increases with tension experienced by the medium and decreases 
with the density of the medium. 
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 Equation (15.13) does not account for any forces other than the surface ten-
sion. Thus, the average amplitude of the waves on the surface never diminishes 
as it does for a real-world fluid. We can add a viscous damping force to the equa-
tion by introducing a force that acts in the direction opposite that of the velocity 
of a point on the surface to obtain 

 
2 2 2

2
2 2 2

z z z zc μ
t x y t

∂ ∂ ∂ ∂ = + − ∂ ∂ ∂ ∂ 
, (15.14) 

where the nonnegative constant μ represents the viscosity of the fluid. The value 
of μ generally controls how long it takes for waves on a surface to calm down. A 
small value of μ allows waves to exist for a long time, as with water, but a large 
value of μ causes waves to diminish rapidly, as for a thick oil. 

15.1.2  Approximating Derivatives 

The two-dimensional wave equation with viscous damping given by Equation 
(15.14) can be solved analytically using separation of variables. The solution, 
however, is quite complex and would require a significant amount of computa-
tion for a real-time simulation. We instead choose to use a numerical technique to 
model the propagation of waves over a fluid surface. 
 Suppose that our fluid surface is represented by a triangle mesh whose verti-
ces are arranged on an n m×  regular grid as shown in Figure 15.3. Let d be the 
distance between adjacent vertices in both the x and y directions, and let t be the 
time interval between consecutive calculations of the fluid’s state. We denote the 
displacement of a vertex in the mesh by ( ), ,z i j k , where i and j are integers satis-
fying 0 i n≤ <  and 0 j m≤ <  that represent the spatial coordinates, and k is a 
nonnegative integer that represents the temporal coordinate. That is, ( ), ,z i j k  is 
equal to the displacement of the vertex lying at the point ,id jd  at the time kt. 
 We impose the boundary condition that the vertices lying on the edge of the 
surface are fixed at a displacement of zero. The displacement of the interior 
points can be calculated by using Equation (15.14) and approximating the deriva-
tives using the differences in the displacements of adjacent vertices. As illustrat-
ed in Figure 15.4, we can approximate the x-axis-aligned tangent to the surface at 
a vertex having coordinates ( ),i j  by calculating the average ratio of Δz to Δx be-
tween that vertex and its immediate neighbors in the x direction. Using this tech-
nique and the fact that Δx d= , we define the derivative z x∂ ∂  as follows. 
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Figure 15.3. A fluid surface is represented by a triangle mesh whose vertices are ar-
ranged on an n m×  regular grid. 

 

( )
( ) ( ) ( ) ( )

( ) ( )

, , 1, , 1, , , ,

, ,
2

1, , 1, ,
2

z i j k z i j k z i j k z i j k
d dz i j k

x
z i j k z i j k

d

− − + −+∂ =
∂

+ − −
=  (15.15) 

We define the derivative z y∂ ∂  at the vertex having coordinates ( ),i j  in a similar 
manner by calculating the average ratio of Δz to Δy between that vertex and its 
immediate neighbors in the y direction. As with the x direction, Δy d= , so we 
have 

 ( ) ( ) ( ), 1, , 1,, ,
2

z i j k z i j kz i j k
y d

+ − −∂ =
∂

. (15.16) 

We can define the temporal derivative z t∂ ∂  by calculating the average difference 
in the displacement of a vertex between the current time and the previous and 
succeeding times at which the displacement is evaluated. The time between eval-
uations is t, so the average ratio of Δz to Δt is given by 

 ( ) ( ) ( ), , 1 , , 1, ,
2

z i j k z i j kz i j k
t t

+ − −∂ =
∂

. (15.17) 
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Figure 15.4. The x-axis-aligned tangent to the surface can be approximated by calculat-
ing the average ratio of Δz to Δx between that vertex and its immediate neighbors. 

 Second derivatives can be approximated by employing the same method used 
to approximate the first derivatives. This is done by calculating the average ratios 
of the differences between the first derivatives to one of the spatial or temporal 
coordinates. To illustrate, we consider the second derivative at the vertex having 
coordinates ( ),i j  with respect to x. The average difference ( )Δ z x∂ ∂  between 
first derivatives at this vertex is given by 

 ( )
( ) ( )1, , 1, ,

Δ , ,
2

z i j k z i j k
x xz i j k

x

∂ ∂+ − −∂  ∂ ∂= ∂ 
. (15.18) 

Substituting the value given by Equation (15.15) for the derivatives with respect 
to x, we have the following. 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2, , , , , , 2, ,
2 2Δ , ,

2
2, , 2 , , 2, ,

4

z i j k z i j k z i j k z i j k
d dz i j k

x
z i j k z i j k z i j k

d

+ − − −−∂  = ∂ 
+ − + −

=  (15.19) 

Dividing by d gives us the ratio of ( )Δ z x∂ ∂  to Δx, which we use to define the 
second derivative: 

 ( ) ( ) ( ) ( )2

2 2

2, , 2 , , 2, ,, ,
4

z i j k z i j k z i j kz i j k
x d

+ − + −∂ =
∂

. (15.20) 
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This formula requires that we use the displacements of neighbors lying two verti-
ces away from the vertex where we wish to calculate the second derivative. For-
tunately, the adjacent neighbors are not used, so we can scale the coordinate sys-
tem about the vertex lying at ( ),i j  by one-half. Using the nearest neighbors and 
cutting the distance Δx in half, we obtain the following equivalent formula for the 
second derivative with respect to x. 

 ( ) ( ) ( ) ( )2

2 2

1, , 2 , , 1, ,, , z i j k z i j k z i j kz i j k
x d

+ − + −∂ =
∂

 (15.21) 

The following similar formulas give the second derivatives with respect to the 
spatial coordinate y and the temporal coordinate t. 

 ( ) ( ) ( ) ( )2

2 2

, 1, 2 , , , 1,, , z i j k z i j k z i j kz i j k
y d

+ − + −∂ =
∂

 (15.22) 

 ( ) ( ) ( ) ( )2

2 2

, , 1 2 , , , , 1, , z i j k z i j k z i j kz i j k
t t

+ − + −∂ =
∂

 (15.23) 

15.1.3  Evaluating Surface Displacement 

Using the first derivative with respect to t given by Equation (15.17) and the se-
cond derivatives given by Equations (15.21), (15.22), and (15.23), the two-
dimensional wave equation with viscous damping given by Equation (15.14) can 
be written as follows for the vertex having coordinates ( ),i j . 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2
2

2
2

, , 1 2 , , , , 1

1, , 2 , , 1, ,

, 1, 2 , , , 1,

, , 1 , , 1
2

z i j k z i j k z i j k
t

z i j k z i j k z i j kc
d

z i j k z i j k z i j kc
d

z i j k z i j kμ
t

+ − + − =

+ − + −

+ − + −
+

+ − −−  (15.24) 

We would like to be able to determine the future displacement ( ), , 1z i j k +  occur-
ring after the time interval t has passed, given that we already know the current 
displacement ( ), ,z i j k  and the previous displacement ( ), , 1z i j k − . Solving Equa-
tion (15.24) for ( ), , 1z i j k +  yields 
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( ) ( ) ( )

( ) ( ) ( ) ( )[ ]

2 2 2

2 2 2

4 8 2, , 1 , , , , 1
2 2

2 1, , 1, , , 1, , 1,
2

c t d μtz i j k z i j k z i j k
μt μt

c t d z i j k z i j k z i j k z i j k
μt

− −+ = + −
+ +

+ + + − + + + −
+

, (15.25) 

which provides exactly what we need. The constants preceding each term can be 
precomputed, leaving only three multiplications and four additions to be calcu-
lated at each vertex in the mesh. 
 If the wave velocity c is too fast, or the time interval t is too long, then suc-
cessive iterations of Equation (15.25) cause the displacements to diverge toward 
infinity. To keep the displacements finite, we need to determine the exact condi-
tions under which Equation (15.25) is stable. These conditions are revealed when 
we impose the requirement that any vertex displaced and held away from an oth-
erwise flat surface should move toward the surface when released. 
 Suppose that we have an n m×  array of vertices for which ( ), ,0 0z i j =  and 

( ), ,1 0z i j =  for every vertex except the one having coordinates ( )0 0,i j . Let the 
vertex at ( )0 0,i j  be held in place such that ( )0 0, ,0z i j h=  and ( )0 0, ,1z i j h= , 
where h is a nonzero displacement. Now suppose that the vertex at ( )0 0,i j  is re-
leased at time 2t. When ( )0 0, ,2z i j  is evaluated, the third term of Equation 
(15.25) is zero, so we have 

 

( ) ( ) ( )
2 2 2

0 0 0 0 0 0

2 2 2

4 8 2, ,2 , ,1 , ,0
2 2

2 8 .
2

c t d μtz i j z i j z i j
μt μt
c t d μt h
μt

− −= +
+ +

− +=
+

 (15.26) 

For the vertex to move toward the surrounding flat surface, its displacement must 
be smaller at time 2t than it was at time t. Thus, we must require that 

 ( ) ( )0 0 0 0, ,2 , ,1z i j z i j h< = . (15.27) 

Plugging in the value given by Equation (15.26) for ( )0 0, ,2z i j , we have 

 
2 2 22 8

2
c t d μt h h
μt

− + <
+

. (15.28) 

Thus, 

 
2 2 22 81 1

2
c t d μt
μt

− +− < <
+

. (15.29) 
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Solving for c, we find 

 0 2
2
dc μt
t

< < + . (15.30) 

This tells us that for any given distance d between adjacent vertices and any time 
interval t between consecutive iterations of Equation (15.25), the wave velocity c 
must be less than the maximum value imposed by Equation (15.30). 
 Alternatively, we may calculate a maximum time interval t given the distance 
d and the wave velocity c. Multiplying both sides of Equation (15.29) by 

( )2μt− +  and simplifying yields 

 
2

2
2

40 2c t μt
d

< < + . (15.31) 

The left inequality simply requires that 0t > , a condition that we would naturally 
impose in any case. The right inequality yields the quadratic expression 

 
2

2
2

4 2 0c t μt
d

− − < . (15.32) 

Using the quadratic equation, the roots of the polynomial are given by 

 
2 2 2

2 2

32
8

μ μ c dt
c d

± += . (15.33) 

Since the coefficient of the quadratic term in Equation (15.32) is positive, the 
corresponding parabola is concave upward, and the polynomial is therefore nega-
tive when t lies in between the two roots. The value under the radical in Equation 
(15.33) is larger than μ, so the lesser of the two roots is negative and can be dis-
carded. We can now express the restriction on the time interval t as 

 
2 2 2

2 2

320
8

μ μ c dt
c d

+ +< < . (15.34) 

 Using a value for the wave velocity c falling outside the range given by 
Equation (15.30) or a value for the time interval t falling outside the range given 
by Equation (15.34) results in an exponential explosion of the vertex dis-
placements. 
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15.1.4  Implementation 

An implementation of Equation (15.25) for a fluid surface requires that we store 
two buffers, each containing an n m×  array of vertex positions. At each frame, 
one of the buffers contains the current vertex positions, and the other buffer con-
tains the previous vertex positions. When we evaluate new displacements, we 
replace each vertex in the buffer containing the previous vertex positions with the 
new vertex position. The buffer containing the current vertex positions then be-
comes the buffer containing the previous vertex positions, so we actually alter-
nate which buffer is used to render each frame. 
 To perform lighting calculations, we need to know the correct normal vector 
at each vertex and possibly the correct tangent vector at each vertex. At the ver-
tex having coordinates ( ),i j , the (unnormalized) x-axis-aligned tangent vector T 
and y-axis-aligned tangent vector B are given by 

 

( )

( )

1,0, , ,

0,1, , ,

z i j k
x

z i j k
y

∂=
∂
∂=
∂

T

B . (15.35) 

Substituting the formulas for the partial derivatives given by Equations (15.15) 
and (15.16), we have 

 

( ) ( )

( ) ( )

1, , 1, ,1,0,
2

, 1, , 1,
0,1,

2

z i j k z i j k
d

z i j k z i j k
d

+ − −
=

+ − −
=

T

B . (15.36) 

The (also unnormalized) normal vector N is then simply given by = ×N T B, 
which can be expressed as follows. 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1, , 1, ,1 0
2

, 1, , 1,0 1
2

1, , 1, , , 1, , 1,, ,1
2 2

z i j k z i j k
d

z i j k z i j k
d

z i j k z i j k z i j k z i j k
d d

+ − −
=

+ − −

+ − − + − −
= − −

i j k

N

 (15.37) 
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Multiplying the vectors T, B, and N by 2d  does not change the direction in which 
they point but does eliminate the divisions, yielding the following formulas. 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2 ,0, 1, , 1, ,
0,2 , , 1, , 1,

1, , 1, , , , 1, , 1, ,2

d z i j k z i j k
d z i j k z i j k

z i j k z i j k z i j k z i j k d

= + − −
= + − −
= − − + − − +

T

B

N  (15.38) 

 Listing 15.1 demonstrates how a fluid surface simulation might be imple-
mented. It is important to realize that the time interval between evaluations of the 
fluid displacement must be constant. The frame rate for most games varies con-
siderably, so some mechanism should be used to ensure that the position of the 
surface is updated only after enough time has passed in situations when the frame 
rate is high. 
 When an object interacts with the fluid surface (e.g., a rock is thrown into it), 
it should cause a disturbance. The surface can be displaced by explicitly modify-
ing the current and previous positions of the vertices surrounding the point where 
the interaction takes place. Displacing the vertex nearest to the point of impact 
and, by a lesser amount, the eight nearest neighbors generally produces pleasing 
results. 

Listing 15.1. This code implements a two-buffer surface displacement algorithm. The constructor 
of the Fluid class takes the size of the vertex array, the distance d between adjacent vertices, the 
time interval t, the wave velocity c, and the viscosity μ. The renderBuffer member variable 
indicates which buffer should be rendered for the current frame—it alternates between 0 and 1 
during each call to the Fluid::Evaluate() function. 

class Fluid 

{ 

 private: 

 

  long   width; 

  long   height; 

 

  Vector3D  *buffer[2]; 

  long   renderBuffer; 

 

  Vector3D  *normal; 

  Vector3D  *tangent; 

  float   k1, k2, k3; 
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 public: 

 

  Fluid(long n, long m, float d, float t, float c, float mu); 

  ~Fluid(); 

 

  void Evaluate(void); 

}; 

 

Fluid::Fluid(long n, long m, float d, float t, float c, float mu) 

{ 

 width = n; 

 height = m; 

 long count = n * m; 

 

 buffer[0] = new Vector3D[count]; 

 buffer[1] = new Vector3D[count]; 

 renderBuffer = 0; 

 

 normal = new Vector3D[count]; 

 tangent = new Vector3D[count]; 

 

 // Precompute constants for Equation (15.25). 

 float f1 = c * c * t * t / (d * d); 

 float f2 = 1.0F / (mu * t + 2); 

 k1 = (4.0F - 8.0F * f1) * f2; 

 k2 = (mu * t - 2) * f2; 

 k3 = 2.0F * f1 * f2; 

 

 // Initialize buffers. 

 long a = 0; 

 for (long j = 0; j < m; j++) 

 { 

  float y = d * j; 

  for (long i = 0; i < n; i++) 

  { 

   buffer[0][a].Set(d * i, y, 0.0F); 

   buffer[1][a] = buffer[0][a]; 

   normal[a].Set(0.0F, 0.0F, 2.0F * d); 

   tangent[a].Set(2.0F * d, 0.0F, 0.0F); 

   a++; 
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  } 

 } 

} 

 

Fluid::~Fluid() 

{ 

 delete[] tangent; 

 delete[] normal; 

 delete[] buffer[1]; 

 delete[] buffer[0]; 

} 

 

void Fluid::Evaluate(void) 

{ 

 // Apply Equation (15.25). 

 for (long j = 1; j < height - 1; j++) 

 { 

  const Vector3D *crnt = buffer[renderBuffer] + j * width; 

  Vector3D *prev = buffer[1 - renderBuffer] + j * width; 

 

  for (long i = 1; i < width - 1; i++) 

  { 

   prev[i].z = k1 * crnt[i].z + k2 * prev[i].z + 

    k3 * (crnt[i + 1].z + crnt[i - 1].z + 

    crnt[i + width].z + crnt[i - width].z); 

  } 

 } 

 

 // Swap buffers. 

 renderBuffer = 1 - renderBuffer; 

 

 // Calculate normals and tangents. 

 for (long j = 1; j < height - 1; j++) 

 { 

  const Vector3D *next = buffer[renderBuffer] + j * width; 

  Vector3D *nrml = normal + j * width; 

  Vector3D *tang = tangent + j * width; 

 

  for (long i = 1; i < width - 1; i++) 

  { 
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   nrml[i].x = next[i - 1].z - next[i + 1].z; 

   nrml[i].y = next[i - width].z - next[i + width].z; 

   tang[i].z = next[i + 1].z - next[i - 1].z; 

  } 

 } 

} 

15.2  Cloth Simulation 

A flag blowing in the wind and a cape trailing behind a character are two exam-
ples of animation that can be achieved using cloth simulation. This topic can get 
very complex, but a basic simulation of a rectangular sheet of cloth can be im-
plemented fairly easily and with realistic results. This section describes the fun-
damental design of a simple cloth simulator. 

15.2.1  The Spring System 

Our cloth is composed of an array of point particles arranged in a regular two-
dimensional grid formation. We simulate the motion of only these particles, and 
then fill each grid square with triangles to render the cloth. In order to give the 
cloth cohesion and to control its motion, each particle is connected to several of 
its neighboring particles by a virtual spring and damper. Each spring has the ef-
fect of maintaining a specific distance between particles, and each damper pre-
vents neighboring particles from acquiring wildly different velocities. 
 Figure 15.5 shows the connections made for a single particle in the interior of 
a cloth mesh. First, springs and dampers are established between the particle and 
its immediate neighbors in the left, right, up, and down directions, as shown by 
the red lines in the figure. These connections are what give the cloth its primary 
structure, and they prevent the particles from flying apart or collapsing into a sin-
gle point. However, they do nothing to prevent unwanted situations such as a 
cloth folding over on itself to form an infinitely sharp crease. To limit the amount 
of bending that can occur, springs and dampers are also established between the 
central particle and its neighbors two grid points away in the left, right, up, and 
down directions, as shown by the green lines in the figure. With these eight con-
nections for each particle, the cloth behaves pretty well, but there is still one pos-
sibility that we would like to prevent. A shearing motion can arise because the 
distances between the particles remain the same if the grid squares are deformed 
into a rhombus shape. To eliminate this case, we add four more connections be- 
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Figure 15.5. The central particle is connected to its four immediate neighbors (red lines) 
to give the cloth cohesion, to its four neighbors two grid points away (green lines) to limit 
bending, and to its four diagonal neighbors (blue lines) to prevent shearing. 

tween the central particle and its diagonal neighbors, as shown by the blue lines 
in the figure. For particles near the boundary of the mesh, any connections that 
can’t be made because some neighbors don’t exist simply aren’t made, and fewer 
springs and dampers are used to control their motions. 
 Let P and Q represent the positions of two immediately neighboring particles 
connected by a spring and damper, and let d be the rest length of the spring. The 
distance d is the distance that the spring would like to maintain between the two 
particles, so if the actual distance is anything else, then the particles experience a 
force springF  due to the spring given by 

 ( )spring springk d −= − −
−

Q P
F Q P

Q P
, (15.39) 

where springk  is the spring constant (see Section 14.3.1). The force springF  is experi-
enced by the particle at P, and the force spring−F  is experienced by the particle at 
Q. For the springs that connect particles that are two grid points apart or particles 
that are diagonal from each other, the rest length used in Equation (15.39) be-
comes 2d  and 2d , respectively. 
 A force damperF  is exerted by the damper if there is a difference in the veloci-
ties d dtP  and d dtQ , and it is given by 

 ( )damper damper
d dk
dt dt

= −Q P
F , 
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where damperk  is a positive constant that determines how strong the damper is. As 
with the spring force, the force damperF  is experienced by the particle at P, and the 
force damper−F  is experienced by the particle at Q. 
 In order to finely tune the behavior of our cloth, we can choose different 
spring and damper constants for the different types of connections in the cloth. 
For example, we might use a large spring constant for the long springs connect-
ing particles two grid points apart to make the cloth highly resistant to bending. 
It’s important not to go too high, however, because strong springs have a tenden-
cy to introduce unwanted vibration into the simulation. 

15.2.2  External Forces 

If all of the particles in our cloth are initially placed so that all of the springs have 
their rest lengths, then nothing would ever move in our cloth simulation. In order 
to see some animation, we need to apply some external forces, the most obvious 
of which is gravity. Each particle in the cloth experiences a force  

 gravity m=F g, (15.40) 

where m is the mass of the particle, and g is the acceleration of gravity (which 
would normally be 20,0, 9.8 m s= −g ). 
 After gravity, the most common force applied to a cloth is due to wind, or 
more precisely, the difference between the velocity of the cloth and the velocity 
of the air. For a particle at the point P where the unit normal direction to the cloth 
is N, the force due to the wind is given by 

 ( )wind wind
dk
dt

= − ⋅P
F W N . (15.41) 

Here, W is the velocity of the wind, and windk  is a constant that controls how 
quickly the wind accelerates the cloth, which is an adjustable parameter that 
could depend on factors such as the heaviness of the air or whether any air blows 
through the cloth. The dot product with the normal causes the force to be greatest 
when the wind direction is perpendicular to the tangent plane of the cloth and 
least when the cloth is nearly aligned to the wind direction. We take the absolute 
value because it doesn’t matter which side of the cloth that the wind strikes. 

15.2.3  Implementation 

For each particle in our cloth, we store a three-dimensional position and a three-
dimensional velocity. We animate our cloth by updating the positions and veloci-
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ties of all the particles at a fixed time interval Δt. This time interval is independ-
ent of the actual frame rate at which a scene is being displayed, so the number of 
simulation steps taken during any one rendering frame can vary. A time interval 
between 5 and 20 milliseconds is typical and generally produces good results. 
 During a single simulation step, a particle’s new position is calculated by 
considering its current velocity and the set of forces acting on the particle. Once 
the new position is known, we calculate the new velocity (to be used in the next 
simulation step) by simply dividing the difference between the old and new posi-
tions by the time interval Δt. 
 We can iterate through all of the particles and calculate the external forces 
for each one separately. For the i-th particle, whose current position is iP , whose 
surface normal is iN , and whose current velocity is iV , the external force externF  
exerted on the particle is given by 

 ( )extern wind i im k= + − ⋅F g W V N . (15.42) 

If we were to calculate the spring and damper forces while iterating over the par-
ticles, then we would end up calculating the force exerted by each connection 
twice, which is hardly efficient. There is also an inconsistency in the number of 
connections that each particle has that makes a per-particle accumulation of the 
spring and damper forces an unattractive approach. Instead, we initialize an array 
of forces, with one entry per particle, to the value given by Equation (15.42). We 
then iterate over all of the connections in the entire cloth system, calculate the 
force for each one, and apply the force to the two particles it connects. The force 
exerted at one end of the connection is the negation of the force exerted at the 
other end. 
 Once the total force iF  has been accumulated for each particle, we determine 
the new position i′P  using 

 ( ) 2Δ Δ
2

i
i i i t t

m
′ = + + F

P P V . (15.43) 

After all of the positions have been updated, new normal and tangent vectors 
need to be calculated, both for shading purposes and, in the case of the normal 
vector, for use in Equation (15.42) during the next simulation step. Since the tex-
ture map would typically be aligned to the grid over which the cloth is construct-
ed, we can compute tangents and bitangents using a central difference method, as 
opposed to running something similar to the code shown in Listing 7.1. 
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Chapter 15 Summary 

The Wave Equation 

The two-dimensional wave equation for a surface experiencing a viscous damp-
ing force is 

 
2 2 2

2
2 2 2

z z z zc μ
t x y t

∂ ∂ ∂ ∂ = + − ∂ ∂ ∂ ∂ 
. 

The constant c is the speed at which waves propagate through the medium, and 
the constant μ represents the viscosity of the medium. 

Approximating Derivatives for a Fluid Surface 

The first derivative of a function ( )z x  can be approximated by the formula 

 ( ) ( ) ( )
2

z x d z x dd z x
dx d

+ − −≈ , 

where d represents some constant step size. The second derivative of ( )z x  can be 
approximated by the formula 

 ( ) ( ) ( ) ( )2

2 2

2z x d z x z x dd z x
dx d

+ − + −
≈ . 

Evaluating Fluid Surface Displacement 

The future displacement ( ), , 1z i j k +  of a point on the surface of a fluid after a 
time t has passed is calculated using the equation 

 

( ) ( ) ( )

( ) ( ) ( ) ( )[ ]

2 2 2

2 2 2

4 8 2, , 1 , , , , 1
2 2

2 1, , 1, , , 1, , 1,
2

c t d μtz i j k z i j k z i j k
μt μt

c t d z i j k z i j k z i j k z i j k
μt

− −+ = + −
+ +

+ + + − + + + −
+

, 

where d is the distance between neighboring vertices in the triangle mesh. 

Stability of the Numerical Method for a Fluid 

Given a constant time step t, the wave speed c must satisfy 

 0 2
2
dc μt
t

< < + . 
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Given a constant wave speed c, the time step t must satisfy 

 
2 2 2

2 2

320
8

μ μ c dt
c d

+ +< < . 

Internal Forces for a Cloth Particle 

A particle of mass m at a point P connected to another particle at the point Q ex-
periences the forces 

 ( )spring springk d −= − −
−

Q P
F Q P

Q P
 

and 

 ( )damper damper
d dk
dt dt

= −Q P
F , 

where d is the rest length of the spring connecting them. 

External Forces for a Cloth Particle 

A particle of mass m having a velocity V experiences the force 

 ( )extern windm k= + − ⋅F g W V N , 

where g is the acceleration of gravity, W is the velocity of the wind, and N is the 
surface normal at the particle’s location. 

Exercises for Chapter 15 

1. Suppose that the fluid surface displacement of each vertex in a triangle mesh 
is evaluated 20 times per second. If the distance between neighboring verti-
ces is 0.1m and the viscous damping constant is 11sμ −= , what is the maxi-
mum wave speed for which Equation (15.25) is numerically stable? 

2. Suppose that the distance between neighboring vertices of a fluid surface 
mesh is 0.1m and the viscous damping constant is 11sμ −= , as in the previ-
ous exercise. What is the maximum time interval between consecutive eval-
uations that allows a stable wave speed of 2 m s? 
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Chapter 16 
Numerical Methods 

During the course of 3D graphics development, problems often arise that require 
us to numerically calculate the solution to some kind of mathematical model. In 
this chapter, we start with an effective technique for simultaneously calculating 
the sine and cosine functions. We then discuss numerical methods for solving 
three classes of problems. First, we discuss techniques for solving arbitrary linear 
systems and linear systems having a special form. Second, we examine methods 
for finding the eigenvalues and eigenvectors of a symmetric matrix. Lastly, we 
introduce classical procedures for approximating the solutions to ordinary differ-
ential equations. 

16.1  Trigonometric Functions 

The sine and cosine functions are frequently used in games and computer 
graphics, so it’s good to have a fast way of calculating them. Furthermore, it’s 
often the case that the sine and cosine of an angle are both needed at the same 
time, so a method that produces both values together for the price of calculating 
either one separately is very attractive. Such a method exists, and it combines a 
lookup table with a simple refinement based on a trigonometric identity. 
 Suppose that we wanted to calculate the sine and cosine of an arbitrary angle 
θ  and that we have access to a lookup table containing precomputed values of the 
sine and cosine functions for n evenly distributed values in the range [ )0,2π , 
where n is a power of two. We can express the angle θ  as the sum α β+ , where 

 

2
2
.

π n θα
n π

β θ α

 =   
= −  (16.1) 

Here, the angle α is the result of rounding the angle θ  down to the nearest multi-
ple of 2π n, and the angle β is simply what’s left over. 
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 The values of sinα and cosα  are fetched from our lookup table. As long as n 
is chosen to be large enough, the angle β is always very small, so it only takes a 
few terms of a Taylor series (see Appendix D) to calculate sin β and cos β  to the 
full precision of a 32-bit floating-point number. For 256n = , the following for-
mulas are sufficient: 

 

3 5

2 4

sin
3! 5!

cos 1 .
2! 4!

β ββ β

β ββ

= − +

= − +  (16.2) 

 With the sines and cosines of the angles α and β in hand, we calculate the 
sine and cosine of the angle θ  using the angle sum formulas 

 
( )
( )

sin sin cos cos sin
cos cos cos sin sin

α β α β α β
α β α β α β

+ = +
+ = −  (16.3) 

(see Appendix B, Section B.4). Since we took the absolute value of the angle θ , 
we need to negate the value of the sine function if θ  is negative. 
 The code for implementing this method is shown in Listing 16.1. We use a 
256-entry lookup table containing Vector2D objects, where the i-th entry holds 
the cosine and sine of the angle 2

256
π i in the x and y components, respectively. 

Listing 16.1. This code calculates the cosine and sine of the 32-bit floating-point value f and 
returns them in the x and y components of a two-dimensional vector, respectively. The lookup 
table from which the values of sin α and cosα are fetched is a global variable named trigTable. 

Vector2D CosSin(float f) 

{ 

 // Determine the index i for the lookup table. 

 float a = fabs(f) * 40.74366543F;  // 40.74366543 = 256 / 2pi 

 float i = floor(a); 

 

 // Determine the angle beta. 

 float b = (a - i) * 0.0245436926F;  // 0.0245436926 = 2pi / 256 

 

 // Look up the sine and cosine of alpha, masking the index with 

 // n - 1 so it stays within a single period. 

 const Vector2D& alphaCosSin = trigTable[(long) i & 255]; 
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 // Calculate the sine and cosine of beta. 

 float b2 = b * b; 

 float sine_beta = b - b * b2 * (0.1666666667F - b2 * 0.008333333333F); 

 float cosine_beta = 1.0F - b2 * (0.5F - b2 * 0.04166666667F); 

  

 // Use the angle sum identities to calculate the sine and cosine 

 // of theta. If theta < 0, then negate the sine. 

 float sine = alphaCosSin.y * cosine_beta + alphaCosSin.x * sine_beta; 

 float cosine = alphaCosSin.x * cosine_beta - alphaCosSin.y * sine_beta; 

 return (Vector2D(cosine, (f < 0.0F) ? -sine : sine)); 

} 

16.2  Linear Systems 

In Chapter 3, we discussed a method for solving linear systems by transforming 
the augmented coefficient matrix to reduced form. In this section, we more close-
ly investigate the problem of solving nonhomogeneous linear systems and pay 
particular attention to implementation details. The general problem that we ex-
amine is written =Mx r, where M is an n n×  invertible matrix representing the 
coefficients of a set of linear equations, and r is an 1n ×  vector of constants. Our 
goal is to find the 1n ×  vector x for which the equation =Mx r is satisfied. 

16.2.1  Triangular Systems 

A triangular system is one for which the coefficient matrix is either lower trian-
gular or upper triangular, as defined by the following. 

Definition 16.1. A lower triangular matrix L is a square matrix for which 
0ijL =  when i j< . That is, a lower triangular matrix has nonzero entries only on 

and below the main diagonal. 
 

Definition 16.2. An upper triangular matrix U is a square matrix for which 
0ijU =  when i j> . That is, an upper triangular matrix has nonzero entries only 

on and above the main diagonal. 
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 Triangular systems can be solved quite easily using direct substitution. In the 
case of the linear system =Lx r, where L is an n n×  lower triangular matrix, we 
can write 

 

11 1 1

21 22 2 2

1 2

0 0
0

n n nn n n

L x r
L L x r

L L L x r

     
     
     =
     
     
     




     


. (16.4) 

From the first row in the coefficient matrix, we can immediately see that 

 1
1

11

rx
L

= . (16.5) 

If we solve the equation represented by the second row of the coefficient matrix 
for 2x , we have 

 ( )2 2 21 1
22

1x r L x
L

= − . (16.6) 

We already know the value of 1x , so it can be substituted into Equation (16.6) to 
obtain the value of 2x . Continuing this process, we observe the general formula 

 
1

1

1 i

i i ik k
ii k

x r L r
L

−

=

 = − 
 

 . (16.7) 

This process is called forward substitution. For an n n×  upper triangular matrix 
U, a similar process, called backward substitution, allows us to solve the linear 
system =Ux r. In this case, we can write 

 

11 12 1 1 1

22 2 2 20

0 0

n

n

nn n n

U U U x r
U U x r

U x r

     
     
     =
     
     
     




     


. (16.8) 

The last row of the coefficient matrix tells us that 

 n
n

nn

rx
U

= . (16.9) 
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By substituting into preceding rows, we obtain the general backward substitution 
formula 

 
1

1 n

i i ik k
ii k i

x r U r
U = +

 = − 
 

 . (16.10) 

 In the remainder of this section, we examine two methods for solving general 
linear systems. Each method transforms the problem into one in which triangular 
systems appear. Forward and backward substitution can then be used to obtain a 
solution. 

16.2.2  Gaussian Elimination 

Suppose we have a nonhomogeneous linear system of n equations having n un-
knowns 1 2, , , nx x x  that can be written as =Mx r. By performing elementary 
row operations (see Definition 3.3) on the coefficient matrix M, we can reduce 
the linear system to 

 ′=Ux r , (16.11) 

where U is an upper triangular matrix, and the new constant vector ′r  is the result 
of performing the same row operations on r. The values of ix  are then calculated 
using the backward substitution formula given by Equation (16.10). 
 The process of transforming the linear system =Mx r into the linear system 

′=Ux r  is known as Gaussian elimination. For each column 1,2, ,j n=  , we 
eliminate the entries ijM  below the main diagonal by adding row j multiplied by 

ij jjM M−  to row i for each i j> . If 0jjM = , we must exchange row j with anoth-
er row below it before performing the eliminations in column j. It is generally 
true that the best numerical stability is achieved by exchanging rows so that the 
absolute value of jjM  is maximized, so we search for the largest entry on or be-
low the main diagonal as we process each column. As mentioned in Chapter 3, 
this is called pivoting. 
 Since multiplying any row of the matrix M and the corresponding entry of 
the vector r by a nonzero scalar does not alter the solution to the linear system, 
we can normalize each row of M so that its largest coefficient is 1± . This im-
proves numerical stability by placing all of the rows on equal ground, avoiding 
the possibility that one row dominates the others during pivoting because it has 
been scaled by a large value. Normalizing the rows for this reason is called im-
plicit pivoting. 
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 The SolveLinearSystem() function shown in Listing 16.2 solves a linear 
system of the form =Mx r using Gaussian elimination and implicit pivoting. A 
disadvantage of Gaussian elimination is that the constant vector r must be known 
at the time that the coefficient matrix is transformed into an upper triangular ma-
trix. If the solution to the system is desired for multiple values of r (e.g., to calcu-
late the inverse of M), then the entire elimination process must be redone. This 
limitation is circumvented by LU decomposition, which is discussed in the next 
section. 

Listing 16.2. The SolveLinearSystem() function solves the linear system =Mx r using 
Gaussian elimination. The return value is false if the matrix M is singular and true otherwise. 
Parameters 
 n The size of the matrix M. 
 m A pointer to the entries of the matrix M. The entries must be stored in column-

major order. This matrix is transformed into the matrix U appearing in Equation 
(16.11). 

 r A pointer to the constant vector r. The solution vector x is returned in this array. 

bool SolveLinearSystem(int n, float *m, float *r) 

{ 

 float *rowNormalizer = new float[n]; 

 bool result = false; 

  

 // Calculate a normalizer for each row. 

 for (int i = 0; i < n; i++) 

 { 

  const float *entry = m + i; 

  float maxvalue = 0.0F; 

   

  for (int j = 0; j < n; j++) 

  { 

   float value = fabs(*entry); 

   if (value > maxvalue) maxvalue = value; 

   entry += n; 

  } 

   

  if (maxvalue == 0.0F) goto exit; // Singular 

  rowNormalizer[i] = 1.0F / maxvalue; 

 } 
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 // Perform elimination one column at a time. 

 for (int j = 0; j < n - 1; j++) 

 { 

  // Find pivot element. 

  int pivotRow = -1; 

  float maxvalue = 0.0F; 

  for (int i = j; i < n; i++) 

  { 

   float p = fabs(m[j * n + i]) * rowNormalizer[i]; 

   if (p > maxvalue) 

   { 

    maxvalue = p; 

    pivotRow = i; 

   } 

  } 

   

  if (pivotRow != j) 

  { 

   if (pivotRow == -1) goto exit; // Singular 

    

   // Exchange rows. 

   for (int k = 0; k < n; k++) 

   { 

    float temp = m[k * n + j]; 

    m[k * n + j] = m[k * n + pivotRow]; 

    m[k * n + pivotRow] = temp; 

   } 

    

   float temp = r[j]; 

   r[j] = r[pivotRow]; 

   r[pivotRow] = temp; 

    

   rowNormalizer[pivotRow] = rowNormalizer[j]; 

  } 

   

  float denom = 1.0F / m[j * n + j]; 

  for (int i = j + 1; i < n; i++) 

  { 

   float factor = m[j * n + i] * denom; 

   r[i] -= r[j] * factor; 
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   for (int k = 0; k < n; k++) 

    m[k * n + i] -= m[k * n + j] * factor; 

  } 

 } 

  

 // Perform backward substitution. 

 for (int i = n - 1; i >= 0; i--) 

 { 

  float sum = r[i]; 

  for (int k = i + 1; k < n; k++) sum -= m[k * n + i] * r[k]; 

  r[i] = sum / m[i * n + i]; 

 } 

 

 result = true; 

  

 exit: 

 delete[] rowNormalizer; 

 return (result); 

} 

16.2.3  LU Decomposition 

Suppose again that we have a linear system of n equations that can be written as 
=Mx r. If we can find two matrices L and U, where L is a lower triangular ma-

trix and U is an upper triangular matrix, such that =LU M, then the linear system 
=Mx r can be written as 

 ( ) =L Ux r. (16.12) 

This transforms the problem of solving the system =Mx r into the problems of 
solving the system =Ly r and then solving the system =Ux y. The solutions to 
both of these systems is easily calculated using forward substitution (for =Ly r) 
and backward substitution (for =Ux y). 
 The pair of triangular matrices L and U whose product yields M is called the 
LU decomposition of M. Once determined, the LU decomposition of a matrix can 
be repeatedly used to solve linear systems having the same coefficient matrix M 
and different constant vectors r. In particular, we can calculate the j-th column of 

1−M  by setting i ijr δ= , where δ is the Kronecker delta symbol. 
 We need an algorithm that determines the matrices L and U such that 
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When examining how the matrix product LU produces each entry of the matrix 
M, we observe the following two summations. 
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(Both equations are valid for i j= .) The nonzero entries of L and U represent 
2n n+  unknown values, and Equations (16.14) and (16.15) give a total of 2n  

equations relating those unknowns. We therefore expect that n of the unknowns 
may be arbitrarily chosen, and we can then solve for the remaining 2n  unknowns. 
For the method that we present here, known as Doolittle’s method, we set all of 
the diagonal elements of L to unity. That is, 

 1, 1,2, ,iiL i n≡ =  . (16.16) 

(A similar method in which the diagonal elements of U are set to unity is known 
as Crout’s method.) To make efficient usage of storage space, we write the val-
ues of the remaining nonzero entries of L and U in a single matrix D as follows. 
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 (16.17) 

 Doolittle’s method determines the ( ),i j  entry of the matrix D using only the 
( ),i j  entry of the matrix M and entries of D in the same column above ijD  and in 
the same row to the left of ijD . Solving Equation (16.14) for ijU  and applying 
Equation (16.16) gives us 
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The calculation of ijU  requires the entries of U in the j-th column above row i and 
the entries of L in the i-th row to the left of the main diagonal. Similarly, solving 
Equation (16.15) for ijL  gives us 
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The calculation of ijL  requires the entries of L in the i-th row to the left of column 
j and the entries of U in the j-th column above and on the main diagonal. 
 The general procedure for producing the matrix D is to calculate the columns 
from left to right. For each column j, we first use Equation (16.18) to calculate 

ijU  for 1 i j≤ ≤ . These values are subsequently used in Equation (16.19) to calcu-
late ijL  for 1j i n+ ≤ ≤ . It is possible to store each value ijU  or ijL  at the location 
that ijM  originally occupied since ijM  is only used in the calculation for the ( ),i j  
entry of the matrix D. 
 The division in Equation (16.19) requires that we pivot when performing LU 
decomposition. We do so for each column j by choosing the largest possible divi-
sor from the candidates ijP  given by 
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P M L U
−

=

= −  (16.20) 

for i j≥ . When i j= , Equation (16.20) yields jjU  given by Equation (16.18); and 
when i j> , Equation (16.20) yields ijL  given by Equation (16.19), except that the 
division is not performed. Once the value of ijP  having the largest absolute value 
has been identified, we exchange the row in which it appears with row j to move 

ijP  to the main diagonal where it becomes jjU . All of the other entries ijP  in col-
umn j below the main diagonal are then divided by jjU  to obtain ijL . All of this 
produces the LU decomposition of a matrix M that is actually the LU decomposi-
tion of a permutation of the rows of M. We must keep track of the row exchanges 
so that they can be accounted for when using the matrix D to solve a linear 
system. 
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 The LUDecompose() function shown in Listing 16.3 performs in-place LU 
decomposition of a given n n×  matrix M. Pivoting is performed using the nor-
malized rows of M in a manner similar to that used in Gaussian elimination. In 
addition to returning the decomposed matrix D given by Equation (16.17), the 
function returns an array of indexes that indicate how the rows were permuted 
during the decomposition. All of this information is subsequently passed to the 
LUBacksubstitute() function shown in Listing 16.4 to solve a linear system. 
 After a matrix M has been decomposed into the product LU, its determinant 
can be calculated using the equation 

 det det det= ±M L U. (16.21) 

Since the diagonal entries of L are all unity, det 1=L , and the right side reduces 
to det± U. Which sign we choose depends on the number of row exchanges per-
formed during the decomposition. The LUDecompose() function returns a pari-
ty 1p = ±  in the detSign parameter indicating whether the number of row ex-
changes performed was even or odd. Since each row exchange negates the de-
terminant (see Theorem 3.17), this value enables us to calculate the determinant 
of M using the formula 

 
1

det det
n

ii
i

p p U
=

= = M U . (16.22) 

Listing 16.3. The LUDecompose() function performs the LU decomposition of an n n×  matrix 
M. The decomposition is performed in place—the matrix D given by Equation (16.17) is returned 
in the space occupied by M. This function also returns an array of indexes that indicate how the 
rows were permuted during the decomposition process. The matrix D and the permutation array 
are passed to the LUBacksubstitute() function (see Listing 16.4) to solve linear systems. The 
LUDecompose() function returns false if the matrix M is singular and true otherwise. 
Parameters 

 n The size of the matrix M. 
 m A pointer to the entries of the matrix M. The entries must be stored in column-

major order. 
 index A pointer to an array of size n where the row permutation information can be 

stored. 
 detSign A pointer to a location where the parity of the row exchanges can be stored. This 

may be nullptr if this information is not needed. 

bool LUDecompose(int n, float *m, unsigned short *index, float *detSign) 

{ 
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 float *rowNormalizer = new float[n]; 

 float exchangeParity = 1.0F; 

 bool result = false; 

  

 // Calculate a normalizer for each row. 

 for (int i = 0; i < n; i++) 

 { 

  const float *entry = m + i; 

  float maxvalue = 0.0F; 

   

  for (int j = 0; j < n; j++) 

  { 

   float value = fabs(*entry); 

   if (value > maxvalue) maxvalue = value; 

   entry += n; 

  } 

   

  if (maxvalue == 0.0F) goto exit; // Singular 

  rowNormalizer[i] = 1.0F / maxvalue; 

  index[i] = i; 

 } 

  

 // Perform decomposition. 

 for (int j = 0; j < n; j++) 

 { 

  for (int i = 1; i < j; i++) 

  { 

   // Evaluate Equation (16.18). 

   float sum = m[j * n + i]; 

   for (int k = 0; k < i; k++) sum -= m[k * n + i] * m[j * n + k]; 

   m[j * n + i] = sum; 

  } 

   

  // Find pivot element. 

  int pivotRow = -1; 

  float maxvalue = 0.0F; 

  for (int i = j; i < n; i++) 

  { 

   // Evaluate Equation (16.20). 

   float sum = m[j * n + i]; 
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   for (int k = 0; k < j; k++) sum -= m[k * n + i] * m[j * n + k]; 

   m[j * n + i] = sum; 

    

   sum = fabs(sum) * rowNormalizer[i]; 

   if (sum > maxvalue) 

   { 

    maxvalue = sum; 

    pivotRow = i; 

   } 

  } 

   

  if (pivotRow != j) 

  { 

   if (pivotRow == -1) goto exit; // Singular 

    

   // Exchange rows. 

   for (int k = 0; k < n; k++) 

   { 

    float temp = m[k * n + j]; 

    m[k * n + j] = m[k * n + pivotRow]; 

    m[k * n + pivotRow] = temp; 

   } 

    

   unsigned short temp = index[j]; 

   index[j] = index[pivotRow]; 

   index[pivotRow] = temp; 

    

   rowNormalizer[pivotRow] = rowNormalizer[j]; 

   exchangeParity = -exchangeParity; 

  } 

   

  // Divide by pivot element. 

  if (j != n - 1) 

  { 

   float denom = 1.0F / m[j * n + j]; 

   for (int i = j + 1; i < n; i++) m[j * n + i] *= denom; 

  } 

 } 

  

 if (detSign) *detSign = exchangeParity; 
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 result = true; 

 

 exit: 

 delete[] rowNormalizer; 

 return (result); 

} 

Listing 16.4. The LUBacksubstitute() function takes the LU-decomposed matrix D and 
permutation array returned by the LUDecompose() function (see Listing 16.3) and uses them to 
solve a linear system of n equations =Mx r. First, the system =Ly r is solved using Equation 
(16.7), and then the system =Ux y is solved using Equation (16.10). 
Parameters 
 n The size of the matrix D. 
 d A pointer to the entries of the matrix D. This should be the same pointer that was 

passed to the m parameter of the LUDecompose() function. 
 index A pointer to the array of row permutation indexes returned by the LUDecom-

pose() function. 
 r A pointer to an array of n constant values representing the vector r for which the 

linear system =Mx r is to be solved. 
 x A pointer to the array in which the n solutions representing the vector x are to be 

returned. 

void LUBacksubstitute(int n, const float *d, const unsigned short *index, 

  const float *r, float *x) 

{ 

 for (int i = 0; i < n; i++) x[i] = r[index[i]]; 

  

 // Perform forward substitution for Ly = r. 

 for (int i = 0; i < n; i++) 

 { 

  float sum = x[i]; 

  for (int k = 0; k < i; k++) sum -= d[k * n + i] * x[k]; 

  x[i] = sum; 

 } 

  

 // Perform backward substitution for Ux = y. 

 for (int i = n - 1; i >= 0; i--) 

 { 
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  float sum = x[i]; 

  for (int k = i + 1; k < n; k++) sum -= d[k * n + i] * x[k]; 

  x[i] = sum / d[i * n + i]; 

 } 

} 

16.2.4  Error Reduction 

Suppose that we have solved a linear system =Mx r and obtained the solution 
0=x x . Due to round-off error, it is usually the case that 0x  is slightly different 

from the true solution to the system, and thus 0 0=Mx r , where 0r  is slightly dif-
ferent from the original constant vector r. Calling the true solution to the system 
x, we can write 

 ( )Δ Δ+ = +M x x r r, (16.23) 

where 0Δ = −x x x and 0Δ = −r r r. Subtracting the original system =Mx r from 
this equation gives us 

 Δ Δ=M x r. (16.24) 

If we solve Equation (16.23) for Δr and plug it into Equation (16.24), then we 
arrive at the following linear system. 

 0Δ = −M x Mx r (16.25) 

The entire right side of this equation is known, so we can solve for the error vec-
tor Δx and subtract from our original solution 0x  to obtain a better answer. 
 The LURefineSolution() function shown in Listing 16.5 solves the sys-
tem given by Equation (16.25) using the same LU decomposition needed to solve 
the original system =Mx r. The result is then used to improve the original solu-
tion 0x . The right side of Equation (16.25) is evaluated in double precision since 
its value may become very small during its computation. We need both the origi-
nal coefficient matrix M and the LU-decomposed matrix D given by Equation 
(16.17). The code assumes that the matrix M has already been copied and de-
composed into the matrix D using the LUDecompose() function shown in 
Listing 16.3. 
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Listing 16.5. The LURefineSolution() function uses Equation (16.25) to improve the solution 
x to the linear system =Mx r. 
Parameters 
 n The size of the matrix M. 
 m A pointer to the entries of the matrix M. The entries must be stored in column-

major order. 
 d A pointer to the entries of the matrix D. This should be the same pointer that was 

passed to the m parameter of the LUDecompose() function. 
 index A pointer to the array of row permutation indexes returned by the LUDecom-

pose() function. 
 r A pointer to an array of n constant values representing the vector r for which the 

linear system =Mx r was originally solved. 
 x A pointer to the array containing the n solutions representing the vector x. This 

function refines these solutions. 

void LURefineSolution(int n, const float *m, const float *d, 

  const unsigned short *index, const float *r, float *x) 

{ 

 float *t = new float[n]; 

  

 for (int i = 0; i < n; i++) 

 { 

  double q = -r[i]; 

  for (int k = 0; k < n; k++) q += m[k * n + i] * x[k]; 

  t[i] = (float) q; 

 } 

  

 LUBacksubstitute(n, d, index, t, t); 

 for (int i = 0; i < n; i++) x[i] -= t[i]; 

  

 delete[] t; 

} 
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16.2.5  Tridiagonal Systems 

A particular type of linear system =Mx r frequently arises in which each equa-
tion has only three nonzero coefficients and those coefficients are centered on the 
main diagonal of M. This special form of the coefficient matrix is given the fol-
lowing name. 

Definition 16.3. A square matrix M is tridiagonal if 0ijM =  whenever 
1i j− > . That is, a tridiagonal matrix has nonzero entries only on the main di-

agonal and immediately above and below the main diagonal. 

A tridiagonal matrix having the property that its diagonal elements are larger than 
the sum of the remaining elements in their rows is described using the following 
term. 

Definition 16.4. Let M be the tridiagonal matrix  
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M is diagonally dominant if i i ib a c> +  for all i, where we assume 1 0a ≡  and 

0nc ≡ . 

 Suppose we have a linear system =Mx r of n equations, where M is a tridi-
agonal matrix. It turns out that such a linear system can be solved very efficient-
ly. Furthermore, if M is diagonally dominant, then we can prove that a solution 
to the linear system must exist. 
 Expanding the equation =Mx r, we can write 
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The first two rows of the matrix M represent the equations 

 1 1 1 2 1b x c x r+ =  (16.28) 

and 

 2 1 2 2 2 3 2a x b x c x r+ + = . (16.29) 

We can solve Equation (16.28) for 1x  and substitute the result into Equation 
(16.29) to obtain 

 1 1
2 2 2 2 3 2 2

1 1

c rb a x c x r a
b b

 − + = − 
 

, (16.30) 

which now contains only two unknowns instead of three. Continuing this pro-
cess, we can write each of the equations as 

 1i i i i iβ x c x ρ++ = , (16.31) 

where iβ  and iρ  are constants given by the recurrence formulas 
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The equation corresponding to the last row of the matrix M becomes n n nβ x ρ= , 
giving us the value of nx : 

 n
n

n

ρx
β

= . (16.33) 

Plugging this value back into Equation (16.31) for 1i n= −  gives us the value of 
1nx − , and in general, 

 1
i i

i i
i i

ρ cx x
β β += − . (16.34) 

 An implementation of this algorithm is shown in Listing 16.6. The algorithm 
is begun with 1 1β b=  and 1 1ρ r= . Each value of i ic β  calculated with Equation 
(16.32) is saved for later use in Equation (16.34). This implementation assumes 
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that iβ  is never zero, which is guaranteed to be true if the matrix M is diagonally 
dominant. The fact that a diagonally dominant matrix is always invertible is 
summarized by the following theorem. 

Theorem 16.5. Let M be an n n×  diagonally dominant tridiagonal matrix. Then 
the linear system =Mx r is always solvable, and as a corollary, the matrix M is 
invertible. 

Proof. Let the entries of M be named as shown in Equation (16.26). Since M is 
diagonally dominant, i i ib a c> +  for all i. We will show that the value of iβ  
given by Equation (16.32) always satisfies i iβ c>  and is therefore never zero. 
For 1i = , this is trivially true since 1 1 1β b c= > . Now assume that for any 1i >  
that 1 1i iβ c− −> . For iβ , we have 
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Since 1 1i iβ c− −> , the quantity 1 11 i ic β− −−  is positive, and thus i iβ c> . By in-
duction, this shows that i iβ c>  for all i. Consequently, the value of each ix  can 
always be calculated using Equation (16.34). The inverse of the matrix M can be 
found by solving the system n times, producing the columns of 1−M  one at a time. 
The j-th column of 1−M  is found by setting i ijr δ= .  
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Listing 16.6. The SolveTridiagonalSystem() function solves a tridiagonal system of n 
equations having the form =Mx r given by Equation (16.27). 
Parameters 
 n The size of the tridiagonal matrix M. 
 a, b, c Pointers to arrays containing the coefficients ia , ib , and ic , where 1 i n≤ ≤ . (These 

arrays are accessed using zero-based indexes, so 1b=b[0] .) The coefficients a[0] 
and c[n - 1] do not exist and are never accessed. 

 r A pointer to an array of n constant values representing the vector r for which the 
linear system =Mx r is to be solved. 

 x A pointer to the array in which the n solutions representing the vector x are to be 
returned. 

void SolveTridiagonalSystem(int n, const float *a, const float *b, 

  const float *c, const float *r, float *x) 

{ 

 // Allocate temporary storage for c[i]/beta[i]. 

 float *t = new float[n - 1]; 

 

 float recipBeta = 1.0F / b[0]; 

 x[0] = r[0] * recipBeta; 

 

 for (int i = 1; i < n; i++) 

 { 

  t[i - 1] = c[i - 1] * recipBeta; 

 

  recipBeta = 1.0F / (b[i] - a[i] * t[i - 1]); 

  x[i] = (r[i] - a[i] * x[i - 1]) * recipBeta; 

 } 

 

 for (int i = n - 2; i >= 0; i--) x[i] -= t[i] * x[i + 1]; 

 

 delete[] t; 

} 
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16.3  Eigenvalues and Eigenvectors 

Eigenvalues and eigenvectors were introduced in Section 3.5. We have studied 
how they are important for performing principal component analysis (see Section 
8.1.1) and for determining principal axes of inertia (see Section 14.2.4). Both of 
these problems required calculating the eigenvalues and eigenvectors of a 3 3×  
symmetric matrix, and we restrict our discussion to that particular problem in this 
section.1 
 Recall from Section 3.6 that a symmetric matrix M can be written as 

 T=M A DA, (16.36) 

where D is a diagonal matrix whose entries are the eigenvalues of M, and A is an 
orthogonal matrix whose columns are the eigenvectors of M. Our strategy in this 
section is to apply a series of transformations to a given symmetric matrix 0M  of 
the form 

 T
1k k k k−=M R M R , (16.37) 

where kR  is an orthogonal matrix, in such a way that each iteration moves the 
matrix kM  closer to being diagonal. Once the off-diagonal entries have been 
made sufficiently small (perhaps even zero to machine precision), we are left 
with the following. 

 T T T
1 1 0 1 2m m m m−=M R R R M R R R   (16.38) 

After m iterations, the diagonal entries of the matrix mM  are the eigenvalues of 
0M , and the columns of the product 1 2 mR R R  are the corresponding eigen-

vectors. 
 We choose each matrix kR  to be a rotation matrix that annihilates one of the 
three distinct off-diagonal entries of 1k−M  when Equation (16.37) is evaluated. 
The use of this process to diagonalize the matrix 0M  is known as the Jacobi 
method. Each iteration sets a symmetric pair of off-diagonal entries to zero, but 
also undoes previous annihilations. We will show, however, that the off-diagonal 
entries become smaller in magnitude as a group and eventually vanish. 
 For a 3 3×  matrix 0M , the rotation matrix kR  may assume one of the follow-
ing three forms, where s and c represent the sine and cosine of a rotation angle θ . 

                                                      
1 For a treatment of larger and nonsymmetric matrices, see William H. Press et al., Nu-
merical Recipes in C, Cambridge, 1988. 
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Suppose that we use one of the matrices ( )pqR  to transform the matrix M into the 
matrix ′M  through the formula ( ) ( )Tpq pq′ =M R MR . By explicitly calculating the 
entries of ′M , we obtain the following relationships. 

 ,
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M M
M cM sM i p i q
M sM cM
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′ = − ≠ ≠
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 (16.40) 

 2 2 2pp pp qq pqM c M s M scM′ = + −  (16.41) 

 2 2 2qq pp qq pqM s M c M scM′ = + +  (16.42) 

 ( ) ( )2 2
,pq qp pp qq pqM sc M M c s M′ = − + −  (16.43) 

We use the rotation matrix ( )pqR  to annihilate the ( ),p q  entry of M and therefore 
need to choose the angle θ  so that 0pqM ′ = . Equation (16.43) thus becomes 
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= . (16.44) 

Using the trigonometric identities 
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=
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(see Appendix B, Section B.4), we define u as 

 
2 21

tan 2 2 2
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c s M Mu
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We could now determine the angle θ  by calculating 11 1
2 tan u

− . However, c and s 
can be found much more efficiently by observing that 

 2 2 1 0t ut+ − = , (16.47) 
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where tant s c θ= = . Applying the quadratic formula, we have 

 2 1t u u= − ± + . (16.48) 

For best numerical stability, we want to choose the smaller of the two angles of 
rotation represented by this equation. The smaller value of t is given by 

 ( )( )2sgn 1t u u u= + − . (16.49) 

(In this case, we need ( )sgn 0 1=  so that 1t =  when 0u = .) If u is so large that 2u  
produces a floating-point infinity (possible when 0θ ≈ ), we assign ( )1 2t u=  be-
cause 

 ( )( ) ( )2
2

2 2

sgn1sgn 1
1 1

uu uu u u
u u u u

+ +
+ − =

+ + + +
 (16.50) 

and 

 
2 1lim 1

u

u
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+ = . (16.51) 

Using the identity 2 21 1t c+ =  (see Appendix B, Section B.3), we can now com-
pute the values of c and s as follows. 
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 When calculating the entries of ′M , we simply assume that 0pqM ′ = . We can 
then solve Equation (16.43) for ppM  and qqM : 

 

2 2

2 2

pp qq pq

qq pp pq

s cM M M
sc

s cM M M
sc

−= +

−= − . (16.53) 

Plugging this value of qqM  into Equation (16.41) and this value of ppM  into 
Equation (16.42) gives us the much simpler expressions 
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2 2
2 2 2pp pp pp pq pq

pp pq

s cM c M s M M scM
sc

M tM

− ′ = + − − 
 

= −  (16.54) 

and 

 

2 2
2 2 2

.

qq qq pq qq pq

qq pq

s cM s M M c M scM
sc

M tM

− ′ = + + + 
 

= +  (16.55) 

 To see that the Jacobi method converges to a diagonal matrix, we examine 
the sum of the squares of the distinct off-diagonal entries. For the matrix M, the 
sum S of these three entries is 

 2 2 2
ip iq pqS M M M= + + , (16.56) 

where ,i p q≠ . Using Equation (16.40) to calculate the same sum S ′ for the ma-
trix ′M  gives us 

 
( ) ( ) ( )2 2 2

2 2 .
ip iq ip iq pq

ip iq

S cM sM sM cM M

M M

′ ′= − + + +

= +  (16.57) 

Thus, choosing a nonzero entry to serve as pqM  guarantees that the sum of the 
squares of the off-diagonal entries decreases by 2

pqM . Over many iterations, the 
sequence of sums decreases monotonically and has a lower bound of zero, so it 
must converge to zero. 
 The CalculateEigensystem() function shown in Listing 16.7 imple-
ments the Jacobi method for finding the eigenvalues and eigenvectors of a 3 3×  
symmetric matrix M. It annihilates the ( )1,2  entry of M, then the ( )1,3  entry, and 
finally the ( )2,3  entry. This process of cycling through the off-diagonal entries, 
each iteration of which is called a sweep, is repeated until the total size of the off-
diagonal entries falls below a small positive threshold or a maximum number of 
sweeps have been executed. 
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Listing 16.7. The CalculateEigensystem() function calculates the eigenvalues and eigen-
vectors of a 3 3×  symmetric matrix. 

Parameters 

 m The 3 3×  matrix for which eigenvalues and eigenvectors are to be calculated. This 
matrix must be symmetric. 

 lambda A pointer to an array where the three eigenvalues are to be returned. 

 r A 3 3×  matrix whose columns contain the eigenvectors upon return. The i-th 
column corresponds to the i-th eigenvalue returned in the lambda array. 

const float epsilon = 1.0e-10F; 

const int maxSweeps = 32; 

 

void CalculateEigensystem(const Matrix3D& m, float *lambda, Matrix3D& r) 

{ 

 float m11 = m(0,0); 

 float m12 = m(0,1); 

 float m13 = m(0,2); 

 float m22 = m(1,1); 

 float m23 = m(1,2); 

 float m33 = m(2,2); 

  

 r.SetIdentity(); 

 for (int a = 0; a < maxSweeps; a++) 

 { 

  // Exit if off-diagonal entries small enough. 

  if ((Fabs(m12) < epsilon) && (Fabs(m13) < epsilon) && 

   (Fabs(m23) < epsilon)) break; 

   

  // Annihilate (1,2) entry. 

  if (m12 != 0.0F) 

  { 

   float u = (m22 - m11) * 0.5F / m12; 

   float u2 = u * u; 

   float u2p1 = u2 + 1.0F; 

   float t = (u2p1 != u2) ? 

    ((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) 

    : 0.5F / u; 

   float c = 1.0F / sqrt(t * t + 1.0F); 

   float s = c * t; 
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   m11 -= t * m12; 

   m22 += t * m12; 

   m12 = 0.0F; 

    

   float temp = c * m13 - s * m23; 

   m23 = s * m13 + c * m23; 

   m13 = temp; 

    

   for (int i = 0; i < 3; i++) 

   { 

    float temp = c * r(i,0) - s * r(i,1); 

    r(i,1) = s * r(i,0) + c * r(i,1); 

    r(i,0) = temp; 

   } 

  } 

   

  // Annihilate (1,3) entry. 

  if (m13 != 0.0F) 

  { 

   float u = (m33 - m11) * 0.5F / m13; 

   float u2 = u * u; 

   float u2p1 = u2 + 1.0F; 

   float t = (u2p1 != u2) ? 

    ((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) 

    : 0.5F / u; 

   float c = 1.0F / sqrt(t * t + 1.0F); 

   float s = c * t; 

    

   m11 -= t * m13; 

   m33 += t * m13; 

   m13 = 0.0F; 

    

   float temp = c * m12 - s * m23; 

   m23 = s * m12 + c * m23; 

   m12 = temp; 

    

   for (int i = 0; i < 3; i++) 

   { 

    float temp = c * r(i,0) - s * r(i,2); 

    r(i,2) = s * r(i,0) + c * r(i,2); 
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    r(i,0) = temp; 

   } 

  } 

   

  // Annihilate (2,3) entry. 

  if (m23 != 0.0F) 

  { 

   float u = (m33 - m22) * 0.5F / m23; 

   float u2 = u * u; 

   float u2p1 = u2 + 1.0F; 

   float t = (u2p1 != u2) ? 

    ((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) 

    : 0.5F / u; 

   float c = 1.0F / sqrt(t * t + 1.0F); 

   float s = c * t; 

    

   m22 -= t * m23; 

   m33 += t * m23; 

   m23 = 0.0F; 

    

   float temp = c * m12 - s * m13; 

   m13 = s * m12 + c * m13; 

   m12 = temp; 

    

   for (int i = 0; i < 3; i++) 

   { 

    float temp = c * r(i,1) - s * r(i,2); 

    r(i,2) = s * r(i,1) + c * r(i,2); 

    r(i,1) = temp; 

   } 

  } 

 } 

  

 lambda[0] = m11; 

 lambda[1] = m22; 

 lambda[2] = m33; 

} 
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16.4  Ordinary Differential Equations 

In this section, we study methods for numerically solving first-order ordinary 
differential equations. We can always write such equations in the form 

 ( ) ( ),y x f x y′ = , (16.58) 

where f is a function that we are able to evaluate for any given values of x and y. 
Most differential equations encountered in a physical simulation are second-order 
or higher, but we will be able to show that the ability to solve first-order equa-
tions also gives us the ability to solve equations of any order by writing them as a 
system of first-order equations. 

16.4.1  Euler’s Method 

Euler’s method is an extremely simple technique for approximating values of the 
solution ( )y x  to the differential equation given by Equation (16.58). Coupled 
with this simplicity is low accuracy, so we describe Euler’s method now only as 
an introduction to later discussions of more effective methods. 
 Suppose that we know an initial state ( )0 0y x y= , and we wish to approxi-
mate the value of the function y at 0x x h= + , where h is some small step size. 
Writing the derivative ( )0y x′  as a finite difference, Equation (16.58) becomes 

 ( ) ( )0 0 ,y x h y f x y
h

+ − = . (16.59) 

Solving for ( )0y x h+ , we have 

 ( ) ( )0 0 ,y x h y hf x y+ = + . (16.60) 

This gives us the state ( ) ( )( )1 1 0 0, ,x y x h y x h= + +  from which the process can be 
repeated. The general formula for Euler’s method is thus 

 ( )
1

1 ,
i i

i i i i

x x h
y y hf x y

+

+

= +
= + . (16.61) 

 Let us consider as an example a projectile moving under the influence of 
gravity. Its equation of motion is 

 ( ) 0y t v gt′ = − , (16.62) 
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where t is time, y represents the height of the projectile, 0v  is the initial vertical 
velocity, and g is the (positive) acceleration of gravity. (We assume the horizon-
tal velocity is constant.) We can use Euler’s method to move from the point 
( ),i it y  to the point ( )1 1,i it y+ +  by evaluating the equation 

 ( )1 0i iy y h v gt+ = + − . (16.63) 

Figure 16.1 shows the exact solution to Equation (16.62) for 0 6 m sv =  and 
( )0 0y = , which we know to be ( ) 21

0 2y t v t gt= − , and the approximation to the 
projectile’s position calculated using Euler’s method with a step size of 0.1sh = . 
The minimal accuracy of Euler’s method is clearly demonstrated by the diver-
gence of the two curves. We could improve the situation by decreasing the step 
size h, but doing so requires more evaluations of Equation (16.61). 

x

y

 
Figure 16.1. The solution to the differential equation ( ) 0y t v gt′ = −  with ( )0 0y = , 

0 6 m sv = , and 29.8 m sg = . The piecewise curve is the approximation calculated using 
Euler’s method with a step size of 0.1 sh = . 
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16.4.2  Taylor Series Method 

Any method for approximating the solution to a differential equation by taking 
one step at a time assumes the form 

 ( ) ( ) ( ),i i i iy x h y x hF x y+ = + , (16.64) 

where the function F is some function that produces an approximation to the de-
rivative of y over the interval [ ],i ix x h+ . For Euler’s method, the function F is 
simply the function f. To find a function F that achieves greater accuracy than 
that provided by Euler’s method, we consider the Taylor series (see Appendix D) 
of ( )iy x h+ : 

 ( ) ( ) ( ) ( ) ( ) ( )
2 3

3

2! 3!i i i i i
h hy x h y x hy x y x y x′ ′′+ = + + + +. (16.65) 

For a differential equation written in the form of Equation (16.58), the derivatives 
of ( )y x  can all be calculated using the relationship 

 ( ) ( ) ( ) ( )1 ,n ny x f x y−= . (16.66) 

By taking 1k −  derivatives, we can calculate the Taylor series approximation of 
( )iy x h+  to k-th order in the step size h, yielding 

 ( ) ( ) ( ) ( ) ( )
2

1, , ,
2! !

k
k

i i i i i i i i
h hy x h y hf x y f x y f x y

k
−′+ ≈ + + + + , (16.67) 

where ( )i iy y x= . When 1k = , this reduces to Euler’s method. Writing Equation 
(16.67) in the form of Equation (16.64), we have 

 ( ) ( ) ( ),i i k i iy x h y x hT x y+ = + , (16.68) 

where ( ),k i iT x y  is defined as 

 ( ) ( ) ( ) ( ) ( )
2 1

1, , , ,
2! !

k
k

k i i i i i i i i
h hT x y f x y f x y f x y

k

−
−′= + + + . (16.69) 

This is known as the k-th order Taylor series method. 
 Since y is a function of x, we must be careful to evaluate the total derivatives 
of ( ),f x y  in the Taylor series. The first derivative is 
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 ( ) ( ) ( ), , , dyf x y f x y f x y
x y dx

∂ ∂′ = +
∂ ∂

. (16.70) 

Since ( ),dy dx f x y= , this becomes 

 ( ) ( ) ( ) ( ), , , ,f x y f x y f x y f x y
x y

∂ ∂′ = +
∂ ∂

. (16.71) 

Higher derivatives of ( ),f x y  quickly become very messy, but we could theoreti-
cally compute them to construct the k-th order Taylor series approximation. The 
function f may have a form that enables easy calculation of its derivatives. 

16.4.3  Runge-Kutta Method 

Because of the necessity of calculating derivatives, the Taylor series method is 
not commonly used. Everything that we have examined so far in this section has 
served as a prelude to our discussion of the Runge-Kutta method, a reliable and 
accurate technique for numerically solving most differential equations that arise 
in physical simulations appearing in a 3D graphics application. 
 The Runge-Kutta method determines how to step from iy  to 1iy +  by choosing 
the function F in Equation (16.64) to be one that evaluates ( ),f x y  at multiple 
points and takes a weighted average to approximate the derivative of y. In gen-
eral, the function F has the form 

 ( ) ( )
1

, ,
m

i i j j j
j

F x y w f u v
=

= , (16.72) 

where m is the number of points at which ( ),f x y  is evaluated, each point ( ),j ju v  
lies near the point ( ),i ix y , and jw  is the weight associated with the j-th point. The 
points and weights are chosen so that ( ),i iF x y  matches a k-th order Taylor series 
function ( ),k i iT x y  given by Equation (16.69). This is accomplished without hav-
ing to evaluate derivatives of f. 
 The value of m is called the number of stages of the method. We first consid-
er a two-stage Runge-Kutta method in which the function F has the form 

 ( ) ( ) ( )( )1 2, , , ,i i i i i i i iF x y w f x y w f x ah y ahf x y= + + + . (16.73) 

We would like to choose 1w , 2w , and a so that this function matches the second-
order Taylor series function ( )2 ,i iT x y  as closely as possible. To achieve this 
goal, we expand ( )( ), ,i i i if x ah y ahf x y+ +  in a Taylor series as follows. 
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( )( ), ,

( , ) ( , ) ( , ) ( , )

i i i i

i i i i i i i i

f x ah y ahf x y

f x y ah f x y f x y f x y R
x y

+ +

∂ ∂ = + + + ∂ ∂ 
 (16.74) 

The remainder term R involves only higher powers of ah. Using this expansion, 
the function F can be written as 

 

( ) ( ) ( )1 2

2 2

, ,

( , ) ( , ) ( , )

i i i i

i i i i i i

F x y w w f x y

w ah f x y f x y f x y w R
x y

= + +

∂ ∂ + + ∂ ∂ 
. (16.75) 

The Taylor series function ( )2 ,i iT x y  is given by 

 ( ) ( ) ( ) ( ) ( )2 , , , , ,
2i i i i
hT x y f x y f x y f x y f x y

x y
∂ ∂ = + + ∂ ∂ 

. (16.76) 

Equating like terms in Equations (16.75) and (16.76) (ignoring the term contain-
ing R), we see that the weights 1w  and 2w  must satisfy 

 
1 2

1
2 2

1w w
aw

+ =
= . (16.77) 

Thus, ( )2 1 2w a=  and ( )1 1 1 2w a= − . The value of a is unrestricted, but we 
should use a quantity that keeps the second point sampled in Equation (16.73) in 
the neighborhood of the point ( ),i ix y . 
 Choosing 1

2a =  forces 1 0w =  and produces the following step after plugging 
( ),i iF x y  into Equation (16.64). 

 ( )1 , ,
2 2i i i i i i
h hy y hf x y f x y+

 = + + + 
 

 (16.78) 

Equation (16.78) is called the modified Euler’s method. If we instead choose 
1a = , then the weights are equal, and we have 

 ( ) ( )( )[ ]1 , , ,
2i i i i i i i i
hy y f x y f x h y hf x y+ = + + + + . (16.79) 

Equation (16.79) is called the improved Euler’s method and is also known as 
Heun’s method. 
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 Runge-Kutta methods having a greater number of stages are derived in a 
manner similar to that used to derive the two-stage method, except that higher-
order Taylor series expansions are equated. Without concerning ourselves with 
the details of the long and uninteresting derivation, we state a popular four-stage 
Runge-Kutta method, often called the RK4 method, as follows. 

 ( ) ( ) ( ) ( )[ ]1 1 2 3 4, 2 , 2 , ,
6i i i i i i i i i i
hy y K x y K x y K x y K x y+ = + + + +  (16.80) 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

1

2 1

3 2

4 3

, ,

, , ,
2 2

, , ,
2 2

, , ,

i i i i

i i i i i i

i i i i i i

i i i i i i

K x y f x y
h hK x y f x y K x y

h hK x y f x y K x y

K x y f x h y hK x y

=

 = + + 
 
 = + + 
 

= + +

 (16.81) 

The RK4 method is usually more than adequate for the types of real-time simula-
tions encountered in a 3D game application. The calculation of Equation (16.80) 
is very straightforward and also rather efficient for the accuracy that the RK4 
method provides. 

16.4.4  Higher-Order Differential Equations 

We mentioned earlier that a higher-order differential equation could be trans-
formed into a system of first-order differential equations, allowing us to solve it 
numerically using the methods already presented. First, let us consider a second-
order differential equation 

 ( ) ( ), ,y x f x y y′′ ′= . (16.82) 

This can be expressed as the following pair of first-order equations. 

 
( ) ( )
( ) ( ), ,

y x z x
z x f x y z
′ =
′ =  (16.83) 

Given initial conditions ( )0 0y x y=  and ( )0 0z x z= , we can solve this system us-
ing Euler’s method by applying the following step formula. 
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 ( )

1

1

1 , ,

i i

i i i

i i i i i

x x h
y y hz
z z hf x y z

+

+

+

= +
= +
= +  (16.84) 

 In general, an n-th order differential equation ( ) ( ) ( )( )1, , , ,n ny x f x y y y −′=   
can be written as the system of n first-order equations 

 

( ) ( )
( ) ( )

( ) ( )

1 2

2 3

1 2, , , ,n n

z x z x
z x z x

z x f x z z z

′ =
′ =

′ =


 , (16.85) 

where ( ) ( )1z x y x= , ( ) ( )2z x y x′= , and so on to ( ) ( ) ( )1n
nz x y x−= . We can ex-

press this as the vector first-order differential equation 

 ( ) ( ),x x′ =z f z , (16.86) 

where ( ) ( ) ( ) ( )1 2, , , nx z x z x z x=z   and 

 ( )

( )
( )

( )

2

3

1 2

,

, , , , n

z x
z x

x

f x z z z

 
 
 =
 
 
 

f z



. (16.87) 

The vector analog of Equation (16.64) is 

 ( ) ( ) ( ),i i i ix h x h x+ = +z z F z , (16.88) 

where ( ),i ixF z  is a vector function representing an Euler method, Taylor series 
method, or Runge-Kutta method that is simply calculated componentwise. 

Chapter 16 Summary 

Linear Systems 

The solution to a linear system =Lx r, where L is an n n×  lower triangular ma-
trix, can be found by forward substitution: 
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1

1

1 i

i i ik k
ii k

x r L r
L

−

=

 = − 
 

 . 

The solution to a linear system =Ux r, where U is an n n×  upper triangular ma-
trix, can be found by backward substitution: 

 
1

1 n

i i ik k
ii k i

x r U r
U = +

 = − 
 

 . 

A matrix M can be decomposed into the product LU, where L is lower triangular 
and U is upper triangular, using Doolittle’s method. The linear system =Mx r 
then becomes ( ) =L Ux r, which can be solved in two stages by first using for-
ward substitution to solve =Ly r and then backward substitution to solve =Ux y. 

Eigenvalues and Eigenvectors 

The eigenvalues and eigenvectors of a 3 3×  symmetric matrix M can be numeri-
cally calculated by applying the Jacobi method to diagonalize M. When M is 
transformed by one of the rotation matrices ( )pqR  given by Equation (16.39), the 
new entries of M are given by 

 ,

,

if  and ;
ii ii

ip pi ip iq

iq qi ip iq

M M
M cM sM i p i q
M sM cM

′ = 
′ = − ≠ ≠
′ = + 

 

 , 0,

pp pp pq

qq qq pq

pq qp

M M tM
M M tM
M

′ = −
′ = +
′ =  

where t s c= . 

Ordinary Differential Equations 

The first-order ordinary differential equation ( ) ( ),y x f x y′ =  can be approximat-
ed using Euler’s method as follows. 

 ( )1 ,i i i iy y hf x y+ = +  

The improved Euler’s method, also known as Heun’s method, uses the step 
formula 
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 ( ) ( )( )[ ]1 , , ,
2i i i i i i i i
hy y f x y f x h y hf x y+ = + + + + . 

The RK4 method has the following formulation. 

 ( ) ( ) ( ) ( )[ ]1 1 2 3 4, 2 , 2 , ,
6i i i i i i i i i i
hy y K x y K x y K x y K x y+ = + + + +  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

1

2 1

3 2

4 3

, ,

, , ,
2 2

, , ,
2 2

, , ,

i i i i

i i i i i i

i i i i i i

i i i i i i

K x y f x y
h hK x y f x y K x y

h hK x y f x y K x y

K x y f x h y hK x y

=

 = + + 
 
 = + + 
 

= + +

 

Exercises for Chapter 16 

1. Extend the Jacobi method to find eigenvalues and eigenvectors for an n n×  
symmetric matrix M. Modify Listing 16.7 so that it cycles through all of the 
off-diagonal entries, annihilating them one at a time. 

2. Calculate the second total derivative of ( )( ),f x y x  necessary to implement 
the third-order Taylor series method. 

3. Implement the improved Euler’s method (Heun’s method) and apply it to 
the case of a projectile under the influence of gravity. Show that this method 
gives the exact solution to the equation ( ) 0y t v gt′ = −  no matter what step 
size is used. 

4. Implement the RK4 method for first-order differential equations. 

5. Implement the vector form of the RK4 method and apply it to the exact 
equation of motion for a pendulum given by Equation (14.126). 
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Appendix A 

Complex Numbers 

A.1  Definition 

The set of complex numbers  is a field containing the set of real numbers  and 
the “imaginary” number i. The number i is defined to be the square root of 1− : 

 1i = − . (A.1) 

Thus, the square root of any negative number n−  can be written as 

 n i n− = . (A.2) 

A complex number z is one of the form 

 z a bi= + , (A.3) 

where a and b are real numbers. The number a is called the real part of z, denot-
ed by ( )Re z , and the number b is called the imaginary part of z, denoted by 

( )Im z . If 0b = , then the number z is purely real. If 0a = , then the number z is 
purely imaginary. 

A.2  Addition and Multiplication 

The sum of two complex numbers a bi+  and c di+  is given by 

 ( ) ( ) ( ) ( )a bi c di a c b d i+ + + = + + + . (A.4) 

The product of two complex numbers can be calculated by using the distributive 
property and the fact that 2 1i = − . The product of a bi+  and c di+  is given by 

 ( )( ) ( ) ( )a bi c di ac bd ad bc i+ + = − + + . (A.5) 
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Addition and multiplication of complex numbers are both commutative and asso-
ciative. This means that for any three complex numbers 1z , 2z , and 3z , the follow-
ing properties hold. 

(a) 1 2 2 1z z z z+ = +  
(b) ( ) ( )1 2 3 1 2 3z z z z z z+ + = + +  
(c) 1 2 2 1z z z z=  
(d) ( ) ( )1 2 3 1 2 3z z z z z z=  

A.3  Conjugates and Inverses 

The conjugate of a complex number z a bi= +  is denoted by z  and is defined as 

 z a bi= − . (A.6) 

The conjugate of z has the same components as the number z itself, except that 
the imaginary part is negated. Taking the product of z and its conjugate z  yields 

 ( )( ) 2 2zz a bi a bi a b= + − = + . (A.7) 

Thus, the product zz  is a real number that reflects the magnitude of the number z. 
We use this to define the absolute value of a complex number, which is some-
times called the modulus. The modulus of a complex number z a bi= +  is denoted 
by z  and is defined as 

 2 2z zz a b= = + . (A.8) 

If z is purely real, then this definition reduces to that of the ordinary absolute val-
ue for a real number. 
 Let 1z a bi= +  and 2z c di= +  be complex numbers such that 2 0z ≠ . We can 
determine the value of the quotient 1 2z z  by multiplying the numerator and de-
nominator by the conjugate of 2z . This gives us 

 ( )( )1 2
12 2 2

2 2

a bi c diz a bi a bi c di zz
z c di c di c di c d z

+ −+ + −= = ⋅ = =
+ + − +

. (A.9) 

We now have a way to define the inverse of a nonzero complex number z, which 
we denote by 1z − , as follows. 
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 1
2

zz
z

− =  (A.10) 

As shown below, the product of a complex number z and its inverse is 1. 

 1
2 1zz zzzz

z zz
− = = =  (A.11) 

A.4  The Euler Formula 

A fascinating property of complex numbers ties exponential and trigonometric 
functions together. For any real number x representing a radian angle of measure, 
we have the following identity. 

 cos sinixe x i x= +  (A.12) 

This equation is known as the Euler formula and can be used to derive a multi-
tude of trigonometric identities (see Appendix B, Section B.4). The formula can 
be verified by expanding the function ixe  into its power series and collecting real 
and imaginary terms, as shown in Appendix D, Section D.3. 
 The complex plane is a 2D coordinate system having a real axis and an imag-
inary axis that are perpendicular to each other. As shown in Figure A.1, a com-
plex number z can be uniquely identified by its absolute value and the angle that 
it forms with the real axis in the complex plane. This angle is called the argument 
of a complex number and is denoted by arg z. One possible value of the argument 
of z a bi= +  is given by 

 ( )

( )

1

1

tan , if 0;

arg sgn , if 0;
2

tan sgn , if 0.

b a
a
πz b a

b b π a
a

−

−

 >

= =

 + <

 (A.13) 

Any angle differing from the value given by Equation (A.13) by a multiple of 2π 
is also correct. 
 We can now express any complex number z as 

 iθz re= , (A.14) 
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Re

Im

z

z

arg z

 
Figure A.1. A complex number z can be expressed in terms of its distance z  from the 
origin and the angle arg z that it forms with the real axis in the complex plane. 

where r z=  and argθ z= . Since the sine and cosine functions have a period of 
2π, we know that 

 ( )2i θ πkiθe e +=  (A.15) 

for any integer k. 
 The Euler formula is useful for raising a complex number to a power. The 
quantity nz  can be written as 

 ( )cos sinn n inθ nz r e r nθ i nθ= = + . (A.16) 

In particular, we can calculate the n-th roots of a complex number z by writing 

 ( )( )21 1 2 2cos sinni θ πkn n θ πk θ πkz re r i
n n

+ + + = = + 
 

, (A.17) 

where k is an integer. Choosing 0,1, , 1k n= −  produces all n roots of the num-
ber z. A root ρ is called primitive if the smallest positive power m yielding mρ z=  
is m n= . 
 The n-th roots of unity can be calculated using the formula 

 2 2 2cos sinπki n πk πke i
n n

= +  (A.18) 
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since 1r =  and 0θ =  in this case. For example, the three cube roots of unity 0ρ , 1ρ , 
and 2ρ  are given by 

 

0

1

2

1

2 2 1 3cos sin
3 3 2 2

4 4 1 3cos sin
3 3 2 2

ρ

π πρ i i

π πρ i i

=

= + = − +

= + = − − . (A.19) 

Note that 1ρ  and 2ρ  are both primitive roots of unity, and that 2
1 2ρ ρ=  and 2

2 1ρ ρ= . 
In general, a primitive n-th root of unity generates all the n-th roots of unity when 
raised to the powers 1,2, ,n . 
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Appendix B 
Trigonometry Reference 

B.1  Function Definitions 

For the angle α shown in Figure B.1, the trigonometric functions are defined as 
follows. 

 

sin cos

tan cot

sec csc

y xα α
r r
y xα α
x y
r rα α
x y

= =

= =

= =  (B.1) 

The relationships among the trigonometric functions listed below follow imme-
diately from the definitions. 

 

sin 1tan cot
cos tan

1 1sec csc
cos sin

αα α
α α

α α
α α

= =

= =  (B.2) 

α

r
y

x  
Figure B.1. Equation (B.1) defines the trigonometric functions in terms of the angle α 
shown in this triangle. 
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B.2  Symmetry and Phase Shifts 

The cosine function is an even function, meaning that it is symmetric about the y 
axis. The sine and tangent functions are odd functions, meaning that they are 
symmetric about the origin. We thus have the following identities. 

 

( )
( )
( )

sin sin
cos cos
tan tan

α α
α α
α α

− = −
− =
− = −  (B.3) 

 The cosine function produces the same value at an angle α that the sine func-
tion does at the angle 2α π+ . That is, the graph of the cosine function is identi-
cal to the graph of the sine function shifted to the left by 2π  radians. We can 
thus formulate the following phase shift identities. 

 

( )
( )
( )

sin 2 cos
cos 2 sin
tan 2 cot

α π α
α π α
α π α

+ =
+ = −
+ = −  (B.4) 

Using the symmetry properties given by Equation (B.3), we can also state 

 

( )
( )
( )

sin 2 cos
cos 2 sin
tan 2 cot

π α α
π α α
π α α

− =
− =
− = . (B.5) 

 Shifting the sine or cosine function by a value of π  simply negates the values 
of the function. This gives us 

 

( )
( )
( )

sin sin
cos cos
tan tan .

α π α
α π α
α π α

+ = −
+ = −
+ =  (B.6) 

Again using the symmetry properties of the functions, we can also state 

 

( )
( )
( )

sin sin
cos cos
tan tan

π α α
π α α
π α α

− =
− = −
− = − . (B.7) 
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B.3  Pythagorean Identities 

The following identities arise directly from the definitions given in Equation 
(B.1) and the fact that 2 2 2x y r+ = . 

 

2 2

2 2

2 2

sin cos 1
tan 1 sec
cot 1 csc

α α
α α
α α

+ =
+ =
+ =  (B.8) 

If the angle α satisfies 0 2α π≤ ≤ , then we can write 

 

2

2

2

2

1sin 1 cos
cot 1

1cos 1 sin
tan 1

α α
α

α α
α

= − =
+

= − =
+

. (B.9) 

B.4  Exponential Identities 

The Euler formula states 

 cos sinαie α i α= + . (B.10) 

This relationship can be used to derive several trigonometric identities simply by 
applying the laws of exponents. The angle sum and difference identities are given 
by the equation 

 ( )α β i αi βie e e+ = . (B.11) 

Expanding this using Equation (B.10) yields 

 ( ) ( ) ( )( )cos sin cos sin cos sinα β i α β α i α β i β+ + + = + + . (B.12) 

By equating the real and imaginary components of one side to those of the other, 
we can infer the following. 

 
( )
( )

sin sin cos cos sin
cos cos cos sin sin

α β α β α β
α β α β α β

+ = +
+ = −  (B.13) 

The angle difference identities are derived by negating β as follows. 
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( )
( )

sin sin cos cos sin
cos cos cos sin sin

α β α β α β
α β α β α β

− = −
− = +  (B.14) 

When the angles α and β are the same, the angle sum identities become 

 2 2

sin 2 2sin cos
cos2 cos sin

α α α
α α α

=
= − . (B.15) 

Using the fact that 2 2sin cos 1α α+ = , we can rewrite cos2α in the following 
ways. 

 

2

2

cos2 1 2sin
cos2 2cos 1

α α
α α

= −
= −  (B.16) 

Solving these for 2sin α and 2cos α gives us 

 

2

2

1 cos2sin
2

1 cos 2cos
2

αα

αα

−=

+= . (B.17) 

B.5  Inverse Functions 

The inverse ( )1f x−  of a trigonometric function ( )f α  returns the angle α for 
which ( )f α x= . The domains and ranges of the inverse trigonometric functions 
are listed in Table B.1. 
 
 

Function Domain Range 
1sin x−  [ ]1,1−  [ ]2, 2π π−  
1cos x−  [ ]1,1−  [ ]0,π  
1tan x−   [ ]2, 2π π−  

Table B.1. Domains and ranges of inverse trigonometric functions. 

 As shown in Figure B.2, the inverse sine of x is equal to the acute angle α in 
a triangle having an opposite side of length x and a hypotenuse of length 1. Since 
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α

x
1

21 x−  
Figure B.2. A triangle representing the inverse sine function. 

we know that the third side of the triangle has length 21 x− , we can derive the 
values of the other trigonometric functions at the angle 1sin x−  as follows. 

 

( )
( )

1 2

1

2

cos sin 1

tan sin
1

x x
xx

x

−

−

= −

=
−

 (B.18) 

Applying the same technique for the inverse cosine and inverse tangent func-
tions, we have the following. 

 

( )

( )

( )

( )

1 2

2
1

1

2

1

2

sin cos 1

1tan cos

sin tan
1

1cos tan
1

x x

xx
x
xx

x

x
x

−

−

−

−

= −

−=

=
+

=
+

 (B.19) 

B.6  Laws of Sines and Cosines 

Consider the triangle shown in Figure B.3 and observe the following. 

 

sin

sin

zα
c
yβ
c

=

=  (B.20) 
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π γ−

π γ−

γ

α

β a

b
c

x

y

z
 

Figure B.3. For the triangle having side lengths a, b, and c, and angles α, β, and γ, the 
law of sines is given by Equation (B.24), and the law of cosines is given by Equation 
(B.29). 

Solving these for c allows us to form the equality 

 sin sin
z y
α β

= . (B.21) 

The following observations may also be made. 

 

( )

( )

sin

sin

zπ γ
a
yπ γ
b

− =

− =  (B.22) 

Thus, z a y b= . Multiplying the left side of Equation (B.21) by a z and the right 
side of Equation (B.21) by b y yields the law of sines: 

 
sin sin

a b
α β

= . (B.23) 

The same relationship can be derived for the pair of angles α and γ or the pair of 
angles β and γ, so we can write 
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sin sin sin

a b c
α β γ

= = . (B.24) 

 Now observe the following Pythagorean relationships in the triangle shown 
in Figure B.3. 

 ( )

2 2 2

2 2 2

x y b
a x y c

+ =
+ + =  (B.25) 

Solving the first equation for 2y  and substituting into the second equation gives 
us 

 
( )2 2 2 2

2 2 2 .

c a x b x

a b ax

= + + −

= + +  (B.26) 

The value of x can be replaced by observing 

 ( )cos xπ γ
b

− = . (B.27) 

Since ( )cos cosπ γ γ− = − , we have 

 cosx b γ= − . (B.28) 

Plugging this into Equation (B.26) produces the law of cosines: 

 2 2 2 2 cosc a b ab γ= + − . (B.29) 

Of course, this reduces to the Pythagorean theorem when γ is a right angle since 
cos 2 0π = . 
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Appendix C 
Coordinate Systems 

C.1  Cartesian Coordinates 

A Cartesian coordinate system is characterized by three mutually perpendicular 
axes, usually named x, y, and z. As shown in Figure C.1, a point P can be ex-
pressed as 

 x y z= + +P i j k , (C.1) 

where i, j, and k are unit vectors parallel to the three axes. The scalars x, y, and z 
are the Cartesian coordinates of the point P. 

y
x

z

P

j

i

k

 
Figure C.1. Cartesian coordinates. 
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 The gradient operator ∇  has the following form in Cartesian coordinates. 

 
x y z

∂ ∂ ∂≡ + +
∂ ∂ ∂

i j k∇  (C.2) 

In other coordinate systems in which a point P has coordinates u, v, and w, where 
we can write ( ), ,u u x y z= , ( ), ,v v x y z= , and ( ), ,w w x y z= , the gradient operator 
follows the chain rule to become 

 u v w
u v w
∂ ∂ ∂′ = + +
∂ ∂ ∂

∇ ∇ ∇ ∇ . (C.3) 

C.2  Cylindrical Coordinates 

A point P is represented by the quantities r, θ , and z in cylindrical coordinates. 
As shown in Figure C.2, r is equal to the radial distance between P and the z axis. 
The angle θ  is called the azimuthal angle, or simply the azimuth, and is equal to 
the counterclockwise angle formed between the x axis and the line connecting the 
projection of P onto the x-y plane to the origin. The z coordinate has the same 
meaning as it does in Cartesian coordinates. 

z

P

j

i

k

r

θ

 
Figure C.2. Cylindrical coordinates. 
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 The x and y Cartesian coordinates corresponding to a point having cylindrical 
coordinates , ,r θ z  are given by 

 
cos
sin .

x r θ
y r θ

=
=  (C.4) 

The cylindrical coordinates r and θ  can be written in terms of the Cartesian coor-
dinates x and y as follows. 

 

( )

( ) ( )

2 2

1

2 2

, ,

, , sgn cos

r x y z x y
xθ x y z y

x y
−

= +

=
+

 (C.5) 

The azimuthal angle θ  can also be expressed as 

 ( ) ( )

( )

1

1

tan , if 0;

, , sgn , if 0;
2

tan sgn , if 0.

y x
x
πθ x y z y x

y y π x
x

−

−

 >

= =

 + <

 (C.6) 

(In both Equations (C.5) and (C.6), the value of θ  satisfies π θ π− ≤ ≤ .) 
 A point P having cylindrical coordinates , ,r θ z  is written in terms of the 
Cartesian basis vectors i, j, and k as follows. 

 ( ) ( )cos sinr θ r θ z= + +P i j k (C.7) 

Taking partial derivatives with respect to the coordinates r, θ , and z, and normal-
izing gives us the unit vectors r̂ , θ̂, and ẑ at the point P in the cylindrical coordi-
nate system: 

 

( ) ( )

( ) ( )

ˆ cos sin

ˆ sin cos

ˆ .

r θ θ
r
θ θ θ
θ
z
z

∂ ∂= = +
∂ ∂
∂ ∂= = − +
∂ ∂
∂ ∂= =
∂ ∂

P
r i j

P

P
i j

P

P
z k

P

θ

 (C.8) 
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 The gradient operator in cylindrical coordinates is given by 

 ( ) ( ) ˆ, , , ,r x y z θ x y z
r θ z

∂ ∂ ∂′ = + +
∂ ∂ ∂

z∇ ∇ ∇ . (C.9) 

Using the definitions given in Equation (C.5) for ( ), ,r x y z  and ( ), ,θ x y z , we ob-
tain the following for the gradients ( ), ,r x y z∇  and ( ), ,θ x y z∇ . 

 

( )

2 2 2 2

, ,

cos sin
ˆ

r r rr x y z
x y z

x y
x y x y
θ θ

∂ ∂ ∂= + +
∂ ∂ ∂

= +
+ +

= +
=

i j k

i j

i j

r

∇

 (C.10) 

 

( )

2 2 2 2

, ,

sin cos

1 ˆ

θ θ θθ x y z
x y z

y x
x y x y

θ θ
r r

r

∂ ∂ ∂= + +
∂ ∂ ∂

−= +
+ +

   = − +   
   

=

i j k

i j

i j

∇

θ  (C.11) 

Thus, the gradient operator can be written as 

 1 ˆˆ ˆ
r r θ z

∂ ∂ ∂′ = + +
∂ ∂ ∂

r z∇ θ . (C.12) 

C.3  Spherical Coordinates 

A point P is represented by the quantities r, θ , and φ in spherical coordinates. As 
shown in Figure C.3, r is equal to the distance from the origin to the point P. The 
angle θ  is the azimuth representing the angle formed between the x axis and the 
line connecting the projection of P onto the x-y plane to the origin (just as in cy-
lindrical coordinates). The angle φ is called the polar angle and represents the 
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j

i

k

r

θ

P

φ

 
Figure C.3. Spherical coordinates. 

angle formed between the z axis and the line connecting P to the origin. The po-
lar angle φ always satisfies 0 φ π≤ ≤ . 
 The Cartesian coordinates , ,x y z  corresponding to a point having spherical 
coordinates , ,r θ φ  are given by 

 

sin cos
sin sin
cos .

x r φ θ
y r φ θ
z r φ

=
=
=  (C.13) 

The spherical coordinates , ,r θ φ  can be written in terms of the Cartesian coor-
dinates , ,x y z  as follows. 

 

( )

( ) ( )

( )

2 2 2

1

2 2

1

2 2 2

, ,

, , sgn cos

, , cos

r x y z x y z
xθ x y z y

x y
zφ x y z

x y z

−

−

= + +

=
+

=
+ +

 (C.14) 
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The azimuthal angle θ  can also be expressed as shown in Equation (C.6), and the 
polar angle φ can also be expressed as 

 ( )

2 2
1

2 2
1

tan , if 0;

, , 2, if 0;

tan , if 0.

x y z
z

φ x y z π z

x y π z
z

−

−

 + >
= =


+ + <

 (C.15) 

 A point P having spherical coordinates , ,r θ φ  is written in terms of the Car-
tesian basis vectors i, j, and k as follows. 

 ( ) ( ) ( )sin cos sin sin cosr φ θ r φ θ r φ= + +P i j k (C.16) 

Taking partial derivatives with respect to the coordinates r, θ , and φ, and normal-
izing gives us the unit vectors r̂ , θ̂, and ϕ̂ at the point P in the spherical coordi-
nate system: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

ˆ sin cos sin sin cos

ˆ sin cos

ˆ cos cos cos sin sin

r φ θ φ θ φ
r
θ θ θ
θ
φ φ θ φ θ φ
φ

∂ ∂= = + +
∂ ∂
∂ ∂= = − +
∂ ∂
∂ ∂= = + + −
∂ ∂

P
r i j k

P

P
i j

P

P
i j k

P

θ

ϕ . (C.17) 

 The gradient operator in spherical coordinates is given by 

 ( ) ( ) ( ), , , , , ,r x y z θ x y z φ x y z
r θ φ

∂ ∂ ∂′ = + +
∂ ∂ ∂

∇ ∇ ∇ ∇ . (C.18) 

Using the definitions given in Equation (C.14) for ( ), ,r x y z , ( ), ,θ x y z  and 
( ), ,φ x y z , we obtain the following for the gradients ( ), ,r x y z∇ , ( ), ,θ x y z∇ , and 

( ), ,φ x y z∇ . 
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( )

2 2 2 2 2 2 2 2 2

, ,

sin cos sin sin cos
ˆ

r r rr x y z
x y z

x y z
x y z x y z x y z
φ θ φ θ φ

∂ ∂ ∂= + +
∂ ∂ ∂

= + +
+ + + + + +

= + +
=

i j k

i j k

i j k

r

∇

 (C.19) 

 

( )

2 2 2 2

, ,

sin cos
sin sin

1 ˆ
sin

θ θ θθ x y z
x y z

y x
x y x y

θ θ
r φ r φ

r φ

∂ ∂ ∂= + +
∂ ∂ ∂

−= +
+ +

   = − +   
   

=

i j k

i j

i j

∇

θ  (C.20) 

 

( )

( ) ( )2 2 2 2 2 2 2 2 2 2

2 2

2 2 2

, ,

cos cos cos sin sin

1 ˆ

φ φ φφ x y z
x y z

xz yz
x y z x y x y z x y

x y
x y z

φ θ φ θ φ
r r r

r

∂ ∂ ∂= + +
∂ ∂ ∂

= +
+ + + + + +

− ++
+ +

−= + +

=

i j k

i j

k

i j k

∇

ϕ  (C.21) 

Thus, the gradient operator can be written as 

 1 1ˆˆ ˆ
sinr r φ θ r φ

∂ ∂ ∂′ = + +
∂ ∂ ∂

r∇ θ ϕ . (C.22) 
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C.4  Generalized Coordinates 

Let S be a coordinate system in which points are described by three coordinates 
1u , 2u , and 3u , and let ( )1 2 3, ,x u u u , ( )1 2 3, ,y u u u , and ( )1 2 3, ,z u u u  be functions that 

transform coordinates in S to the corresponding Cartesian coordinates x, y, and z. 
Then a point P having coordinates 1u , 2u , and 3u  in S can be written as 

 ( ) ( ) ( )1 2 3 1 2 3 1 2 3, , , , , , .x u u u y u u u z u u u= + +P i j k  (C.23) 

The contravariant basis vectors 1e , 2e , and 3e  for the coordinate system S are giv-
en by the partial derivatives of P with respect to the coordinates 1u , 2u , and 3u  as 
follows. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 3 1 2 3 1 2 3

2 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3

, , , , , ,

, , , , , ,

, , , , , ,

x u u u y u u u z u u u
u u u u

x u u u y u u u z u u u
v v v v

x u u u y u u u z u u u
w w w w

∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂

P
e i j k

P
e i j k

P
e i j k  (C.24) 

 
The scalar quantities ijg  defined by 

 ij i jg ≡ ⋅e e  (C.25) 

constitute the nine components of the metric tensor, at most six of which are dis-
tinct since ij jig g= . The metric tensors corresponding to Cartesian coordinates, 
cylindrical coordinates, and spherical coordinates are displayed in Table C.1. 
 The metric tensor is used in the generalized formula for the dot product be-
tween two vectors in an arbitrary coordinate system. The dot product between 
two vectors a and b having coordinates in S is given by 

 
3 3

1 1
ij i j

i j
g a b

= =

⋅ =a b . (C.26) 

The squared magnitude of a vector v is given by its dot product with itself, so we 
have 

 
3 3

1 1
ij i j

i j
g v v

= =

= ⋅ = v v v . (C.27) 
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Coordinate System Metric Tensor 

Cartesian coordinates [ ]
1 0 0
0 1 0
0 0 1

ijg
 
 =  
  

 

Cylindrical coordinates [ ] 2

1 0 0
0 0
0 0 1

ijg r
 
 =  
  

 

Spherical coordinates [ ] 2 2

2

1 0 0
0 sin 0
0 0

ijg r φ
r

 
 =  
  

 

Table C.1. Metric tensors. 

This establishes a metric in the coordinate system S and reveals the source of the 
metric tensor’s name. If the vector v represents the coordinate difference between 
two points, then the metric tensor is used in Equation (C.27) to obtain a (not gen-
erally Euclidean) measure of distance between the two points. 
 To calculate the Euclidean distance between two points, we integrate differ-
ential distances along a straight-line path. Straight lines are not generally given 
by linear functions of the coordinates, so we consider an arbitrary parametric 
path ( )tu  in the coordinate system S. The length L of the path over the interval in 
which [ ],t a b∈  is given by 

 

1 2

1 23 3

1 1

b b

a a
b

i j
ij

i j
a

d d dL dt dt
dt dt dt

du du
g dt

dt dt= =

 = = ⋅ 
 

 
=  

 


 



u u u

. (C.28) 

The quantity 

 
3 3

2

1 1
ij i j

i j
ds g du du

= =

=  (C.29) 
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is called the line element and characterizes the differential unit of length in the 
coordinate system S. The line element is a generalization of the Pythagorean the-
orem, of which the familiar form 2 3 2

1Σ i ids dx==  of Equation (C.29) in Cartesian 
coordinates is a special case. 
 In an orthogonal coordinate system (in which the basis vectors are always 
mutually perpendicular), we have 

 i j ij ijg δ⋅ =e e , (C.30) 

where ijδ  is the Kronecker delta. In such a coordinate system, the metric tensor is 
diagonal, and we define the scale factors ih  as 

 i iih g≡ . (C.31) 

The line element reduces to 

 
3

2 2 2

1
i i

i
ds h du

=

= . (C.32) 

The volume element dV  in an orthogonal coordinate system is defined as 

 
3

1
i i

i
dV h du

=

= ∏  (C.33) 

and characterizes the differential unit of volume. The volume V of space bounded 
by the intervals [ ]1 1 1,u a b∈ , [ ]2 2 2,u a b∈ , and [ ]3 3 3,u a b∈  is given by 

 3 2 1 3 2 1

3 2 1 3 2 1
1 2 3 1 2 3

b b b b b b

a a a a a a
V dV h h h du du du= =      . (C.34) 

The line elements and volume elements corresponding to Cartesian coordinates, 
cylindrical coordinates, and spherical coordinates are listed in Table C.2. 
 
 

Coordinate System Line Element Volume Element 

Cartesian coordinates 2 2 2dx dy dz+ +  dx dy dz 

Cylindrical coordinates 2 2 2 2dr r dθ dz+ +  r dr dθ dz 

Spherical coordinates 2 2 2 2 2 2sindr r φdθ r dφ+ +  2 sinr φdr dθ dφ 

Table C.2. Line elements and volume elements. 
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Appendix D 

Taylor Series 

D.1  Derivation 

Let ( )f x  be a function whose first n derivatives exist on some interval I. Sup-
pose that we wish to approximate ( )f x  near the value x c=  in I using a degree n 
polynomial ( )np x  so that 

 ( ) ( ) ( ) ( ) ( )2
0 1 2

n
n np x a a x c a x c a x c f x= + − + − + + − ≈  (D.1) 

whenever x is small. The derivatives of ( )np x  evaluated at x c=  are the fol-
lowing. 

 

( )
( )

( ) ( )

1

22

!

n

n

n
n n

p c a
p c a

p c n a

′ =
′′ =

=


 (D.2) 

We can determine the coefficients ia  by requiring that 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

n

n

n

n n
n

p c f c
p c f c
p c f c

p c f c

=
′ ′=
′′ ′′=

=


. (D.3) 

The polynomial ( )np x  is thus given by 

 ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )2

2! !

n
n

n
f c f cp x f c f c x c x c x c

n
′′

′= + − + − + + − . (D.4) 



524 D. Taylor Series 
 

 We define the error term ( )nr x  to be the difference between the approxima-
tion ( )np x  and the actual function value ( )f x  so that 

 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

2

2!

.
!

n
n

n

f cf x f c f c x c x c

f c x c r x
n

′′
′= + − + − +

+ − +



 (D.5) 

Let ( )g z  be the function defined by 

 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

2

1

1

2!

.
!

nn
n

nn

f zg z f x f z f z x z x z

f z x zx z r x
n x c

+

+

′′
′= − − − − − −

−
− − −

−



 (D.6) 

It is easily verified that ( ) 0g x =  and, using Equation (D.5), that ( ) 0g c = . The 
derivative of ( )g z  simplifies significantly to the following. 

 ( )
( ) ( ) ( ) ( ) ( )

( )
( )

1

11
!

n n
n

nn

f z x zg z x z n r x
n x c

+

+

−′ = − − + +
−

 (D.7) 

By Rolle’s theorem, there exists a 0z  between x and c such that ( )0 0g z′ = . Eval-
uating ( )0g z′  and solving for ( )nr x  yields 

 ( )
( ) ( )
( )

( )
1

0 1

1 !

n
n

n
f zr x x c

n

+
+= −

+
. (D.8) 

If a function ( )f x  is infinitely differentiable, then we may state 

 ( )lim 0n
n

r x
→∞

= . (D.9) 

We can therefore express any such function ( )f x  as the infinite series 

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 3

0

2! 3!

.
!

k
k

k

f c f cf x f c f c x c x c x c

f c x c
k

∞

=

′′ ′′′
′= + − + − + − +

= −



 (D.10) 

This is known as the Taylor series expansion of the function ( )f x . 
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D.2  Power Series 

Equation (D.10) can be used to derive power series expansions for common func-
tions by using 0c = . Because the exponential function xe  is equal to its own de-
rivative and 0 1e = , its power series is given by 

 

2 3 4

0

1
2! 3! 4!

.
!

x

k

k

x x xe x

x
k

∞

=

= + + + + +

=



 (D.11) 

For the sine function, we first observe the following. 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

sin 0 0
cos 0 1
sin 0 0
cos 0 1

f x x f
f x x f

f x x f
f x x f

= =
′ ′= =

′′ ′′= − =
′′′ ′′′= − = −

 (D.12) 

The power series for the sine function is thus given by 

 ( )
( )

3 5 7

2 1

0

sin
3! 5! 7!

1 .
2 1 !

k k

k

x x xx x

x
k

+∞

=

= − + − + −

−
=

+



 (D.13) 

Similarly, the power series for the cosine function is given by 

 ( )
( )

2 4 6

2

0

cos 1
2! 4! 6!

1 .
2 !

k k

k

x x xx

x
k

∞

=

= − + − + −

−=



 (D.14) 

Another interesting function is 

 ( ) 1
1

f x
x

=
+

 (D.15) 

because it is the derivative of ( )ln 1 x+  on the interval ( )1,− ∞ . The first few de-
rivatives of ( )f x  are the following. 



526 D. Taylor Series 
 

 

( )
( )

( )
( )

( )
( )

2

3

4

1
1

2
1

6
1

f x
x

f x
x

f x
x

−′ =
+

′′ =
+
−′′′ =
+

 (D.16) 

In general, the k-th derivative of ( )f x  is given by 

 ( ) ( ) ( )
( ) 1

1 !
1

k
k

k

kf x
x +

−
=

+
, (D.17) 

which when evaluated at 0x =  produces ( ) ( ) ( )0 1 !k kf k= − . Thus, the power se-
ries for the function ( )f x  is given by 

 ( )

2 3

0

1 1
1

1 .k k

k

x x x
x

x
∞

=

= − + − + −
+

= −



 (D.18) 

This series converges on the interval ( )1,1− . Integrating both sides, we arrive at 
the following power series for the natural logarithm of 1 x+  on the same interval. 

 

( )

( )

2 3 4

1

0

ln 1
2 3 4
1

1

k k

k

x x xx x

x
k

+∞

=

+ = − + − + −

−
=

+



 (D.19) 

D.3  The Euler Formula 

The Euler formula expresses the following relationship between the exponential 
function and the sine and cosine functions. 

 cos sinixe x i x= +  (D.20) 

This can be verified by examining the power series of the function ixe : 
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0 !

k k
ix

k

i xe
k

∞

=

= . (D.21) 

Using the fact that 2 1i = − , 3i i= − , and 4 1i = , we can collect the real and imagi-
nary terms of this series as follows. 

 ( )
( )

( )
( )

2 2 1

0 0

1 1
2 ! 2 1 !

k k k k
ix

k k

x xe i
k k

+∞ ∞

= =

− −
= +

+   (D.22) 

Comparing this to Equations (D.13) and (D.14) confirms the result. 
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Appendix E 
Answers to Exercises 

Chapter 2 

1. (a) 2−   (b) 2,1, 6−   (c) 4 4 2
9 9 9, ,− − −  

2. 1 1′ =e e , 2 2′ =e e , 3 1, 1, 2′ = − −e  

3. 17.5 

Chapter 3 

1. (a) 22  (b) 1−   (c) 1  (d) 0 

2. (a) 

1
2

1
3

1
4

0 0
0 0
0 0

 
 
 
  

  (b) 3 1 1
8 2 8

3 1
8 8

1 0 0

0

 
 − 
 − 

 

(c) 
cos 0 sin

0 1 0
sin 0 cos

θ θ

θ θ

 
 
 
−  

  (d) 

1 0 0 4
0 1 0 3
0 0 1 7
0 0 0 1

− 
 − 

− 
 
 

 

3. 
1
2

1

x
y a
z

   
   = −   
      

 

4. 1 1λ = − , 2 2λ = , 3 5λ =  
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Chapter 4 

1. 3 1
2 2

31
2 2

1 0 0
0
0

x

 
 = − 
  

R , 

3 1
2 2

31
2 2

0
0 1 0

0
y

 
 =  
 − 

R , 

3 1
2 2

31
2 2

0
0

0 0 1
z

 −
 =  
  

R  

2. ( )3 3 2
2 10 50, ,= ± +q  

Chapter 5 

1. Any scalar multiple of 2,1,0, 4−  

2. 
( )

2t
V
− ⋅= Q S V

 

4. 63.1 degrees 

5. Left: 2 2
2 2,0, ,0− ; Right: 2 2

2 2,0, ,0− − ; 

Bottom: 34
5 50, , ,0− ; Top: 34

5 50, , ,0− −  

6. 

2 0 0

20 0

0 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f nf
f n f n

+ 
 − −
 

+ 
 − − 
 − − − − 
 −  

 

Chapter 6 

2. 5.3271783 

3. ( )1
1 1 p

n nx x p rx
p+ = + −  

6. 0.315,0.946, 0.0788− −  
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7. 
2

2 2 2 2
2

2 2 2

2

2 0

x y z x x y y z z

x y z z

r r rV V V t S V S V V r S t
h h h

r rS S S r S r
h h

    + − + + + −       
 + + + − − = 
 

 

8. 49 degrees 

Chapter 7 

1. 3.16 meters 

2. 4.35 meters 

Chapter 8 

1. If neither sphere encloses the other, ( )1
1 22r d r r= + +  and 

( )1
1 2 1

r r
d
−= + −Q Q Q Q , where 2 1d = −Q Q . 

2. If s h< , 
2 2

2
s hr

h
+=  and 0,0,h r= −Q . 

If s h≥ , r s=  and 0,0,0=Q . 

3. eff
5 3 1.443

6
r = ≈  

Chapter 9 

1. 1.001 

2. 0.006 

Chapter 10 

1. ( )
( )

1
z z

δε
P P δ

 −  + 
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Chapter 11 

1. 0 0′ =P P , 1 2
1 0 13 3′ = +P P P , 2 1

2 1 23 3′ = +P P P , 3 2′ =P P  

2. 

8 4 2 1
0 4 4 31
0 0 2 38
0 0 0 1

Q

 
 
 =
 
 
 

M  and 

1 0 0 0
3 2 0 01
3 4 4 08
1 2 4 8

R

 
 
 =
 
 
 

M  

3. (a) 0i i iτ γ β= = =  

(b) 1 0iγ + =  

(c) ( )
00 00 00

00 11 00 11 10 00 11 10
1 1

11 01 10 11 10 01 11
1 1 1 1

01 01
1 1

0 2
2 2 6 41

2 0 2 6 4
0 0

i i i

i i i i i i i i
KB

i i i i i i i

i i

α α α
α α α α α α α α
α α α α α α α

α α

+ +

+ + + +

+ +

− − 
 − − + − − − + =
 − − + − + −
 

− 

M , 

 where ( ) ( ) ( )1 1 1 1 1j kjk
i i i iα τ γ β   = − + − + −   . 

4. 0 0,0′ =P , 1
1 2 ,1′ =P , 3

2 2 ,2′ =P , 5
3 2 ,1′ =P , 4 3,0′ =P  

5. ( ) 2 2

rκ t
r c

=
+

, ( ) 2 2

cτ t
r c

=
+

 

Chapter 12 

1. 4 st =  

2. 2

1
r A

⋅ = − 
 

Q A
N Q A  

Chapter 13 

1. ( ) 3 3 1t tx t Ae Bte t= + + +  

2. ( ) 3cos4 sin 4x t t t= +  

3. 30.2 m 
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4. 3.93 s 

5. 0 ,0, 4
8 x z
g P P h
h

= +v  

6. 6.1 st ≈  

7. ( )[ ]sin cosK
ga M m θ μ θ

M m
= − +

+
 

Chapter 14 

1. 2 2 24F mω ω r v= +  

2. Sμ gω
r

=  

3. 5
90,0, h=C  

4. ( )2 21
1 22I m R R= +  

5. Let cylinderm  be the mass of the cylinder, and let domem  be the mass of one 
dome-shaped endcap. The diagonal entries of the inertia tensor  are 

 

( )
( )
( ) ( )

2 2 2 2 232 1 1 1
11 dome dome dome cylinder cylinder5 4 2 4 12

2 2 2 2 232 1 1 1
22 dome dome dome cylinder cylinder5 4 2 4 12

2 2 2 22 1
33 dome cylinder5 4 .

m b c m hc m h m b m h

m a c m hc m h m a m h

m a b m a b

= + + + + +

= + + + + +

= + + +





  

 The off-diagonal entries are zero. In terms of the total mass m of the 
capsule, the diagonal entries of the inertia tensor  are 

 

( )[ ] [ ]
( )[ ] [ ]
( )[ ] ( )[ ]

2 2 2 2 22 3 32 1 1 1
11 4 3 5 4 2 4 3 4 12

2 2 2 2 22 3 32 1 1 1
22 4 3 5 4 2 4 3 4 12

2 2 2 22 32 1
33 4 3 5 4 3 4 .

c h
c h c h

c h
c h c h

c h
c h c h

m b c hc h m b h

m a c hc h m a h

m a b m a b

+ +

+ +

+ +

= + + + + +

= + + + + +

= + + +





  

6. 21 1 2
g ga

I mR M m
= =

+ +
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7. 2

sin 5 sin
1 7

g θa g θ
I mR

= =
+

 

8. 
2 S

dz
μ

=  

Chapter 15 

1. 1.43 m s 

2. 0.0357 s 

Chapter 16 

2. ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )

2 2 2
2

2 2

2

, 2 , , , ,

, , , ,

f x y f x y f x y f x y f x y
x x y y

f x y f x y f x y f x y
x y y

∂ ∂ ∂+ +
∂ ∂ ∂ ∂

∂ ∂ ∂ + +  ∂ ∂ ∂ 
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Index 

 
A 
acceleration, 409 

angular acceleration, 414, 415, 425 
centrifugal component, 353 
tangential component, 353 

acceleration function, 380, 400 
alpha test, 8 
ambient light, 158–59, 205, 287 
amplitude, 432 
angular acceleration, 414, 415, 425 

of pendulum, 434 
angular frequency, 431 
angular momentum, 413, 423, 436 
angular velocity, 405–7 
aspect ratio, 105, 128, 246 
asynchronous operation, 1 
attenuation constants, 159, 160, 205 
auxiliary equation, 382 
azimuthal angle, 189, 514, 516 

B 
backward substitution, 466, 497 
barycentric coordinates, 141–43, 154 
basis matrix, 319, 356 
Beckmann distribution function, 195 
Bernstein polynomial, 322, 323 
Bézier curve, 322–29 

basis matrix, 323 
blending functions, 324 

control point, 322, 325, 327 
de Casteljau algorithm, 327–29, 358 
degree elevation, 358 
geometry matrix, 323 
truncation, 326 

bicubic surface, 348, 357 
geometrical constraint matrix, 348 
normal vector of, 348, 357 

bidirectional reflectance distribution 
function (BRDF), 187–91, 207 

bilinear filtering, 171 
billboarding, 254–60, 275 

constrained quads, 257–58 
polyboard, 258–60 
unconstrained quads, 254 

binary space partitioning (BSP) tree, 
232–34 
halfspace, 232 
splitting plane, 232 

binomial coefficient, 322 
binormal vector 

of curve, 353 
bitangent vector, 181, 183, 206 
blending, 9 
blending functions, 319 
Blinn-Phong shading, 177–78 
Böhm subdivision, 345, 359 
bounding box 

construction, 215–17 
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visibility test, 228–30 
bounding cylinder 

construction, 220–21 
visibility test, 226–28 

bounding ellipsoid 
construction, 218–20 
visibility test, 222–26 

bounding sphere 
construction, 217–18 
of cone, 244 
visibility test, 221–22 

bounding volume 
bounding box, 215–17, 228–30, 240 
bounding cylinder, 220–21, 226–28, 

242 
bounding ellipsoid, 218–20, 222–26, 

241 
bounding sphere, 217–18, 221–22, 

241 
construction, 211–21 
principal component analysis, 212–

15 
visibility determination, 221–30 

box 
bounding box, 215–17, 228–30 
collision with plane, 364–66, 376 
effective radius, 228, 364 
inertia tensor, 421, 427 
ray intersection, 143 

B-spline, 334–47 
basis matrix, 337 
blending functions, 337 
globalization, 340–41 
knot, 335 
knot value, 341 
knot vector, 341 
nonuniform B-spline, 342–45, 355 
nonuniform rational B-spline 

(NURBS), 345–47, 356 
uniform B-spline, 335–40 

buffer swap, 4 
bump map, 4, 178–86 

calculating tangent vectors, 180–83 
construction, 178–79 
tangent space, 180 

C 
camera space, 5, 103, 116 
capsule 

inertia tensor, 438 
Cartesian coordinates, 513–14 
Catmull-Rom spline, 329–30 

basis matrix, 330 
geometry matrix, 330 

Cauchy-Schwarz inequality, 18 
center of mass, 410–13, 436 

of cone, 411 
central processing unit (CPU), 1 
centrifugal acceleration, 353 
centrifugal force, 407–8, 436 
characteristic polynomial, 54 
clipping 

ear clipping, 268 
polygon clipping, 252–54 
portal clipping, 236–38, 243 

cloth simulation, 457–60 
coefficient of kinetic friction, 397 
coefficient of static friction, 398 
cofactor, 47, 51, 52, 63 
collision detection 

box and plane, 364–66, 376 
collision of two spheres, 372–75, 377 
general sphere collisions, 366–71 
sliding, 371–72, 377 
sphere and plane, 362–63, 376 

complex number, 56, 81, 383, 499–503 
argument of, 501 
conjugate of, 500 
imaginary part, 499 
modulus of, 500 
real part, 499 

complex plane, 501 
cone 

center of mass, 411 
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ray intersection, 155 
continuity 

geometric, 318 
parametric, 318 

contravariant vector, 80 
control point 

Bézier curve, 322, 325, 327 
nonuniform B-spline, 342 
uniform B-spline, 335, 340 

convex hull, 324 
Cook-Torrance illumination model, 

191–92, 207 
Fresnel factor, 192–95, 201, 208 
geometrical attenuation factor, 192, 

198–200, 203, 208 
microfacet distribution function, 192, 

195–97, 201, 208 
coordinate space 

camera space, 5, 103, 116 
object space, 5, 141, 180, 207 
tangent space, 180, 207 
window space, 6 
world space, 5 

Coriolis force, 408–10, 436 
covariance matrix, 212 
covariant vector, 80 
Cox-de Boor algorithm, 342, 355 
Cramer’s rule, 53–54 
critical angle, 156 
cross product, 19–20, 29 

anticommutative property, 25 
magnitude of, 22, 29 
properties of, 24–25 

Crout’s method, 471 
cube 

principal axes of inertia, 423 
cube texture map, 169–71 

normalization cube map, 171, 178 
cubic spline, 331–34 

natural cubic spline, 334 
curvature, 350–55, 357 
curve 

basis matrix, 319 
Bézier curve, 322–29 
binormal vector, 353 
blending functions, 319 
B-spline, 334–47 
Catmull-Rom spline, 329–30 
cubic spline, 331–34 
curvature of, 350–55, 357 
Frenet frame, 353 
geometric continuity, 318 
geometry matrix, 319 
global control, 331 
Hermite curve, 320–21 
local control, 331 
nonuniform B-spline, 342–45, 355 
nonuniform rational B-spline 

(NURBS), 345–47, 356 
normal vector, 351 
osculating circle, 352 
osculating plane, 352 
parametric continuity, 318 
radius of curvature, 352, 357 
tangent vector, 350 
torsion of, 354–55, 357 
uniform B-spline, 335–40 

cylinder 
bounding cylinder, 220–21, 226–28 
effective radius, 226, 227 
inertia tensor, 418 
ray intersection, 145–46, 368–70, 

377 
cylindrical coordinates, 514–16 

D 
de Casteljau algorithm, 327–29, 358 
decal application, 249–54, 274 
del operator, 149 
depth buffer, 4, 248, 284, 308–10 
depth interpolation, 109–11 
depth test, 9 
depth value offset, 245–49, 274 
determinant, 47–54, 62, 473 
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and handedness, 70 
diagonal dominance, 479 
diagonal matrix, 31 
diagonalization, 58, 64 
differential equation, 381–90, 400, 490–

96, 497 
auxiliary equation, 382 
Euler’s method, 490–91, 497 
homogeneous, 381–85 
initial conditions, 388–90 
nonhomogeneous, 385–88 
particular solution, 385 
Runge-Kutta method, 493–95, 498 
Taylor series method, 492–93 
undetermined coefficients, method 

of, 386 
diffuse lighting, 161–62, 205 
directional light source, 159, 300 
discriminant, 132, 133, 144 
dome 

inertia tensor, 428 
Doolittle’s method, 471 
dot product, 15, 16, 29 

properties of, 17 
sign of, 17 

driver, 2 

E 
ear clipping, 268 
edge collapse, 261 
edge connectivity, 295 
effective radius 

of box, 228, 241, 364 
of cylinder, 226, 227, 242 
of ellipsoid, 222, 224, 242 

eigensystem, numerical method, 483–89 
eigenvalue, 54, 63 

of covariance matrix, 213 
of inertia tensor, 423 

eigenvector, 54, 63 
of covariance matrix, 213 
of inertia tensor, 423 

orthogonal eigenvectors, 57 
elementary matrix, 45 
elementary row operations, 35, 44, 49 
ellipsoid 

bounding ellipsoid, 218–20, 222–26 
effective radius, 222, 224 

emission, 174, 287 
emission map, 174 
Euclidean distance, 521 
Euler formula, 134, 154, 501–3, 507, 

526 
Euler’s method, 490–91, 497 

improved Euler’s method, 494, 497 
modified Euler’s method, 494 

eye space. See camera space 

F 
face culling, 7 
far plane, 103, 107, 124, 246, 292 
field of view, 104–7, 128 
filtering 

bilinear filtering, 171 
trilinear filtering, 173 

fluid simulation, 443–57 
flux, 187 
flux density, 187 
focal length, 104, 105, 128, 246 
force, 380, 400, 414 

centrifugal force, 407–8, 436 
Coriolis force, 408–10, 436 
restoring force, 430 

forward substitution, 466, 496 
fragment, 7 
fragment operation 

alpha test, 8 
blending, 9 
depth test, 9 
pixel ownership test, 8 
scissor test, 8 
stencil test, 8 

fragment shading, 7, 177 
Frenet formulas, 354 
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Frenet frame, 353 
Fresnel factor, 192–95, 201, 208 
friction, 396–99 

kinetic friction, 396, 402 
static friction, 396, 402 

frustum plane extraction, 119–21 
frustum planes, 107–8 

G 
Gaussian elimination, 467–70 
Gauss-Jordan elimination, 42 
generalized coordinates, 520–22 
geometric continuity, 318 
geometrical attenuation factor, 192, 

198–200, 203, 208 
geometry matrix, 319, 356 
glFrontFace() function, 122 
glFrustum() function, 107, 113, 116, 

248 
glOrtho() function, 119 
gloss map, 165 
glPolygonOffset() function, 285 
glScissor() function, 314 
glTexParameteri() function, 284 
glViewport() function, 283 
Gouraud shading, 176–77 
gradient, 149, 514, 516, 518 
Gram-Schmidt orthogonalization, 28, 

30, 182 
graphics primitive, 1 
graphics processing unit (GPU), 1 
gravity, 390, 401, 434 

H 
halfspace, 232 
halfway vector, 163, 192, 195, 197, 

203, 206 
Hamiltonian quaternions, ring of, 80 
handedness, 70 
hardware abstraction layer (HAL), 2 
helix, 359 
Hermite curve, 320–21 

basis matrix, 320 
blending functions, 321 
geometry matrix, 320 

Heun’s method, 494 
homogeneous clip space, 6, 113, 116, 

120, 233 
homogeneous coordinates, 6, 75–78, 90 
Hooke’s law, 430 

I 
identity matrix, 32 
image buffer, 3 
implicit pivoting, 467 
improved Euler’s method, 494, 497 
index of refraction, 151, 193, 208 
inertia tensor, 414–22, 437 

moment of inertia, 416 
of annular cylinder, 438 
of box, 421, 427 
of capsule, 438 
of cylinder, 418 
of dome, 428 
of sphere, 416 
principal axes of inertia, 422–26 
principal moment of inertia, 423 
product of inertia, 416 
transforming, 426–30 

infinite light source. See directional 
light source 

infinite projection matrix, 117, 129, 292 
tweaked, 293 

inner product. See dot product 
intersection 

ray and box, 143 
ray and cone, 155 
ray and cylinder, 145–46, 368–70, 

377 
ray and sphere, 144–45, 153 
ray and torus, 147–48 
ray and triangle, 141–43 

inversion transform. See reflection 
transform 
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invertible matrix, 40, 50 
irradiance, 187 

J 
Jacobi method, 483, 497 

K 
kinetic friction, 396, 402 
knot, 335 
knot value, 341 

multiplicity, 343 
knot vector, 341 
Kockanek-Bartels spline, 358 
Kronecker delta, 28, 44, 69, 415, 470, 

522 

L 
Lambertian reflection, 161, 187 
law of cosines, 511 
law of sines, 509–11 
light source, 158–60 

ambient light, 158–59 
directional light source, 159, 300 
point light source, 159–60, 205, 300 
spot light source, 160, 205 

lighting 
diffuse lighting, 161–62, 205 
specular lighting, 162–64, 205 

line, 93–96, 127 
distance between point and line, 93–

94, 127 
distance between two lines, 94–96 
skew lines, 94 

line element, 522 
linear physics, 379–99 
linear system, 34, 53, 465–82, 496 

backward substitution, 466, 497 
coefficient matrix, 35 
constant vector, 35 
error reduction, 477–78 
forward substitution, 466, 496 
Gaussian elimination, 467–70 

homogeneous system, 35 
LU decomposition, 470–77 
nonhomogeneous system, 35 
reduced form, 35 
triangular system, 465–67 
tridiagonal system, 479–82 

linear transformation, 67–68 
linearly dependent vectors, 27 
linearly independent vectors, 27 
lower triangular matrix, 465 
LU decomposition, 470–77 

M 
matrix 

addition, 32 
characteristic polynomial of, 54 
determinant of, 47–54, 62 
diagonal matrix, 31 
diagonalization of, 58, 64 
elementary matrix, 45 
identity matrix, 32 
inverse of, 40, 42, 51–52, 63 
invertible matrix, 40, 50 
lower triangular matrix, 465 
main diagonal entries, 31 
multiplication, 32, 62 
orthogonal matrix, 68–70, 89 
properties of, 33–34 
scalar multiplication, 32 
singular matrix, 40, 47 
square matrix, 31 
symmetric matrix, 56 
transpose of, 31 
tridiagonal matrix, 479 
upper triangular matrix, 65, 465 

metric tensor, 520–21 
microfacet, 192, 198 
microfacet distribution function, 192, 

195–97, 201, 208 
anisotropic, 197, 203, 208 
isotropic, 196, 201, 208 

mipmap, 172–73 
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model-view transformation, 5 
modified Euler’s method, 494 
modulation, 158 
moment of inertia, 416 
motion 

oscillatory motion, 430–35 
pendulum motion, 434–35, 438 
projectile motion, 390–94, 401 
resisted motion, 394–96, 401 
rigid body motion, 410–30 
spring motion, 430–34, 437 

N 
natural cubic spline, 334 
near plane, 103, 107, 113, 128, 129, 

246, 292 
oblique, 123–27, 129 

near rectangle, 304 
near-clip volume, 305 
Newton’s method, 136–39, 153, 154, 

201, 403 
reciprocal calculation, 139, 153 
reciprocal square root calculation, 

140, 153 
Newton-Raphson iteration. See 

Newton’s method 
nonuniform B-spline, 342–45, 355 

Böhm subdivision, 345, 359 
control point, 342 
Cox-de Boor algorithm, 342 

nonuniform rational B-spline (NURBS), 
345–47, 356 

normal map. See bump map 
normal vector, 161, 175, 205 

calculating, 148–49, 153, 175–76 
of bicubic surface, 348, 357 
of curve, 351 
transforming, 79, 92 

normalization cube map, 171, 178 
normalized device coordinates, 6, 113 

O 
object space, 5, 141, 180, 207 
oblique near plane, 123–27, 129 
octree, 230–32, 370 
OpenGL library, 1, 103, 113, 159, 246, 

248, 291, 308, 314 
orthogonal matrix, 68–70, 89 
orthographic projection, 117–19 
orthographic projection matrix, 119 
orthonormal basis, 28, 180 
oscillatory motion, 430–35 

amplitude, 432 
angular frequency, 431 
phase, 432 

osculating circle, 352 
osculating plane, 352 

P 
parallel axis theorem, 426 
parallelogram, area of, 22 
parametric continuity, 318 
particular solution, 385 
Pascal’s triangle, 322 
patch, bicubic, 348 
pendulum motion, 434–35, 438 
per-pixel lighting, 6 
perspective projection, 113–17 
perspective projection matrix, 116, 128, 

246, 291 
perspective-correct interpolation, 108–

12, 128 
depth interpolation, 109–11 
vertex attribute interpolation, 111–

12, 116, 128 
per-vertex lighting, 6 
phase, 432 
Phong shading, 177–78 
physics 

linear physics, 379–99 
rotational physics, 405–35 

pivoting, 467, 472 
implicit pivoting, 467 



542 Index 
 

pixel ownership test, 8 
pixel shading. See fragment shading 
plane, 97–102, 127 

intersection of line and plane, 98–99, 
128 

intersection of three planes, 99–101 
intersection of two planes, 101 
transforming, 101–2, 128 

point light source, 159–60, 205, 300 
polar angle, 189, 516 
polarization, 193 
polyboard, 258–60 
polygon 

backfacing polygon, 7 
clipping, 252–54 
depth value offset, 245–49 
portal, 235 
triangulation, 267–74 

polygon reduction, 260–64 
portal, 235 
portal clipping, 236–38, 243 
portal system, 235–40 

reduced view frustum, 238–40 
position function, 379, 401 
precession, 425 
primitive root, 133, 502 
principal axes of inertia, 422–26 

of cube, 423 
principal component analysis, 212–15, 

240 
covariance matrix, 212 
primary principal component, 212 

principal moment of inertia, 423 
product of inertia, 416 
projectile motion, 390–94, 401 
projection, 112–21 

orthographic projection, 117–19 
perspective projection, 113–17 

projection matrix 
frustum plane extraction, 119–21 
infinite projection matrix, 117, 129, 

292 

orthographic projection matrix, 119 
perspective projection matrix, 116, 

128, 246, 291 
projection plane, 105, 109, 110, 112, 

117 
projection transformation, 5 
projective texture map, 167–69 
Pythagorean theorem, 93, 511, 522 

Q 
quadratic formula, 132, 153 
quadtree, 230 
quaternion, 80, 91 

conjugate of, 81 
inverse of, 82 
linear interpolation, 86 
multiplication, 81 
rotation, 82–86, 91 
spherical linear interpolation, 86–89, 

91 

R 
radiance, 189 
radiometry, 187 
radiosity, 187 
radius of curvature, 352, 357 
rasterization, 7 
ray, 93, 140 

intersection with box, 143 
intersection with cone, 155 
intersection with cylinder, 145–46, 

368–70, 377 
intersection with sphere, 144–45, 153 
intersection with torus, 147–48 
intersection with triangle, 141–43 

ray tracing, 131–52 
reflection, 121–22 
reflection buffer, 121 
reflection transform, 70 
reflection vector, 150, 153 
refraction vector, 151–52, 154 
resisted motion, 394–96, 401 
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restoring force, 430 
RGB color, 157–58 
right hand rule, 22 
rigid body motion, 410–30 

center of mass, 410–13, 436 
RK4 method. See Runge-Kutta method 
Rolle’s theorem, 524 
root finding, 131–40 

cubic polynomials, 132–35 
quadratic polynomials, 131–32 
quartic polynomials, 135–36 

rotation transform, 71–75 
about arbitrary axis, 74–75, 90 
about x-axis, 72, 90 
about y-axis, 72, 90 
about z-axis, 72, 90 

rotational physics, 405–35 
Runge-Kutta method, 493–95, 498 

S 
scalar product. See dot product 
scale factor, 522 
scaling transform, 70, 89 

nonuniform scale, 71 
uniform scale, 71 

scissor rectangle, 8, 310–14 
scissor test, 8 
shading, 157, 175 

Blinn-Phong shading, 177–78 
Gouraud shading, 176–77 
Phong shading, 177–78 

shadow acne, 284 
shadow casting set, 279–81 
shadow mapping, 281–85 
shadows 

shadow mapping, 281–85 
stencil shadow algorithm, 286–316 

silhouette, 287, 294–99 
edge extrusion, 300–303 

singular matrix, 40, 47 
skew lines, 94 
sliding, 371–72, 377 

Snell’s law, 151, 193, 194 
solid angle, 188 
spatial partitioning, 230–34, 366 

binary space partitioning (BSP) tree, 
232–34 

octree, 230–32 
specular exponent, 163, 206 
specular lighting, 162–64, 205 
sphere 

bounding sphere, 217–18, 221–22 
collision of two spheres, 372–75, 377 
collision with plane, 362–63, 376 
general sphere collisions, 366–71 
inertia tensor, 416 
ray intersection, 144–45, 153 

spherical coordinates, 516–19 
spherical linear interpolation, 86–89, 91 
splitting plane, 232 
spot light source, 160, 205 
spring motion, 430–34, 437 
square matrix, 31 
static friction, 396, 402 
stencil buffer, 4, 286, 308–10 
stencil shadow algorithm, 286–316 

rendering shadow volumes, 308–10 
scissor optimization, 310–14 
shadow volume caps, 304–8 
shadow volume construction, 300–

303 
silhouette determination, 294–99 

stencil test, 8, 308–10 
steradian, 188 
symmetric matrix, 56 

T 
tangent space, 180, 207 

calculating, 180–83 
tangent vector, 179, 180, 183, 206 

calculating, 180–83 
of curve, 350 

tangential acceleration, 353 
Taylor series, 138, 523–27 
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Taylor series method, 492–93 
TCB spline. See Kockanek-Bartels 

spline 
tearing, 4 
tensor 

inertia tensor, 414–22, 437 
metric tensor, 520–21 

terminal velocity, 396, 401 
texel, 164 
texture coordinates, 6, 165 
texture map, 4, 164–73 

bump map, 178–86 
cube texture map, 169–71 
emission map, 174 
gloss map, 165 
mipmap, 172–73 
projective texture map, 167–69 
standard texture map, 166 

T-junction elimination, 264–67, 268 
torque, 413, 426, 434, 437 
torsion, 354–55, 357 
torus 

ray intersection, 147–48 
total internal reflection, 152 
transform 

reflection transform, 70 
rotation transform, 71–75 
scaling transform, 70, 89 
translation, 75 

translation, 75 
triangle 

area of, 22 
ray intersection, 141–43 

triangle inequality, 14 
triangular system, 465–67 
triangulation, 267–74 
tridiagonal matrix, 479 

diagonal dominance, 479 
tridiagonal system, 479–82 
trigonometric functions, 505–11 

exponential identities, 507–8 
inverse functions, 508–9 

numerical calculation, 463–65 
Pythagorean identities, 507 
symmetry and phase shifts, 506 

trilinear filtering, 173 

U 
undetermined coefficients, method of, 

386 
uniform B-spline, 335–40 

control point, 335, 340 
upper triangular matrix, 65, 465 

V 
vector 

addition and subtraction, 12 
bitangent vector, 181, 183, 206 
components of, 11 
contravariant vector, 80 
covariant vector, 80 
halfway vector, 163, 192, 195, 197, 

203, 206 
magnitude of, 13 
normal vector, 161, 175, 205 
normalization, 13 
orthogonal vectors, 16 
projection of, 18, 29 
reflection vector, 150, 153 
refraction vector, 151–52, 154 
scalar multiplication, 12 
tangent vector, 179, 180, 183, 206 
unit length, 13 
zero vector, 16 

vector product. See cross product 
vector space, 26 

basis of, 26, 27 
orthogonal basis, 27 
orthonormal basis, 28 

velocity 
angular velocity, 405–7 
terminal velocity, 396 

velocity function, 379 
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vertex attribute interpolation, 111–12, 
116, 128 

vertex space. See tangent space 
video random access memory (VRAM), 

3–4 
view frustum, 102–8, 120, 128, 279 

frustum planes, 107–8 
reduced view frustum, 238–40 

viewport, 3 
viewport transformation, 6 
viscosity, 447, 461 
visibility test 

bounding box, 228–30 
bounding cylinder, 226–28 
bounding ellipsoid, 222–26 

bounding sphere, 221–22 
volume element, 522 

W 
wave equation, 443–47, 461 
w-coordinate, geometrical 

interpretation, 78 
welding, 266, 268 
window space, 6 
world space, 5 

Z 
z-buffer. See depth buffer 
zero vector, 16 
zone, 235 
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