

Mathematics for
3D Game Programming
and Computer Graphics

Third Edition

Eric Lengyel

Course Technology PTR
A part of Cengage Learning

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Mathematics for 3D Game Programming
and Computer Graphics, Third Edition
By Eric Lengyel

Publisher and General Manager,
Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager:
Jordan Castellani

Senior Acquisitions Editor:
Emi Smith

Cover Designer:
Mike Tanamachi

Proofreader:
Mike Beady

© 2012 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

All trademarks are the property of their respective owners.
All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2011924487

ISBN-13: 978-1-4354-5886-4

ISBN-10: 1-4354-5886-9

Course Technology, a part of Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in China
1 2 3 4 5 6 7 13 12 11

eISBN-10: 1-4354-5887-7

 iii

Contents

Preface xiii

What’s New in the Third Edition xiii
Contents Overview xiv
Website and Code Listings xvii
Notational Conventions xvii

Chapter 1 The Rendering Pipeline 1

1.1 Graphics Processors 1
1.2 Vertex Transformation 4
1.3 Rasterization and Fragment Operations 6

Chapter 2 Vectors 11

2.1 Vector Properties 11
2.2 The Dot Product 15
2.3 The Cross Product 19
2.4 Vector Spaces 26
Chapter 2 Summary 29
Exercises for Chapter 2 30

Chapter 3 Matrices 31

3.1 Matrix Properties 31
3.2 Linear Systems 34
3.3 Matrix Inverses 40
3.4 Determinants 47
3.5 Eigenvalues and Eigenvectors 54
3.6 Diagonalization 58

iv Contents

Chapter 3 Summary 62
Exercises for Chapter 3 64

Chapter 4 Transforms 67
4.1 Linear Transformations 67

4.1.1 Orthogonal Matrices 68
4.1.2 Handedness 70

4.2 Scaling Transforms 70
4.3 Rotation Transforms 71

4.3.1 Rotation About an Arbitrary Axis 74
4.4 Homogeneous Coordinates 75

4.4.1 Four-Dimensional Transforms 76
4.4.2 Points and Directions 77
4.4.3 Geometrical Interpretation of the w Coordinate 78

4.5 Transforming Normal Vectors 78
4.6 Quaternions 80

4.6.1 Quaternion Mathematics 80
4.6.2 Rotations with Quaternions 82
4.6.3 Spherical Linear Interpolation 86

Chapter 4 Summary 89
Exercises for Chapter 4 91

Chapter 5 Geometry for 3D Engines 93
5.1 Lines in 3D Space 93

5.1.1 Distance Between a Point and a Line 93
5.1.2 Distance Between Two Lines 94

5.2 Planes in 3D Space 97
5.2.1 Intersection of a Line and a Plane 98
5.2.2 Intersection of Three Planes 99
5.2.3 Transforming Planes 101

5.3 The View Frustum 102
5.3.1 Field of View 103
5.3.2 Frustum Planes 106

5.4 Perspective-Correct Interpolation 107
5.4.1 Depth Interpolation 108
5.4.2 Vertex Attribute Interpolation 110

5.5 Projections 111
5.5.1 Perspective Projections 112
5.5.2 Orthographic Projections 116

 v

5.5.3 Extracting Frustum Planes 118
5.6 Reflections and Oblique Clipping 120
Chapter 5 Summary 126
Exercises for Chapter 5 129

Chapter 6 Ray Tracing 131
6.1 Root Finding 131

6.1.1 Quadratic Polynomials 131
6.1.2 Cubic Polynomials 132
6.1.3 Quartic Polynomials 135
6.1.4 Newton’s Method 136
6.1.5 Refinement of Reciprocals and Square Roots 139

6.2 Surface Intersections 140
6.2.1 Intersection of a Ray and a Triangle 141
6.2.2 Intersection of a Ray and a Box 143
6.2.3 Intersection of a Ray and a Sphere 144
6.2.4 Intersection of a Ray and a Cylinder 145
6.2.5 Intersection of a Ray and a Torus 147

6.3 Normal Vector Calculation 148
6.4 Reflection and Refraction Vectors 149

6.4.1 Reflection Vector Calculation 150
6.4.2 Refraction Vector Calculation 151

Chapter 6 Summary 153
Exercises for Chapter 6 154

Chapter 7 Lighting and Shading 157
7.1 RGB Color 157
7.2 Light Sources 158

7.2.1 Ambient Light 158
7.2.2 Directional Light Sources 159
7.2.3 Point Light Sources 159
7.2.4 Spot Light Sources 160

7.3 Diffuse Reflection 161
7.4 Specular Reflection 162
7.5 Texture Mapping 164

7.5.1 Standard Texture Maps 166
7.5.2 Projective Texture Maps 167
7.5.3 Cube Texture Maps 169
7.5.4 Filtering and Mipmaps 171

vi Contents

7.6 Emission 174
7.7 Shading Models 175

7.7.1 Calculating Normal Vectors 175
7.7.2 Gouraud Shading 176
7.7.3 Blinn-Phong Shading 177

7.8 Bump Mapping 178
7.8.1 Bump Map Construction 178
7.8.2 Tangent Space 180
7.8.3 Calculating Tangent Vectors 180
7.8.4 Implementation 185

7.9 A Physical Reflection Model 187
7.9.1 Bidirectional Reflectance Distribution Functions 187
7.9.2 Cook-Torrance Illumination 191
7.9.3 The Fresnel Factor 192
7.9.4 The Microfacet Distribution Function 195
7.9.5 The Geometrical Attenuation Factor 198
7.9.6 Implementation 200

Chapter 7 Summary 205
Exercises for Chapter 7 209

Chapter 8 Visibility Determination 211

8.1 Bounding Volume Construction 211
8.1.1 Principal Component Analysis 212
8.1.2 Bounding Box Construction 215
8.1.3 Bounding Sphere Construction 217
8.1.4 Bounding Ellipsoid Construction 218
8.1.5 Bounding Cylinder Construction 220

8.2 Bounding Volume Tests 221
8.2.1 Bounding Sphere Test 221
8.2.2 Bounding Ellipsoid Test 222
8.2.3 Bounding Cylinder Test 226
8.2.4 Bounding Box Test 228

8.3 Spatial Partitioning 230
8.3.1 Octrees 230
8.3.2 Binary Space Partitioning Trees 232

8.4 Portal Systems 235
8.4.1 Portal Clipping 236
8.4.2 Reduced View Frustums 238

 vii

Chapter 8 Summary 240
Exercises for Chapter 8 244

Chapter 9 Polygonal Techniques 245

9.1 Depth Value Offset 245
9.1.1 Projection Matrix Modification 246
9.1.2 Offset Value Selection 247
9.1.3 Implementation 248

9.2 Decal Application 249
9.2.1 Decal Mesh Construction 250
9.2.2 Polygon Clipping 252

9.3 Billboarding 254
9.3.1 Unconstrained Quads 254
9.3.2 Constrained Quads 257
9.3.3 Polyboards 258

9.4 Polygon Reduction 260
9.5 T-Junction Elimination 264
9.6 Triangulation 267
Chapter 9 Summary 274
Exercises for Chapter 9 277

Chapter 10 Shadows 279

10.1 Shadow Casting Set 279
10.2 Shadow Mapping 281

10.2.1 Rendering the Shadow Map 281
10.2.2 Rendering the Main Scene 283
10.2.3 Self-Shadowing 284

10.3 Stencil Shadows 286
10.3.1 Algorithm Overview 286
10.3.2 Infinite View Frustums 291
10.3.3 Silhouette Determination 294
10.3.4 Shadow Volume Construction 299
10.3.5 Determining Cap Necessity 303
10.3.6 Rendering Shadow Volumes 307
10.3.7 Scissor Optimization 309

Chapter 10 Summary 314
Exercises for Chapter 10 315

viii Contents

Chapter 11 Curves and Surfaces 317

11.1 Cubic Curves 317
11.2 Hermite Curves 320
11.3 Bézier Curves 322

11.3.1 Cubic Bézier Curves 322
11.3.2 Bézier Curve Truncation 326
11.3.3 The de Casteljau Algorithm 327

11.4 Catmull-Rom Splines 329
11.5 Cubic Splines 331
11.6 B-Splines 334

11.6.1 Uniform B-Splines 335
11.6.2 B-Spline Globalization 340
11.6.3 Nonuniform B-Splines 342
11.6.4 NURBS 345

11.7 Bicubic Surfaces 348
11.8 Curvature and Torsion 350
Chapter 11 Summary 355
Exercises for Chapter 11 357

Chapter 12 Collision Detection 361

12.1 Plane Collisions 361
12.1.1 Collision of a Sphere and a Plane 362
12.1.2 Collision of a Box and a Plane 364
12.1.3 Spatial Partitioning 366

12.2 General Sphere Collisions 366
12.3 Sliding 371
12.4 Collision of Two Spheres 372
Chapter 12 Summary 376
Exercises for Chapter 12 378

Chapter 13 Linear Physics 379

13.1 Position Functions 379
13.2 Second-Order Differential Equations 381

13.2.1 Homogeneous Equations 381
13.2.2 Nonhomogeneous Equations 385
13.2.3 Initial Conditions 388

13.3 Projectile Motion 390
13.4 Resisted Motion 394

 ix

13.5 Friction 396
Chapter 13 Summary 400
Exercises for Chapter 13 402

Chapter 14 Rotational Physics 405
14.1 Rotating Environments 405

14.1.1 Angular Velocity 405
14.1.2 The Centrifugal Force 407
14.1.3 The Coriolis Force 408

14.2 Rigid Body Motion 410
14.2.1 Center of Mass 410
14.2.2 Angular Momentum and Torque 413
14.2.3 The Inertia Tensor 414
14.2.4 Principal Axes of Inertia 422
14.2.5 Transforming the Inertia Tensor 426

14.3 Oscillatory Motion 430
14.3.1 Spring Motion 430
14.3.2 Pendulum Motion 434

Chapter 14 Summary 436
Exercises for Chapter 14 438

Chapter 15 Fluid and Cloth Simulation 443
15.1 Fluid Simulation 443

15.1.1 The Wave Equation 443
15.1.2 Approximating Derivatives 447
15.1.3 Evaluating Surface Displacement 450
15.1.4 Implementation 453

15.2 Cloth Simulation 457
15.2.1 The Spring System 457
15.2.2 External Forces 459
15.2.3 Implementation 459

Chapter 15 Summary 461
Exercises for Chapter 15 462

Chapter 16 Numerical Methods 463
16.1 Trigonometric Functions 463
16.2 Linear Systems 465

16.2.1 Triangular Systems 465
16.2.2 Gaussian Elimination 467

x Contents

16.2.3 LU Decomposition 470
16.2.4 Error Reduction 477
16.2.5 Tridiagonal Systems 479

16.3 Eigenvalues and Eigenvectors 483
16.4 Ordinary Differential Equations 490

16.4.1 Euler’s Method 490
16.4.2 Taylor Series Method 492
16.4.3 Runge-Kutta Method 493
16.4.4 Higher-Order Differential Equations 495

Chapter 16 Summary 496
Exercises for Chapter 16 498

Appendix A Complex Numbers 499
A.1 Definition 499
A.2 Addition and Multiplication 499
A.3 Conjugates and Inverses 500
A.4 The Euler Formula 501

Appendix B Trigonometry Reference 505
B.1 Function Definitions 505
B.2 Symmetry and Phase Shifts 506
B.3 Pythagorean Identities 507
B.4 Exponential Identities 507
B.5 Inverse Functions 508
B.6 Laws of Sines and Cosines 509

Appendix C Coordinate Systems 513
C.1 Cartesian Coordinates 513
C.2 Cylindrical Coordinates 514
C.3 Spherical Coordinates 516
C.4 Generalized Coordinates 520

Appendix D Taylor Series 523
D.1 Derivation 523
D.2 Power Series 525
D.3 The Euler Formula 526

Appendix E Answers to Exercises 529
Chapter 2 529

 xi

Chapter 3 529
Chapter 4 530
Chapter 5 530
Chapter 6 530
Chapter 7 531
Chapter 8 531
Chapter 9 531
Chapter 10 531
Chapter 11 532
Chapter 12 532
Chapter 13 532
Chapter 14 533
Chapter 15 534
Chapter 16 534

Index 535

This page intentionally left blank

 xiii

Preface

This book illustrates mathematical techniques that a software engineer would
need to develop a professional-quality 3D graphics engine. Particular attention is
paid to the derivation of key results in order to provide a complete exposition of
the subject and to encourage a deep understanding of the mechanics behind the
mathematical tools used by game programmers.
 Most of the material in this book is presented in a manner that is independent
of the underlying 3D graphics system used to render images. We assume that the
reader is familiar with the basic concepts needed to use a 3D graphics library and
understands how models are constructed out of vertices and polygons. However,
the book begins with a short review of the rendering pipeline as it is implemented
in the OpenGL library. When it becomes necessary to discuss a topic in the con-
text of a 3D graphics library, OpenGL is the one that we choose due to its availa-
bility across multiple platforms.
 Each chapter ends with a summary of the important equations and formulas
derived within the text. The summary is intended to serve as a reference tool so
that the reader is not required to wade through long discussions of the subject
matter in order to find a single result. There are also several exercises at the end
of each chapter. The answers to exercises requiring a calculation are given in
Appendix E.

What’s New in the Third Edition

The following list highlights the major changes and additions in the third edition.
Many minor additions and enhancements have also been made, including updates
to almost all of the figures in the book.

■ A discussion of oblique near plane clipping has been added to the view frus-
tum topics covered in Chapter 5.

xiv Preface

■ Chapter 10 now begins with a discussion of shadow casting set determination
before going into discussions of shadow generation techniques.

■ In addition to the stencil shadow algorithm, the shadow mapping technique is
now covered in Chapter 10.

■ The discussion of the inertia tensor in Chapter 14 has been expanded.

■ Chapter 15 has been expanded to include an introduction to cloth simulation
in addition to its discussion of fluid surface simulation.

■ A fast method for calculating the sine and cosine functions has been added to
the beginning of the numerical methods coverage in Chapter 16.

Contents Overview

Chapter 1: The Rendering Pipeline. This is a preliminary chapter that provides
an overview of the rendering pipeline in the context of the OpenGL library.
Many of the topics mentioned in this chapter are examined in higher detail else-
where in the book, so mathematical discussions are intentionally avoided here.

Chapter 2: Vectors. This chapter begins the mathematical portion of the book
with a thorough review of vector quantities and their properties. Vectors are of
fundamental importance in the study of 3D computer graphics, and we make ex-
tensive use of operations such as the dot product and cross product throughout
the book.

Chapter 3: Matrices. An understanding of matrices is another basic necessity of
3D game programming. This chapter discusses elementary concepts such as ma-
trix representation of linear systems as well as more advanced topics, including
eigenvectors and diagonalization, which are required later in the book. For com-
pleteness, this chapter goes into a lot of detail to prove various matrix properties,
but an understanding of those details is not essential when using matrices later in
the book, so the uninterested reader may skip over the proofs.

Chapter 4: Transforms. In Chapter 4, we investigate matrices as a tool for per-
forming transformations such as translations, rotations, and scales. We introduce
the concept of four-dimensional homogeneous coordinates, which are widely
used in 3D graphics systems to move between different coordinate spaces. We
also study the properties of quaternions and their usefulness as a transformation
tool.

Contents Overview xv

Chapter 5: Geometry for 3D Engines. It is at this point that we begin to see
material presented in the previous three chapters applied to practical applications
in 3D game programming and computer graphics. After analyzing lines and
planes in 3D space, we introduce the view frustum and its relationship to the vir-
tual camera. This chapter includes topics such as field of view, perspective-
correct interpolation, and projection matrices.

Chapter 6: Ray Tracing. Ray tracing methods are useful in many areas of game
programming, including light map generation, line-of-sight determination, and
collision detection. This chapter begins with analytical and numerical root-
finding techniques, and then presents methods for intersecting rays with common
geometrical objects. Finally, calculation of reflection and refraction vectors is
discussed.

Chapter 7: Lighting and Shading. Chapter 7 discusses a wide range of topics
related to illumination and shading methods. We begin with an enumeration of
the different types of light sources and then proceed to simple reflection models.
Later, we inspect methods for adding detail to rendered surfaces using texture
maps, gloss maps, and bump maps. The chapter closes with a detailed explana-
tion of the Cook-Torrance physical illumination model.

Chapter 8: Visibility Determination. The performance of a 3D engine is heavi-
ly dependent on its ability to determine what parts of a scene are visible. This
chapter presents methods for constructing various types of bounding volumes and
subsequently testing their visibility against the view frustum. Large-scale visibil-
ity determination enabled through spatial partitioning and the use of portal sys-
tems is also examined.

Chapter 9: Polygonal Techniques. Chapter 9 presents several techniques in-
volving the manipulation of polygonal models. The first topic covered is decal
application to arbitrary surfaces and includes a related method for performing
vertex depth offset. Other topics include billboarding techniques used for various
special effects, a polygon reduction technique, T-junction elimination, and poly-
gon triangulation.

Chapter 10: Shadows. This chapter discusses shadow-casting sets and the two
prominent methods for generating shadows in a real-time application, shadow
mapping and stencil shadows. The presentation of the stencil shadow algorithm is
particularly detailed because it draws on several smaller geometric techniques.

xvi Preface

Chapter 11: Curves and Surfaces. In this chapter, we examine of a broad varie-
ty of cubic curves, including Bézier curves and B-splines. We also discuss how
concepts pertaining to two-dimensional curves are extended to three-dimensional
surfaces.

Chapter 12: Collision Detection. Collision detection is necessary for interaction
between different objects in a game universe. This chapter presents general
methods for determining whether moving objects collide with the static environ-
ment and whether they collide with each other.

Chapter 13: Linear Physics. At this point in the book, we begin a two-chapter
survey of various topics in classical physics that pertain to the motion that objects
are likely to exhibit in a 3D game. Chapter 13 begins with a discussion of posi-
tion functions as solutions to second-order differential equations. We then inves-
tigate projectile motion both through empty space and through a resistive medi-
um, and close with a look at frictional forces.

Chapter 14: Rotational Physics. Chapter 14 continues the treatment of physics
with a rather advanced exposition on rotation. We first study the forces experi-
enced by an object in a rotating environment. Next, we examine rigid body mo-
tion and derive the relationship between angular velocity and angular momentum
through the inertia tensor. Also included is a discussion of the oscillatory motion
exhibited by springs and pendulums.

Chapter 15: Fluid and Cloth Simulation. We continue with the theme of phys-
ical simulation by presenting a physical model for fluid motion based on the two-
dimensional wave equation and cloth motion based on a spring-damper system.

Chapter 16: Numerical Methods. The book finishes with an examination of
numerical techniques for calculating trigonometric functions and solving three
particular types of problems. We first discuss effective methods for finding the
solutions to linear systems of any size. Next, we present an iterative technique for
determining the eigenvalues and eigenvectors of a 3 3 symmetric matrix. Final-
ly, we study methods for approximating the solutions to ordinary differential
equations.

Appendix A: Complex Numbers. Although not used extensively, complex
numbers do appear in a few places in the text. Appendix A reviews the concept
of complex numbers and discusses the properties that are used elsewhere in the
book.

Website and Code Listings xvii

Appendix B: Trigonometry Reference. Appendix B reviews the trigonometric
functions and quickly derives many formulas and identities that are used
throughout this book.

Appendix C: Coordinate Systems. Appendix C provides a brief overview of
Cartesian coordinates, cylindrical coordinates, and spherical coordinates. These
coordinate systems appear in several places throughout the book, but are used
most extensively in Chapter 14.

Appendix D: Taylor Series. The Taylor series of various functions are em-
ployed in a number of places throughout the book. Appendix D derives the Tay-
lor series and reviews power series representations for many common functions.

Appendix E: Answers to Exercises. This appendix contains the answer to every
exercise in the book having a solution that can be represented by a mathematical
expression.

Website and Code Listings

The official website for this book can be found at the following address:

 http://www.mathfor3dgameprogramming.com/

All of the code listings in the book can be downloaded from this website. Some
of the listings make use of simple structures such as Triangle and Edge or
mathematical classes such as Vector3D and Matrix3D. The source code for
these can also be found on the website.
 The language used for all code that is intended to run on the CPU is standard
C++. Vertex shaders and fragment shaders that are intended to run on the GPU
use the OpenGL Shading Language (GLSL).

Notational Conventions

We have been careful to use consistent notation throughout this book. Scalar
quantities are always represented by italic Roman or Greek letters. Vectors, ma-
trices, and quaternions are always represented by bold letters. A single compo-
nent of a vector, matrix, or quaternion is a scalar quantity, so it is italic. For ex-
ample, the x component of the vector v is written xv . These conventions and other
notational standards used throughout the book are summarized in the table on the
next page.

xviii Preface

Quantity/Operation Notation/Examples

Scalars Italic letters: x, t, A, , 

Angles Italic Greek letters: , , 

Vectors Boldface letters: V, P, x, ω

Quaternions Boldface letters: q, 1q , 2q

Matrices Boldface letters: M, P

RGB Colors Script letters: , , , 

Magnitude of a vector Double bar: P

Conjugate of a complex number z or a
quaternion q

Overbar: z , q

Transpose of a matrix Superscript T: TM

Determinant of a matrix det M or single bars: M

Time derivative Dot notation:    d
t t

dt
x x

Binomial coefficient  
!

! !

n n

k k n k
     

Floor of x x  

Ceiling of x x  

Fractional part of x  frac x

Sign of x  
1, if 0

sgn 0, if 0

1, if 0

x

x x

x


 
 

Closed interval    , |a b x a x b   
Open interval    , |a b x a x b   
Interval closed at one end and open at
the other end

   
   

, |

, |

a b x a x b

a b x a x b

  

  


Set of real numbers 
Set of complex numbers 
Set of quaternions 

 1

Chapter 1
The Rendering Pipeline

This chapter provides a preliminary review of the rendering pipeline. It covers
general functions, such as vertex transformation and primitive rasterization,
which are performed by modern 3D graphics hardware. Readers who are familiar
with these concepts may safely skip ahead. We intentionally avoid mathematical
discussions in this chapter and instead provide pointers to other parts of the book
where each particular portion of the rendering pipeline is examined in greater
detail.

1.1 Graphics Processors

A typical scene that is to be rendered as 3D graphics is composed of many sepa-
rate objects. The geometrical forms of these objects are each represented by a set
of vertices and a particular type of graphics primitive that indicates how the ver-
tices are connected to produce a shape. Figure 1.1 illustrates the ten types of
graphics primitive defined by the OpenGL library. Graphics hardware is capable
of rendering a set of individual points, a series of line segments, or a group of
filled polygons. Most of the time, the surface of a 3D model is represented by a
list of triangles, each of which references three points in a list of vertices.
 The usual modern 3D graphics board possesses a dedicated Graphics Pro-
cessing Unit (GPU) that executes instructions independently of the Central Pro-
cessing Unit (CPU). The CPU sends rendering commands to the GPU, which
then performs the rendering operations while the CPU continues with other tasks.
This is called asynchronous operation. When geometrical information is submit-
ted to a rendering library such as OpenGL, the function calls used to request the
rendering operations typically return a significant amount of time before the GPU
has finished rendering the graphics. The lag time between the submission of a
rendering command and the completion of the rendering operation does not nor-
mally cause problems, but there are cases when the time at which drawing com-

2 1. The Rendering Pipeline

0

1

2

3

Points

Lines

Triangles

Quads

2

4

5

3

0 1

2

4

5

3

0

1

2

4

5 6

7

30

1

Quad Strip

Triangle Strip

Line Strip
2

4
3

0 1

3

2
4

5

6

7

0

1

2
4

5

6
3

0

1

Polygon

Triangle Fan

Line Loop

2

45

3

0 1

2

4

5

3

0

1

2

4 5

6
3

01

Figure 1.1. The OpenGL library defines ten types of graphics primitive. The numbers
indicate the order in which the vertices are specified for each primitive type.

pletes needs to be known. There exist OpenGL extensions that allow the program
running on the CPU to determine when a particular set of rendering commands
have finished executing on the GPU. Such synchronization has the tendency to
slow down a 3D graphics application, so it is usually avoided whenever possible
if performance is important.
 An application communicates with the GPU by sending commands to a ren-
dering library, such as OpenGL, which in turn sends commands to a driver that
knows how to speak to the GPU in its native language. The interface to OpenGL
is called a Hardware Abstraction Layer (HAL) because it exposes a common set

1.1 Graphics Processors 3

of functions that can be used to render a scene on any graphics hardware that
supports the OpenGL architecture. The driver translates the OpenGL function
calls into code that the GPU can understand. A 3D graphics driver usually im-
plements OpenGL functions directly to minimize the overhead of issuing render-
ing commands. The block diagram shown in Figure 1.2 illustrates the communi-
cations that take place between the CPU and GPU.
 A 3D graphics board has its own memory core, which is commonly called
VRAM (Video Random Access Memory). The GPU may store any information in
VRAM, but there are several types of data that can almost always be found in the
graphics board’s memory when a 3D graphics application is running. Most im-
portantly, VRAM contains the front and back image buffers. The front image
buffer contains the exact pixel data that is visible in the viewport. The viewport is
the area of the display containing the rendered image and may be a subregion of
a window, the entire contents of a window, or the full area of the display. The

Main MemoryCPU

Application

OpenGL or
DirectX

Graphics
Driver

GPU
Video Memory

Rendering commands
Vertex data
Texture data
Shader parameters

Image
Buffers

Texture
Maps

Vertex
Buffers

Depth/stencil
Buffer

Command buffer

Figure 1.2. The communications that take place between the CPU and GPU.

4 1. The Rendering Pipeline

back image buffer is the location to which the GPU actually renders a scene. The
back buffer is not visible and exists so that a scene can be rendered in its entirety
before being shown to the user. Once an image has been completely rendered, the
front and back image buffers are exchanged. This operation is called a buffer
swap and can be performed either by changing the memory address that repre-
sents the base of the visible image buffer or by copying the contents of the back
image buffer to the front image buffer. The buffer swap is often synchronized
with the refresh frequency of the display to avoid an artifact known as tearing.
Tearing occurs when a buffer swap is performed during the display refresh inter-
val, causing the upper and lower parts of a viewport to show data from different
image buffers.
 Also stored in VRAM is a block of data called the depth buffer or z-buffer.
The depth buffer stores, for every pixel in the image buffer, a value that repre-
sents how far away the pixel is or how deep the pixel lies in the image. The depth
buffer is used to perform hidden surface elimination by only allowing a pixel to
be drawn if its depth is less than the depth of the pixel already in the image buff-
er. Depth is measured as the distance from the virtual camera through which we
observe the scene being rendered. The name z-buffer comes from the convention
that the z axis points directly out of the display screen in the camera’s local coor-
dinate system. (See Section 5.3.)
 An application may request that a stencil buffer be created along with the
image buffers and the depth buffer. The stencil buffer contains an integer mask
for each pixel in the image buffer that can be used to enable or disable drawing
on a per-pixel basis. The operations that can be performed in the stencil buffer
are described in Section 1.3, later in this chapter. An advanced application of the
stencil buffer used to generate real-time shadows is discussed in Chapter 10.
 For the vast majority of 3D rendering applications, the usage of VRAM is
dominated by texture maps. Texture maps are images that are applied to the sur-
face of an object to give it greater visual detail. In advanced rendering applica-
tions, texture maps may contain information other than a simple pixel image. For
instance, a bump map contains vectors that represent varying slopes at different
locations on an object’s surface. Texture mapping details, including the process
of bump mapping, are discussed in detail in Chapter 7.

1.2 Vertex Transformation

Geometrical data is passed to the graphics hardware in the context of a three-
dimensional space. One of the jobs performed by the graphics hardware is to

1.2 Vertex Transformation 5

transform this data into geometry that can be drawn into a two-dimensional
viewport. There are several different coordinate systems associated with the ren-
dering pipeline—their relationships are shown in Figure 1.3. The vertices of a
model are typically stored in object space, a coordinate system that is local to the
particular model and used only by that model. The position and orientation of
each model are often stored in world space, a global coordinate system that ties
all of the object spaces together. Before an object can be rendered, its vertices
must be transformed into camera space (also called eye space), the space in
which the x and y axes are aligned to the display and the z axis is parallel to the
viewing direction. (See Section 5.3.) It is possible to transform vertices from ob-
ject space directly into camera space by concatenating the matrices representing
the transformations from object space to world space and from world space to
camera space. The product of these transformations is called the model-view
transformation.
 Once a model’s vertices have been transformed into camera space, they un-
dergo a projection transformation that has the effect of applying perspective so
that geometry becomes smaller as the distance from the camera increases. (Pro-

Object
Space

Model-view
transformation

Projection

Viewport transformation

World
Space

Camera
Space

Homogeneous
Clip Space

Window
Space

Figure 1.3. The coordinate spaces appearing in the rendering pipeline. Vertex positions
are submitted to the graphics library in object space and are eventually transformed into
window space for primitive rasterization.

6 1. The Rendering Pipeline

jections are discussed in Section 5.5.) The projection is performed in four-
dimensional homogeneous coordinates, described in Section 4.4, and the space in
which the vertices exist after projection is called homogeneous clip space. Ho-
mogeneous clip space is so named because it is in this space that graphics primi-
tives are clipped to the boundaries of the visible region of the scene, ensuring that
no attempt is made to render any part of a primitive that falls outside the
viewport.
 In homogeneous clip space, vertices have normalized device coordinates.
The term normalized pertains to the fact that the x, y, and z coordinates of each
vertex fall in the range  1,1 , but reflect the final positions in which they will
appear in the viewport. The vertices must undergo one more transformation,
called the viewport transformation, that maps the normalized coordinates to the
actual range of pixel coordinates covered by the viewport. The z coordinate is
usually mapped to the floating-point range  0,1, but this is subsequently scaled to
the integer range corresponding to the number of bits per pixel utilized by the
depth buffer. After the viewport transformation, vertex positions are said to lie in
window space.
 A graphics processor usually performs several per-vertex calculations in ad-
dition to the transformation from object space to window space. For instance, the
OpenGL lighting model determines the color and intensity of light reaching each
vertex and then calculates how much of that is reflected toward the camera. The
reflected color assigned to each vertex is interpolated over the area of a graphics
primitive in the manner described in Section 5.4.2. This process is called per-
vertex lighting. More-advanced graphics applications may perform per-pixel
lighting to achieve highly detailed lighting interactions at every pixel covered by
a graphics primitive. Per-vertex and per-pixel lighting are discussed in Sec-
tions 7.7 and 7.8.
 Each vertex may also carry with it one or more sets of texture coordinates.
Texture coordinates may be explicitly specified by an application or automatical-
ly generated by the GPU. When a graphics primitive is rendered, the texture co-
ordinates are interpolated over the area of the primitive and used to look up col-
ors in a texture map. These colors are then combined with other interpolated data
at each pixel to determine the final color that appears in the viewport.

1.3 Rasterization and Fragment Operations

Once a model’s vertices have been clipped and transformed into window space,
the GPU must determine what pixels in the viewport are covered by each

1.3 Rasterization and Fragment Operations 7

graphics primitive. The process of filling in the horizontal spans of pixels belong-
ing to a primitive is called rasterization. The GPU calculates the depth, interpo-
lated vertex colors, and interpolated texture coordinates for each pixel. This in-
formation, combined with the location of the pixel itself, is called a fragment.
 The process through which a graphics primitive is converted to a set of frag-
ments is illustrated in Figure 1.4. An application may specify that face culling be
performed as the first stage of this process. Face culling applies only to polygonal
graphics primitives and removes either the polygons that are facing away from
the camera or those that are facing toward the camera. Ordinarily, face culling is
employed as an optimization that skips polygons facing away from the camera
(backfacing polygons) since they correspond to the unseen far side of a model.
 A graphics application specifies how the fragment data is used to determine
the final color and final depth of each pixel during rasterization. This process is
called fragment shading or pixel shading. The final color may simply be given by
the product of an interpolated vertex color and a value fetched from a texture
map, or it may be the result of a complex per-pixel lighting calculation. The final
depth is ordinarily just the unaltered interpolated depth, but advanced 3D
graphics hardware allows an application to replace the depth with the result of an
arbitrary calculation.
 Figure 1.5 illustrates the operations performed for each fragment generated
during rasterization. Most of these operations determine whether a fragment
should be drawn to the viewport or discarded altogether. Although these opera-
tions occur logically after fragment shading, most GPUs perform as many tests as
possible before performing fragment shading calculations to avoid spending time
figuring out the colors of fragments that will ultimately be discarded.

Face
Culling

Graphics
primitives

Fragments

Rasterization

Fragment
Shading

Fragment
Operations

Figure 1.4. A graphics primitive is converted to a set of fragments during rasterization.
After shading, fragments undergo the operations shown in Figure 1.5.

8 1. The Rendering Pipeline

Pixel
Ownership Test

Scissor
Test

Alpha
Test

Fragment

Image
buffer

Depth
Test

Blending

Stencil
Test

Figure 1.5. Operations performed before a fragment is written to the image buffer.

 The first fragment operation performed, and the only one that cannot be disa-
bled, is the pixel ownership test. The pixel ownership test simply determines
whether a fragment lies in the region of the viewport that is currently visible on
the display. A possible reason that the pixel ownership test fails is that another
window is obscuring a portion of the viewport. In this case, fragments falling
behind the obscuring window are not drawn.
 Next, the scissor test is performed. An application may specify a rectangle in
the viewport, called the scissor rectangle, to which rendering should be restrict-
ed. Any fragments falling outside the scissor rectangle are discarded. A particular
application of the scissor rectangle in the context of the stencil shadow algorithm
is discussed in Section 10.3.7.
 If the scissor test passes, a fragment undergoes the alpha test. When the final
color of a fragment is calculated, an application may also calculate an alpha val-
ue that usually represents the degree of transparency associated with the frag-
ment. The alpha test compares the final alpha value of a fragment to a constant
value that is preset by the application. The application specifies what relationship
between the two values (such as less than, greater than, or equal to) causes the
test to pass. If the relationship is not satisfied, then the fragment is discarded.
 After the alpha test passes, a fragment moves on to the stencil test. The sten-
cil test reads the value stored in the stencil buffer at a fragment’s location and
compares it to a value previously specified by the application. The stencil test
passes only if a specific relationship is satisfied (e.g., the stencil value is equal to

1.3 Rasterization and Fragment Operations 9

a particular value); otherwise, the stencil test fails, and the fragment is discarded.
An application is able to specify actions to be taken in the stencil buffer when the
stencil test passes or fails. Additionally, if the stencil test passes, the value in the
stencil buffer may be affected in a way that depends on the result of the depth test
(described next). For instance, an application may choose to increment the value
in the stencil buffer if the stencil test passes and the depth test fails. This func-
tionality is used extensively by one of the shadow-rendering techniques described
in Chapter 10.
 The final test undergone by a fragment is the depth test. The depth test com-
pares the final depth associated with a fragment to the value currently residing in
the depth buffer. If the fragment’s depth does not satisfy an application-specified
relationship with the value in the depth buffer, then the fragment is discarded.
Normally, the depth test is configured so that a fragment passes the depth test
only if its depth is less than or equal to the value in the depth buffer. When the
depth test passes, the depth buffer is updated with the depth of the fragment to
facilitate hidden surface removal for subsequently rendered primitives.
 Once the pixel ownership test, scissor test, alpha test, stencil test, and depth
test have all passed, a fragment’s final color is blended into the image buffer. The
blending operation calculates a new color by combining the fragment’s final col-
or and the color already stored in the image buffer at the fragment’s location. The
fragment’s alpha value and the alpha value stored in the image buffer may also
be used to determine the color that ultimately appears in the viewport. The blend-
ing operation may be configured to simply replace the previous color in the im-
age buffer, or it may produce special visual effects such as transparency.

This page intentionally left blank

 11

Chapter 2

Vectors

Vectors are of fundamental importance in any 3D game engine. They are used to
represent points in space, such as the locations of objects in a game or the verti-
ces of a triangle mesh. They are also used to represent spatial directions, such as
the orientation of the camera or the surface normals of a triangle mesh. Under-
standing how to manipulate vectors is an essential skill of the successful 3D pro-
grammer.
 Throughout this book, we encounter vectors of various types, usually repre-
senting two-dimensional, three-dimensional, or four-dimensional quantities. For
now, we make no distinction between vectors representing points and vectors
representing directions, nor do we concern ourselves with how vectors are trans-
formed from one coordinate system to another. These topics are extremely im-
portant in 3D engine development, however, and are addressed in Chapter 4.

2.1 Vector Properties

We assume that the reader possesses a basic understanding of vectors, but it is
beneficial to provide a quick review of properties that are used extensively
throughout this book. Although more abstract definitions are possible, we usually
restrict ourselves to vectors defined by n-tuples of real numbers, where n is typi-
cally 2, 3, or 4. An n-dimensional vector V can be written as

 1 2, , , ,nV V V=V  (2.1)

where the numbers iV are called the components of the vector V. We have used
numbered subscripts here, but the components will usually be labeled with the
name of the axis to which they correspond. For instance, the components of a
three-dimensional point P could be written as xP , yP , and zP .

12 2. Vectors

 The vector V in Equation (2.1) may also be represented by a matrix having a
single column and n rows:

1

2

n

V
V

V

 
 
 =
 
 
 

V


. (2.2)

We treat this column vector as having a meaning identical to that of the comma-
separated list of components written in Equation (2.1). Vectors are normally ex-
pressed in these forms, but we sometimes need to express vectors as a matrix
consisting of a single row and n columns. We write row vectors as the transpose
of their corresponding column vectors:

 []T
1 2 nV V V=V  . (2.3)

 A vector may be multiplied by a scalar to produce a new vector whose com-
ponents retain the same relative proportions. The product of a scalar a and a vec-
tor V is defined as

 1 2, , , na a aV aV aV= =V V  . (2.4)

In the case that 1a = − , we use the slightly simplified notation −V to represent the
negation of the vector V.
 Vectors add and subtract componentwise. Thus, given two vectors P and Q,
we define the sum +P Q as

 1 1 2 2, , , n nP Q P Q P Q+ = + + +P Q  . (2.5)

The difference between two vectors, written −P Q, is really just a notational sim-
plification of the sum ()+ −P Q .
 With the above definitions in hand, we are now ready to examine some fun-
damental properties of vector arithmetic.

Theorem 2.1. Given any two scalars a and b, and any three vectors P, Q, and
R, the following properties hold.

 (a) + = +P Q Q P
 (b) () ()+ + = + +P Q R P Q R

2.1 Vector Properties 13

 (c) () ()ab a b=P P
 (d) ()a a a+ = +P Q P Q
 (e) ()a b a b+ = +P P P

Using the associative and commutative properties of the real numbers, these
properties are easily verified through direct computation.
 The magnitude of an n-dimensional vector V is a scalar denoted by V and is
given by the formula

 2

1

n

i
i

V
=

= V . (2.6)

The magnitude of a vector is also sometimes called the norm or the length of a
vector. A vector having a magnitude of exactly one is said to have unit length, or
may simply be called a unit vector. When V represents a three-dimensional point
or direction, Equation (2.6) can be written as

 2 2 2
x y zV V V= + +V . (2.7)

 A vector V having at least one nonzero component can be resized to unit
length through multiplication by 1 V . This operation is called normalization and
is used often in 3D graphics. It should be noted that the term to normalize is in no
way related to the term normal vector, which refers to a vector that is perpen-
dicular to a surface at a particular point.
 The magnitude function given in Equation (2.6) obeys the following rules.

Theorem 2.2. Given any scalar a and any two vectors P and Q, the following
properties hold.

 (a) 0≥P
 (b) 0=P if and only if 0,0, ,0=P 
 (c) a a=P P
 (d) + ≤ +P Q P Q

Proof.

(a) This follows from the fact that the radicand in Equation (2.6) is a sum of
squares, which cannot be less than zero.

14 2. Vectors

P

QP + Q

Figure 2.1. The triangle inequality states that + ≤ +P Q P Q . Geometrically, this
follows from the fact that the length of one side of a triangle can be no longer than the
sum of the lengths of the other two sides.

(b) Suppose that 0,0, ,0=P  . Then the radicand in Equation (2.6) evaluates to
zero, so 0=P . Conversely, if we assume 0=P , then each component of P
must be zero, since otherwise the sum in Equation (2.6) would be a positive
number.

(c) Evaluating Equation (2.6), we have the following.

2 2

1

2 2

1

2

1

n

i
i

n

i
i

n

i
i

a a P

a P

a P

a

=

=

=

=

=

=

=







P

P (2.8)

(d) This is known as the triangle inequality since a geometric proof can be given
if we treat P and Q as two sides of a triangle. As shown in Figure 2.1, +P Q
forms the third side of the triangle, which cannot have a length greater than
the sum of the other two sides. 

 We will be able to give an algebraic proof of the triangle inequality after in-
troducing the dot product in the next section.

2.2 The Dot Product 15

2.2 The Dot Product

The dot product of two vectors, also known as the scalar product or inner prod-
uct, is one of the most heavily used operations in 3D graphics because it supplies
a measure of the difference between the directions in which the two vectors
point.

Definition 2.3. The dot product of two n-dimensional vectors P and Q, written
as ⋅P Q, is the scalar quantity given by the formula

1

n

i i
i

PQ
=

⋅ =P Q . (2.9)

This definition states that the dot product of two vectors is given by the sum of
the products of each component. In three dimensions, we have

 x x y y z zP Q P Q P Q⋅ = + +P Q . (2.10)

The dot product ⋅P Q may also be expressed as the matrix product

 []

1

2T
1 2 n

n

Q
Q

P P P

Q

 
 
 =
 
 
 

P Q 


, (2.11)

which yields a 1 1× matrix (i.e., a scalar) whose single entry is equal to the sum in
Equation (2.9).
 Now for an important theorem that reveals the ubiquitous utility of the dot
product.

Theorem 2.4. Given two n-dimensional vectors P and Q, the dot product ⋅P Q
satisfies the equation

 cosα⋅ =P Q P Q , (2.12)

where α is the planar angle between the lines connecting the origin to the points
represented by P and Q.

16 2. Vectors

P

Q

P − Q

α

Figure 2.2. The dot product is related to the angle between two vectors by the equation

cosα⋅ =P Q P Q .

Proof. Let α be the angle between the vectors P and Q, as shown in Figure 2.2.
By the law of cosines (see Appendix B, Section B.6), we know

 2 2 2 2 cosα− = + −P Q P Q P Q . (2.13)

This expands to

 () 2 2 2

1 1 1
2 cos

n n n

i i i i
i i i

P Q P Q α
= = =

− = + −   P Q . (2.14)

All the 2
iP and 2

iQ terms cancel, and we are left with

1

2 2 cos
n

i i
i

PQ α
=

− = − P Q . (2.15)

Dividing both sides by 2− gives us the desired result. 

 A couple of important facts follow immediately from Theorem 2.4. The first
is that two vectors P and Q are perpendicular if and only if 0⋅ =P Q . This follows
from the fact that the cosine function is zero at an angle of 90 degrees. Vectors
whose dot product yields zero are called orthogonal. We define the zero vector,

0,0, ,0≡0  , to be orthogonal to every vector P, since ⋅0 P always equals zero.

2.2 The Dot Product 17

P

Q

QQ

Q

Q

Q

0⋅ >P Q

0⋅ <P Q
Figure 2.3. The sign of the dot product tells us whether two vectors lie on the same side
or on opposite sides of a plane.

 The second fact is that the sign of the dot product tells us how close two vec-
tors are to pointing in the same direction. Referring to Figure 2.3, we can consid-
er the plane passing through the origin and perpendicular to a vector P. Any vec-
tor lying on the same side of the plane as P yields a positive dot product with P,
and any vector lying on the opposite side of the plane from P yields a negative
dot product with P.
 Several additional properties of the dot product are presented by the follow-
ing theorem.

Theorem 2.5. Given any scalar a and any three vectors P, Q, and R, the fol-
lowing properties hold.

 (a) ⋅ = ⋅P Q Q P
 (b) () ()a a⋅ = ⋅P Q P Q
 (c) ()⋅ + = ⋅ + ⋅P Q R P Q P R
 (d) 2⋅ =P P P
 (e) ⋅ ≤P Q P Q

Proof. Parts (a), (b), and (c) are easily verified using the associative and commu-
tative properties of the real numbers. Part (d) follows directly from the definition
of P given in Equation (2.6) and the definition of the dot product given in Equa-
tion (2.9). Part (e) is implied by Theorem 2.4 since cos 1α ≤ . 

18 2. Vectors

 We use the notation 2P when we take the dot product of a vector P with it-
self. Thus, by part (d) of Theorem 2.5, we can say that ⋅P P, 2P , and 2P all have
identical meanings. We use italics instead of boldface in the expression 2P be-
cause it is a scalar quantity.
 Part (e) of Theorem 2.5 is known as the Cauchy-Schwarz inequality and
gives us a tool that we can use to provide the following algebraic proof of the
triangle inequality.

Proof of Theorem 2.2(d). (Triangle Inequality) Beginning with 2+P Q , we can
calculate

()

()

2

2 2

2 2

2

()

2
2

,

+ = + ⋅ +

= + + ⋅
≤ + +

= +

P Q P Q P Q

P Q P Q

P Q P Q

P Q (2.16)

where Theorem 2.5(e) has been used to attain the inequality. Taking square roots,
we arrive at the desired result. 

 The situation often arises in which we need to decompose a vector P into
components that are parallel and perpendicular to another vector Q. As shown in
Figure 2.4, if we think of the vector P as the hypotenuse of a right triangle, then
the perpendicular projection of P onto the vector Q produces the side adjacent to
the angle α between P and Q.
 Basic trigonometry tells us that the length of the side adjacent to α is given
by cosαP . Theorem 2.4 gives us a way to calculate the same quantity without
knowing the angle α:

 cosα ⋅= P Q
P

Q
. (2.17)

To obtain a vector that has this length and is parallel to Q, we simply multiply by
the unit vector Q Q . We now have the following formula for the projection of P
onto Q, which we denote by projQ P.

 2proj ⋅=Q
P Q

P Q
Q

 (2.18)

2.3 The Cross Product 19

P

Q
α

⋅P Q
Q

Figure 2.4. The length of the projection of the vector P onto the vector Q is given by
⋅P Q Q because cosα⋅ =P Q P Q .

The perpendicular component of P with respect to Q, denoted by perpQ P, is
simply the vector left over when we subtract away the parallel component given
by Equation (2.18) from the original vector P:

 2

perp proj= −
⋅= −

Q QP P P

P Q
P Q

Q
. (2.19)

 The projection of P onto Q is a linear transformation of P and can thus be
expressed as a matrix-vector product. In three dimensions, projQ P can be com-
puted using the alternative formula

2

2
2

2

1proj
x x y x z x

x y y y z y

x z y z z z

Q Q Q Q Q P
Q Q Q Q Q P
Q Q Q Q Q P

   
   =    
      

Q P
Q

. (2.20)

2.3 The Cross Product

The cross product of two three-dimensional vectors, also known as the vector
product, returns a new vector that is perpendicular to both of the vectors being
multiplied together. This property has many uses in computer graphics, one of

20 2. Vectors

which is a method for calculating a surface normal at a particular point given two
distinct tangent vectors.

Definition 2.6. The cross product of two 3D vectors P and Q, written as ×P Q,
is a vector quantity given by the formula

 , ,y z z y z x x z x y y xP Q P Q P Q P Q P Q P Q× = − − −P Q . (2.21)

A commonly used tool for remembering this formula is to calculate cross prod-
ucts by evaluating the pseudodeterminant

 x y z

x y z

P P P
Q Q Q

× =
i j k

P Q , (2.22)

where i, j, and k are unit vectors parallel to the x, y, and z axes:

1,0,0
0,1,0
0,0,1

=
=
=

i

j

k . (2.23)

We call the right side of Equation (2.22) a pseudodeterminant because the top
row of the matrix consists of vectors, whereas the remaining entries are scalars.
Nevertheless, the usual method for evaluating a determinant does produce the
correct value for the cross product, as shown below.

 () () ()x y z y z z y x z z x x y y x

x y z

P P P P Q P Q P Q P Q P Q P Q
Q Q Q

= − − − + −
i j k

i j k (2.24)

The cross product ×P Q can also be expressed as a linear transformation derived
from P that operates on Q as follows.

0

0
0

z y x

z x y

y x z

P P Q
P P Q
P P Q

−   
   × = −   
   −   

P Q (2.25)

2.3 The Cross Product 21

 As mentioned previously, the cross product ×P Q produces a vector that is
perpendicular to both of the vectors P and Q. This fact is summarized by the fol-
lowing theorem.

Theorem 2.7. Let P and Q be any two 3D vectors. Then () 0× ⋅ =P Q P and
() 0× ⋅ =P Q Q .

Proof. Applying the definitions of the cross product and the dot product, we have
the following for ()× ⋅P Q P:

() , ,

0.

y z z y z x x z x y y x

x y z x z y y z x x y z x z y y z x

P Q P Q P Q P Q P Q P Q
P P Q P P Q P P Q P P Q P P Q P P Q

× ⋅ = − − − ⋅
= − + − + −
=

P Q P P

 (2.26)

The fact that () 0× ⋅ =P Q Q is proven in a similar manner. 

The same result arises when we consider the fact that given any three 3D vectors
P, Q, and R, the expression ()× ⋅P Q R may be evaluated by calculating the
determinant

 ()
x y z

x y z

x y z

P P P
Q Q Q
R R R

× ⋅ =P Q R . (2.27)

If any one of the vectors P, Q, or R can be expressed as a linear combination of
the other two vectors, then this determinant evaluates to zero. This includes the
cases in which =R P or =R Q.
 Like the dot product, the cross product has trigonometric significance.

Theorem 2.8. Given two 3D vectors P and Q, the cross product ×P Q satisfies
the equation

 sinα× =P Q P Q , (2.28)

where α is the planar angle between the lines connecting the origin to the points
represented by P and Q.

22 2. Vectors

Proof. Squaring ×P Q , we have

() () ()
() () ()

2 2

2 2 2

2 2 2 2 2 2 2 2 2

, ,

2 2 2 .

y z z y z x x z x y y x

y z z y z x x z x y y x

y z x x z y x y z

x x y y x x z z y y z z

P Q P Q P Q P Q P Q P Q

P Q P Q P Q P Q P Q P Q

P P Q P P Q P P Q
P Q P Q P Q P Q P Q P Q

× = − − −

= − + − + −

= + + + + +

− − −

P Q

 (2.29)

By adding and subtracting 2 2 2 2 2 2
x x y y z zP Q P Q P Q+ + on the right side of this equa-

tion, we can write

()()
()

()

2 2 2 2 2 2 2

2

2 2 2 .

x y z x y z

x x y y z z

P P P Q Q Q

P Q P Q P Q

× = + + + +

− + +

= − ⋅

P Q

P Q P Q (2.30)

Replacing the dot product with the right side of Equation (2.12), we have

()
2 2 2 2 2 2

2 2 2

2 2 2

cos

1 cos

sin .

α
α

α

× = −

= −

=

P Q P Q P Q

P Q

P Q (2.31)

Taking square roots proves the theorem. 

 As shown in Figure 2.5, Theorem 2.8 demonstrates that the magnitude of the
cross product ×P Q is equal to the area of the parallelogram whose sides are
formed by the vectors P and Q. As a consequence, the area A of an arbitrary tri-
angle whose vertices are given by the points 1V , 2V , and 3V can be calculated us-
ing the formula

 () ()2 1 3 1
1
2

A = − × −V V V V . (2.32)

 We know that any nonzero result of the cross product must be perpendicular
to the two vectors being multiplied together, but there are two possible directions
that satisfy this requirement. It turns out that the cross product follows a pattern
called the right hand rule. As shown in Figure 2.6, if the fingers of the right hand

2.3 The Cross Product 23

P

Q
α

sinαP

Figure 2.5. This parallelogram has base width Q and height sinαP . The product of
these two lengths is equal to ×P Q and gives the area of the parallelogram.

P

Q

×P Q

Q

P

×P Q
Figure 2.6. The right hand rule provides a way for determining in which direction the
cross product points. When the vectors P and Q are interchanged, their cross product is
negated.

are aligned with a vector P, and the palm is facing in the direction of a vector Q,
then the thumb points along the direction of the cross product ×P Q.
 The unit vectors i, j, and k, which point in the directions of the positive x, y,
and z axes, respectively, behave as follows. If we order the axes in a circular
fashion so that i precedes j, j precedes k, and k precedes i, then the cross product
of two of these vectors in order yields the third vector as follows.

× =
× =
× =

i j k

j k i

k i j

 (2.33)

24 2. Vectors

The cross product of two of the vectors in reverse order yields the negation of
the third vector as follows.

× = −
× = −

× = −

j i k

k j i

i k j

 (2.34)

 Several additional properties of the cross product are presented by the fol-
lowing theorem.

Theorem 2.9. Given any two scalars a and b, and any three 3D vectors P, Q,
and R, the following properties hold.

 (a) ()× = − ×Q P P Q
 (b) () ()a a× = ×P Q P Q
 (c) ()× + = × + ×P Q R P Q P R
 (d) 0,0,0× = =P P 0
 (e) () () ()× ⋅ = × ⋅ = × ⋅P Q R R P Q Q R P
 (f) () ()2P× × = × × = − ⋅P Q P P Q P Q P Q P

Proof. Parts (a) through (d) follow immediately from the definition of the cross
product and the associative and commutative properties of the real numbers. Part
(e) can be directly verified using Equation (2.27). For part (f), we first observe
that

()
[]

()
()

.

× × = × − ×
= − − × ×
= × ×

P Q P P P Q

P Q P

P Q P (2.35)

Direct computation of the x component gives us

() ()
() ()
() ()2 2

, ,

,

x y z z y z x x z x y y x x

z x x z z x y y x y

y z x y y z z x

P Q P Q P Q P Q P Q P Q
P Q P Q P P Q P Q P

P P Q P Q P Q P

× × = − − − ×
= − − −

= + − +

P Q P P

 (2.36)

which isn’t quite what we need, but we can add and subtract a 2
x xP Q term to

achieve our desired result, as follows:

2.3 The Cross Product 25

() ()
() ()
() ()

()

2 2

2 2 2 2

2 2 2

2 .

y z x y y z z x

y z x x x y y z z x x x

x y z x x x y y z z x

x x

P P Q P Q P Q P

P P Q P Q P Q P Q P P Q

P P P Q P Q P Q P Q P

P Q P

+ − +

= + + − + −

= + + − + +

= − ⋅P Q (2.37)

The y and z components can be checked in a similar manner. 

 By part (a) of Theorem 2.9, the cross product is not a commutative operation.
Because reversing the order of the vectors has the effect of negating the product,
the cross product is labeled anticommutative. Additionally, it is worth noting that
the cross product is not an associative operation. That is, given any three 3D vec-
tors P, Q, and R, it may be true that () ()× × ≠ × ×P Q R P Q R . As an example, let

1,1,0=P , 0,1,1=Q , and 1,0,1=R . First calculating ()× ×P Q R, we have

 ()

1 1 0 1, 1,1
0 1 1

1 1 1 1,0,1
1 0 1

× = = −

× × = − = −

i j k

P Q

i j k

P Q R . (2.38)

Now calculating ()× ×P Q R , we have

 ()

0 1 1 1,1, 1
1 0 1

1 1 0 1,1,0
1 1 1

× = = −

× × = = −
−

i j k

Q R

i j k

P Q R , (2.39)

which yields a different result.

26 2. Vectors

2.4 Vector Spaces

The vectors we have dealt with so far belong to sets called vector spaces. An ex-
amination of vector spaces allows us to introduce concepts that are important for
our study of matrices in Chapter 3.

Definition 2.10. A vector space is a set V, whose elements are called vectors,
for which addition and scalar multiplication are defined, and the following
properties hold.

 (a) V is closed under addition. That is, for any elements P and Q in V, the
 sum +P Q is an element of V.
 (b) V is closed under scalar multiplication. That is, for any real number a
 and any element P in V, the product aP is an element of V.
 (c) There exists an element in V called 0 such that for any element P in V,
 + = + =P 0 0 P P.
 (d) For every element P in V, there exists an element Q in V such that
 + =P Q 0.
 (e) Addition is associative. That is, for any elements P, Q, and R in V,
 () ()+ + = + +P Q R P Q R .
 (f) Scalar multiplication is associative. That is, for any real numbers a and
 b, and any element P in V, () ()ab a b=P P .
 (g) Scalar multiplication distributes over vector addition. That is, for any
 real number a, and any elements P and Q in V, ()a a a+ = +P Q P Q.
 (h) Addition of scalars distributes over scalar multiplication. That is, for
 any real numbers a and b, and any element P in V, ()a b a b+ = +P P P.

 Many of the properties required of vector spaces are mentioned in Section
2.1 and are easily shown to be satisfied for vectors having the form of n-tuples of
real numbers. We denote the vector space consisting of all such n-tuples by n .
For instance, the vector space consisting of all 3D vectors is denoted by 3 .
 Every vector space can be generated by linear combinations of a subset of
vectors called a basis for the vector space. Before we can define exactly what a
basis is, we need to know what it means for a set of vectors to be linearly
independent.

2.4 Vector Spaces 27

Definition 2.11. A set of n vectors { }1 2, , , ne e e is linearly independent if
there do not exist real numbers 1 2, , , na a a , where at least one of the ia is not
zero, such that

 1 1 2 2 n na a a+ + + =e e e 0 . (2.40)

Otherwise, the set { }1 2, , , ne e e is called linearly dependent.

 An n-dimensional vector space is one that can be generated by a set of n line-
arly independent vectors. Such a generating set is called a basis, whose formal
definition follows.

Definition 2.12. A basis  for a vector space V is a set of n linearly independ-
ent vectors { }1 2, , , n= e e e for which, given any element P in V, there exist
real numbers 1 2, , , na a a such that

 1 1 2 2 n na a a= + + +P e e e . (2.41)

Every basis of an n-dimensional vector space has exactly n vectors in it. For in-
stance, it is impossible to find a set of four linearly independent vectors in 3 ,
and a set of two linearly independent vectors is insufficient to generate the entire
vector space.
 There are an infinite number of choices for a basis of any of the vector spaces

n . We assign special terms to those that have certain properties.

Definition 2.13. A basis { }1 2, , , n= e e e for a vector space is called orthog-
onal if for every pair (),i j with i j≠ , we have 0i j⋅ =e e .

The fact that the dot product between two vectors is zero actually implies that the
vectors are linearly independent, as the following theorem demonstrates.

Theorem 2.14. Given two nonzero vectors 1e and 2e , if 1 2 0⋅ =e e , then 1e and
2e are linearly independent.

Proof. We suppose that 1e and 2e are not linearly independent and arrive at a con-
tradiction. If 1e and 2e are linearly dependent, then there exist scalars 1a and 2a

28 2. Vectors

such that 1 1 2 2a a+ =e e 0. Note that 2a cannot be zero since it would require that 1a
also be zero. Thus, we can write ()2 1 2 1a a= −e e . But then () 2

1 2 1 2 1a a e⋅ = −e e
0≠ , a contradiction. 

This theorem shows that if we can find any n orthogonal vectors in a vector space
V, then they form a basis for V.
 A more specific term is given to a basis whose elements all have unit length.
For convenience, we introduce the Kronecker delta symbol ijδ , which is defined
as

1, if ;
0, if .ij

i j
δ

i j
=≡  ≠

 (2.42)

Definition 2.15. A basis { }1 2, , , n= e e e for a vector space is called ortho-
normal if for every pair (),i j we have i j ijδ⋅ =e e .

The set { }, ,i j k is obviously an orthonormal basis for 3 . A slightly less trivial
example of an orthonormal basis for 3 is given by the three vectors 2 2

2 2, ,0 ,
2 2

2 2, ,0− , and 0,0,1 .
 There is a simple method by which a linearly independent set of n vectors
can be transformed into an orthogonal basis for n . The basic idea is to subtract
away the projection of each vector onto the vectors preceding it in the set. What-
ever vector is left over must then be orthogonal to its predecessors. The exact
procedure is as follows.

Algorithm 2.16. Gram-Schmidt Orthogonalization. Given a set of n linearly
independent vectors { }1 2, , , n= e e e , this algorithm produces a set ′ =
{ }1 2, , , n′ ′ ′e e e such that 0i j′ ′⋅ =e e whenever i j≠ .

 A. Set 1 1′ =e e .
 B. Begin with the index 2i = .
 C. Subtract the projection of ie onto the vectors 1 2 1, , , i−′ ′ ′e e e from ie and

store the result in i′e . That is,

1

2
1

i
i k

i i k
kk

−

=

′⋅′ ′= −
′ e e

e e e
e

. (2.43)

 D. If i n< , increment i and loop to step C.

Chapter 2 Summary 29

Chapter 2 Summary

Dot Products

The dot product between two n-dimensional vectors P and Q is a scalar defined
by

 1 1 2 2
1

n

i i n n
i

PQ PQ P Q P Q
=

⋅ = = + + +P Q  .

The dot product is related to the angle α between the vectors P and Q by the for-
mula

 cosα⋅ =P Q P Q .

Vector Projections

The projection of a vector P onto a vector Q is given by

 2proj ⋅=Q
P Q

P Q
Q

,

and the component of P that is perpendicular to Q is given by

 2

perp proj= −
⋅= −

Q QP P P

P Q
P Q

Q
.

Cross Products

The cross product between two 3D vectors P and Q is a 3D vector defined by

 , ,y z z y z x x z x y y xP Q P Q P Q P Q P Q P Q× = − − −P Q .

This can also be written as the matrix-vector product

0

0
0

z y x

z x y

y x z

P P Q
P P Q
P P Q

−   
   × = −   
   −   

P Q .

The magnitude of the cross product is related to the angle α between the vectors
P and Q by the formula

30 2. Vectors

 sinα× =P Q P Q .

Gram-Schmidt Orthogonalization

A basis { }1 2, , , n= e e e for an n-dimensional vector space can be orthogo-
nalized by constructing a new set of vectors { }1 2, , , n′ ′ ′ ′= e e e using the formula

1

2
1

i
i k

i i k
kk

−

=

′⋅′ ′= −
′ e e

e e e
e

.

Exercises for Chapter 2

1. Let 2,2,1=P and 1, 2,0= −Q . Calculate the following.

(a) ⋅P Q

(b) ×P Q

(c) projP Q

2. Orthogonalize the following set of vectors.

2 2
1 2 2

2

3

, ,0

1,1, 1
0, 2, 2

=

= − −
= − −

e

e

e

3. Calculate the area of the triangle whose vertices lie at the points 1,2,3 ,
2,2,4− , and 7, 8,6− .

4. Show that () 2 2 2 2V W⋅ + × =V W V W for any two vectors V and W.

5. Prove that for any three 3D vectors P, Q, and R,

 () ()× × = ⋅ − ⋅P Q R P R Q Q R P.

6. Prove that for any two vectors P and Q,

 − ≥ −P Q P Q ,

and show that this implies the extended triangle inequality,

 − ≤ + ≤ +P Q P Q P Q .

 31

Chapter 3

Matrices

In a 3D graphics engine, calculations can be performed in a multitude of different
Cartesian coordinate spaces. Moving from one coordinate space to another re-
quires the use of transformation matrices. We casually referred to matrices at var-
ious places in Chapter 2; and in this chapter, we acknowledge the importance of
matrices in 3D graphics programming by presenting a more formal exposition of
their properties. The process of transforming points and direction vectors from
one coordinate space to another is described in Chapter 4.

3.1 Matrix Properties

An n m× matrix M is an array of numbers having n rows and m columns. If
n m= , then we say that the matrix M is square. We write ijM to refer to the entry
of M that resides at the i-th row of the j-th column. As an example, suppose that
F is a 3 4× matrix. Then we could write

11 12 13 14

21 22 23 24

31 32 33 34

F F F F
F F F F
F F F F

 
 =  
  

F . (3.1)

The entries for which i j= are called the main diagonal entries of the matrix. A
square matrix whose only nonzero entries appear on the main diagonal is called a
diagonal matrix.
 The transpose of an n m× matrix M, which we denote by TM , is an m n×
matrix for which the (),i j entry is equal to jiM (i.e., T

ij jiM M=). The transpose of
the matrix F in Equation (3.1) is

32 3. Matrices

11 21 31

12 22 32T

13 23 33

14 24 34

F F F
F F F
F F F
F F F

 
 
 =
 
 
 

F . (3.2)

 As with vectors (which can be thought of as 1n × matrices), scalar multiplica-
tion is defined for matrices. Given a scalar a and an n m× matrix M, the product
aM is given by

11 12 1

21 22 2

1 2

m

m

n n nm

aM aM aM
aM aM aM

a a

aM aM aM

 
 
 = =
 
 
 

M M




   


. (3.3)

Also in a manner similar to vectors, matrices add entrywise. Given two n m× ma-
trices F and G, the sum +F G is given by

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

m m

m m

n n n n nm nm

F G F G F G
F G F G F G

F G F G F G

+ + + 
 + + + + =
 
 + + + 

F G




   


. (3.4)

 Two matrices F and G can be multiplied together, provided that the number
of columns in F is equal to the number of rows in G. If F is an n m× matrix and
G is an m p× matrix, then the product FG is an n p× matrix whose (),i j entry is
given by

 ()
1

m

ij ik kj
k

F G
=

=FG . (3.5)

Another way of looking at this is that the (),i j entry of FG is equal to the dot
product of the i-th row of F and the j-th column of G.
 There is an n n× matrix called the identity matrix, denoted by nI , for which

n n= =MI I M M for any n n× matrix M. The identity matrix has the form

1 0 0
0 1 0

0 0 1

n

 
 
 =
 
 
 

I




   


. (3.6)

3.1 Matrix Properties 33

We usually drop the subscript n and denote the identity matrix simply by I, since
the size of the matrix can be inferred from the context.
 Several additional properties of matrices are given by the two theorems that
follow.

Theorem 3.1. Given any two scalars a and b and any three n m× matrices F,
G, and H, the following properties hold.

 (a) + = +F G G F
 (b) () ()+ + = + +F G H F G H
 (c) () ()a b ab=F F
 (d) ()a a a+ = +F G F G
 (e) ()a b a b+ = +F F F

As with vectors, these properties are easily verified through direct computation
using the associative and commutative properties of the real numbers.

Theorem 3.2. Given any scalar a, an n m× matrix F, an m p× matrix G, and a
p q× matrix H, the following properties hold.

 (a) () ()a a=F G FG
 (b) () ()=FG H F GH
 (c) () T T T=FG G F

Proof.

(a) Using the definition for matrix multiplication given by Equation (3.5), the
(),i j entry of ()aF G is

()[] ()

()

()

1

1

1

.

m

ij ik kj
k
m

ik kj
k

m

ik kj
k

ij

a a G

a F G

a F G

a

=

=

=

=

=

=

=







F G F

FG (3.7)

34 3. Matrices

(b) Again using Equation (3.5), the (),i j entry of ()FG H is

()[] ()

()

()[]

1

1 1

1 1

1

.

p

ij ik kj
k

p m

il lk kj
k l

pm

il lk kj
l k

m

il lj
l

ij

H

F G H

F G H

F

=

= =

= =

=

=

 =  
 

 =  
 

=

=



 

 



FG H FG

GH

F GH (3.8)

(c) Applying Equation (3.5), and reversing the indexes whenever a transpose
operation is added or removed, we have for the (),i j entry of () TFG

() ()

()

T

1

T T

1
T T

ij ji

m

jk ki
k
m

kj ik
k

ij

F G

F G

=

=

=

=

=

=





FG FG

G F .  (3.9)

3.2 Linear Systems

Matrices provide a compact and convenient way to represent systems of linear
equations. For instance, the linear system given by the equations

3 2 3 13
4 3 6 7

5

x y z
x y z

x z

+ − = −
− + =

− = − (3.10)

can be represented in matrix form as

3 2 3 13
4 3 6 7
1 0 1 5

x
y
z

− −     
     − =     

− −          

. (3.11)

3.2 Linear Systems 35

The matrix preceding the vector , ,x y z of unknowns is called the coefficient
matrix, and the column vector on the right side of the equals sign is called the
constant vector. Linear systems for which the constant vector is nonzero (like the
example above) are called nonhomogeneous. Linear systems for which every en-
try of the constant vector is zero are called homogeneous.
 Finding solutions to a system of linear equations can be achieved by per-
forming elementary row operations on the matrix formed by concatenating the
coefficient matrix and the constant vector.

Definition 3.3. An elementary row operation is one of the following three op-
erations that can be performed on a matrix.

 (a) Exchange two rows.
 (b) Multiply a row by a nonzero scalar.
 (c) Add a multiple of one row to another row.

For the example given by Equation (3.11), the augmented matrix formed by con-
catenating the coefficient matrix and constant vector is

3 2 3 13
4 3 6 7
1 0 1 5

− − 
 − 

− −  

. (3.12)

 Elementary row operations modify the augmented matrix representation of a
linear system in such a way that the solution to the system is not affected, but it
becomes much easier to calculate. When solving a linear system using elemen-
tary row operations, our goal is to transform the coefficient matrix into its re-
duced form, defined as follows.

Definition 3.4. A matrix is in reduced form if and only if it satisfies the follow-
ing conditions.

 (a) For every nonzero row, the leftmost nonzero entry, called the leading
 entry, is 1.
 (b) Every nonzero row precedes every row of zeros. That is, all rows of
 zeros reside at the bottom of the matrix.

36 3. Matrices

 (c) If a row’s leading entry resides in column j, then no other row has a
 nonzero entry in column j.
 (d) For every pair of nonzero rows 1i and 2i such that 2 1i i> , the columns 1j
 and 2j containing those rows’ leading entries must satisfy 2 1j j> .

This definition tells us that the leading entries of a matrix in reduced form move
to the right as we move downward through its rows. Furthermore, any column
containing a leading entry of a row has a 1 at that location and zeros everywhere
else.

Example 3.5. The following matrix is in reduced form.

1 0 3 0
0 1 2 0
0 0 0 1
0 0 0 0

− 
 
 
 
 
 

 (3.13)

However, the matrix

1 0 0 3
0 0 1 0
0 2 0 0
0 0 0 1

 
 
 
 
 
 

 (3.14)

is not in reduced form because the leading entry of the third row does not fall to
the right of the leading entry of the second row. Furthermore, the fourth col-
umn, which contains the leading entry of the fourth row, is not zero everywhere
else. 

 Algorithm 3.6 describes which elementary row operations to apply to the
augmented matrix representation of a linear system in order to transform its coef-
ficient matrix into its reduced form.

Algorithm 3.6. This algorithm transforms an ()1n n× + augmented matrix M
representing a linear system into its reduced form. At each step, M refers to the
current state of the matrix, not the original state.

3.2 Linear Systems 37

 A. Set the row i equal to 1.
 B. Set the column j equal to 1. We will loop through columns 1 to n.
 C. Find the row k with k i≥ for which kjM has the largest absolute value. If
 no such row exists for which 0kjM ≠ , then skip to step H.
 D. If k i≠ , then exchange rows k and i using elementary row operation (a)
 under Definition 3.3.
 E. Multiply row i by 1 ijM . This sets the (),i j entry of M to 1 using ele-
 mentary row operation (b).
 F. For each row r, where 1 r n≤ ≤ and r i≠ , add rjM− times row i to row r.
 This step clears each entry above and below row i in column j to 0 using
 elementary row operation (c).
 G. Increment i.
 H. If j n< , increment j and loop to step C.

 The procedure performed by steps C and D is known as pivoting. In addition
to its ability to remove zeros from the main diagonal, pivoting is absolutely es-
sential for numerical stability. The following example demonstrates the applica-
tion of Algorithm 3.6 to the nonhomogeneous linear system given by Equation
(3.11). After the augmented coefficient matrix is reduced, the solution to the sys-
tem becomes obvious.

Example 3.7. Solve the nonhomogeneous linear system

3 2 3 13
4 3 6 7
1 0 1 5

x
y
z

− −     
     − =     

− −          

. (3.15)

Solution. We first form the augmented matrix

3 2 3 13
4 3 6 7
1 0 1 5

− − 
 − 

− −  

. (3.16)

We must now pivot (using steps C and D) so that the row containing the largest
entry in the first column appears in the first row. We therefore exchange the first
two rows. To produce a leading entry of 1, we then multiply the first row by 1

4 , as
follows.

38 3. Matrices

 1
4

3 3 7
4 2 4

Exchange rows 1 and 2
Multiply new row 1 by

1
3 2 3 13
1 0 1 5

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.17)

Applying step F of Algorithm 3.6, we now eliminate the other nonzero entries in
the first column.

3 3 7
4 2 4

Add 3 row 1 to row 2 17 15 73
4 2 4Add 1 row 1 to row 3
3 5 27
4 2 4

1
0
0

− ×
− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.18)

Moving to the second row, we multiply by 4
17 to obtain a leading entry of 1.

4

17

3 3 7
4 2 4

Multiply row 2 by 30 73
17 17

3 5 27
4 2 4

1
0 1
0

− 
 ⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.19)

Again applying step F, we eliminate the other nonzero entries in the second col-
umn.

3
4
3
4

3 25
17 17

Add row 2 to row 1 30 73
17 17Add row 2 to row 3
20 60
17 17

1 0
0 1
0 0

×
− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
 − − 

 (3.20)

Finally, we apply the same steps to the third row, as follows.

17
20

3
17

30
17

3 25
17 17

Multiply row 3 by 30 73
17 17

Add row 3 to row 1
Add row 3 to row 2

1 0
0 1
0 0 1 3

1 0 0 2
0 1 0 1
0 0 1 3

−

− ×
×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − − 
  

− 
 ⎯⎯⎯⎯⎯⎯⎯→  
  

 (3.21)

The coefficient matrix has now been completely transformed into its reduced
form. The reduced augmented matrix represents the equation

3.2 Linear Systems 39

1 0 0 2
0 1 0 1
0 0 1 3

x
y
z

−     
     =     
          

, (3.22)

from which the solution to the original system is immediate:

2
1
3.

x
y
z

= −
=
=  (3.23)

 In the previous example, we found that the reduced form of the coefficient
matrix was equal to the identity matrix. In such a case, the corresponding linear
system has exactly one solution. When the reduced coefficient matrix has one or
more rows of zeros, however, the corresponding system may have no solution at
all, or may have infinitely many solutions. If the entry in the constant vector cor-
responding to a row of zeros in the coefficient matrix is not zero, then the system
has no solution because that row equates zero to a nonzero number. In the re-
maining case that the entry in the constant vector is zero, there are infinitely
many solutions to the linear system that must be expressed in terms of arbitrary
constants. The number of arbitrary constants is equal to the number of rows of
zeros, and arbitrary constants are assigned to variables corresponding to columns
of the reduced coefficient matrix that do not contain a leading entry.

Example 3.8. Solve the following homogeneous linear system.

2 3 0
0

3 0

x y z
y z

x y z

+ + =
− =

+ − = (3.24)

Solution. The augmented matrix representation of this system is given by

2 1 3 0
0 1 1 0
1 3 1 0

 
 − 

−  

. (3.25)

Using Algorithm 3.6 to calculate the reduced form gives us the matrix

40 3. Matrices

1 0 2 0
0 1 1 0
0 0 0 0

 
 − 
  

. (3.26)

Since this matrix has a row of zeros, we can assign an arbitrary value to the vari-
able corresponding to the third column since it does not contain a leading entry;
in this case we set z a= . The first two rows then represent the equations

2 0

0
x a

y a
+ =

− = , (3.27)

so the solution to the system can be written as

2

1
1

x
y a
z

−   
   =   
      

.  (3.28)

 Homogeneous linear systems always have at least one solution—the zero
vector. Nontrivial solutions exist only when the reduced form of the coefficient
matrix possesses at least one row of zeros.

3.3 Matrix Inverses

An n n× matrix M is invertible if there exists a matrix, which we denote by 1−M ,
such that 1 1− −= =MM M M I. The matrix 1−M is called the inverse of M. Not
every matrix has an inverse, and those that do not are called singular. An exam-
ple of a singular matrix is any one that has a row or column consisting of all
zeros.

Theorem 3.9. A matrix possessing a row or column consisting entirely of zeros
is not invertible.

Proof. Suppose every entry in row r of an n n× matrix F is 0. For any n n× ma-
trix G, the (),r r entry of the product FG is given by 1Σ n

k rk krF G= . Since each of
the rkF is 0, the (),r r entry of FG is 0. Since the inverse of F would need to pro-
duce a 1 in the (),r r entry, F cannot have an inverse. A similar argument proves
the theorem for a matrix possessing a column of zeros. 

3.3 Matrix Inverses 41

 Using this theorem, we will be able to show later in this section that any ma-
trix possessing a row that is a linear combination of the other rows of the matrix
is singular. The same is true for the columns of a matrix due to the following fact.

Theorem 3.10. A matrix M is invertible if and only if TM is invertible.

Proof. Assume M is invertible. Then 1−M exists, so we can write

 () ()T 1 T 1 T T− −= = =M M M M I I (3.29)

and

 () ()1 T T 1 T T− −= = =M M MM I I. (3.30)

Therefore, ()1 T−M is the inverse of TM . Similarly, if we assume that TM is in-
vertible, then ()T 1−M exists, so we can write

 () ()T 1 T T 1 T T T− −= = =      M M M M I I (3.31)

and

 () ()T 1 T T T 1 T T− −= = =      M M M M I I. (3.32)

Therefore, ()T 1 T−  M is the inverse of M. 

 Before proceeding to a method for calculating inverses, we make one more
observation.

Theorem 3.11. If F and G are n n× invertible matrices, then the product FG is
invertible, and () 1 1 1− − −=FG G F .

Proof. We can verify this theorem through direct computation using the fact that
matrix multiplication is associative:

 () ()1 1 1 1 1− − − − −= = =G F FG G F F G G G I.  (3.33)

42 3. Matrices

 A method similar to that used to transform a matrix into its reduced form (see
Algorithm 3.6) can also be used to calculate the inverse of a matrix. To find the
inverse of an n n× matrix M, we first construct an 2n n× matrix M by concatenat-
ing the identity matrix to the right of M, as shown below.

11 12 1

21 22 2

1 2

1 0 0
0 1 0

0 0 1

n

n

n n nn

M M M
M M M

M M M

 
 
 =
 
 
 

M

 
 

       
 

 (3.34)

Performing elementary row operations on the entire matrix M until the left side
n n× matrix becomes the identity matrix nI yields the inverse of M in the right
side n n× matrix. This process is known as Gauss-Jordan elimination and is illus-
trated in Algorithm 3.12.

Algorithm 3.12. Gauss-Jordan Elimination. This algorithm calculates the in-
verse of an n n× matrix M.

 A. Construct the augmented matrix M given in Equation (3.34). Through-
 out this algorithm, M refers to the current state of the augmented ma-
 trix, not the original state.
 B. Set the column j equal to 1. We will loop through columns 1 to n.
 C. Find the row i with i j≥ such that ijM has the largest absolute value. If
 no such row exists for which 0ijM ≠ , then M is not invertible.
 D. If i j≠ , then exchange rows i and j using elementary row operation (a)
 under Definition 3.3. This is the pivot operation necessary to remove
 zeros from the main diagonal and to provide numerical stability.
 E. Multiply row j by 1 jjM . This sets the (),j j entry of M to 1 using ele-
 mentary row operation (b).
 F. For each row r where 1 r n≤ ≤ and r j≠ , add rjM−  times row j to row r.
 This step clears each entry above and below row j in column j to 0 using
 elementary row operation (c).
 G. If j n< , increment j and loop to step C.

 The implementation of Algorithm 3.12 is straightforward and has the benefit
that it can determine whether a matrix is invertible. The following example
demonstrates the inner workings of the algorithm.

3.3 Matrix Inverses 43

Example 3.13. Calculate the inverse of the 3 3× matrix M given by

2 3 8
6 0 3
1 3 2

 
 = − 
−  

M . (3.35)

Solution. Concatenating the identity matrix to M, we have

2 3 8 1 0 0
6 0 3 0 1 0
1 3 2 0 0 1

 
 = − 
−  

M . (3.36)

We now apply steps C through F of the algorithm for 1j = .

1
6

1 1
2 6

Exchange rows 1 and 2
Multiply new row 1 by

1 1
2 6

Add 2 row 1 to row 2 1
3Add row 1 to row 3

3 1
2 6

1 0 0 0
2 3 8 1 0 0
1 3 2 0 0 1

1 0 0 0
0 3 9 1 0
0 3 0 1

− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→  
 − 

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
  

 (3.37)

Applying the same steps for 2j = gives us the following.

1
3

1 1
2 6

Multiply row 2 by 1 1
3 9

3 1
2 6

1 1
2 6

Add 3 row 2 to row 3 1 1
3 9

15 1
2 2

1 0 0 0
0 1 3 0
0 3 0 1

1 0 0 0
0 1 3 0
0 0 1 1

− ×

− 
 ⎯⎯⎯⎯⎯⎯→ − 
  

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
 − − 

 (3.38)

Finally, we apply the algorithm for 3j = .

2
15

1 1
2 6

Multiply row 3 by 1 1
3 9
2 1 2

15 15 15

1 0 0 0
0 1 3 0
0 0 1

−

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
 − − 

44 3. Matrices

1
2

1 2 1
15 15 15

Add row 3 to row 1 1 4 2
15 45 5Add 3 row 3 to row 2

2 1 2
15 15 15

1 0 0
0 1 0
0 0 1

×
− ×

− 
 ⎯⎯⎯⎯⎯⎯⎯→ − 
 − − 

 (3.39)

The right side 3 3× matrix is now equal to the inverse of M:

 1

3 6 3
1 3 4 18
45

6 3 6

−

− 
 = − 

− −  

M .  (3.40)

 To understand why Algorithm 3.12 supplies the inverse of a matrix, we need
the following theorem.

Theorem 3.14. Let ′M be the n n× matrix resulting from the performance of an
elementary row operation on the n n× matrix M. Then ′ =M EM, where E is
the n n× matrix resulting from the same elementary row operation performed
on the identity matrix.

Proof. We shall give separate proofs for each of the three elementary row opera-
tions listed in Definition 3.3.

(a) Let E be equal to the identity matrix after rows r and s have been exchanged.
Then the entries of E are given by

, if and ;
, if ;
, if ,

ij

ij sj

rj

δ i r i s
E δ i r

δ i s

≠ ≠
= =
 =

 (3.41)

 where ijδ is the Kronecker delta symbol defined by Equation (2.42). The en-
tries of the product EM are then given by

 ()
1

, if and ;
, if ;
, if .

ijn

ij ik kj sj
k

rj

M i r i s
E M M i r

M i s=

≠ ≠
= = =
 =

EM (3.42)

 Thus, rows r and s of the matrix M have been exchanged.

3.3 Matrix Inverses 45

(b) Let E be equal to the identity matrix after row r has been multiplied by a sca-
lar a. Then the entries of E are given by

, if ;

, if .
ij

ij
ij

δ i r
E

aδ i r
≠=  =

 (3.43)

 The entries of the product EM are then given by

 ()
1

, if ;
, if .

n
ij

ij ik kj
ijk

M i r
E M

aM i r=

≠= =  =
EM (3.44)

 Thus, row r of the matrix M has been multiplied by a.
(c) Let E be equal to the identity matrix after row r has been multiplied by a sca-

lar a and added to row s. Then the entries of E are given by

, if ;

, if .
ij

ij
ij rj

δ i s
E

δ aδ i s
≠=  + =

 (3.45)

 The entries of the product EM are then given by

 ()
1

, if ;
, if .

n
ij

ij ik kj
ij rjk

M i s
E M

M aM i s=

≠= =  + =
EM (3.46)

 Thus, row r of the matrix M has been multiplied by a and added to row s. 

 The matrix E that represents the result of an elementary row operation per-
formed on the identity matrix is called an elementary matrix. If we have to apply
k elementary row operations to transform a matrix M into the identity matrix,
then

 1 1k k −=I E E E M , (3.47)

where the matrices 1 2, , , kE E E are the elementary matrices corresponding to
the same k row operations applied to the identity matrix. This actually shows that
the product 1 1k k −E E E is equal to the inverse of M, and it is exactly what we
get when we apply the k row operations to the identity matrix concatenated to the
matrix M in Equation (3.34).

46 3. Matrices

 If a matrix M is singular, then finding elementary matrices 1 2, , , kE E E that
satisfy Equation (3.47) is impossible. This is true because singular matrices are
exactly those whose rows form a linearly dependent set, as the following theorem
states.

Theorem 3.15. An n n× matrix M is invertible if and only if the rows of M
form a linearly independent set of vectors.

Proof. Let the rows of M be denoted by T T T
1 2, , , nR R R . We prove this theorem

in two parts.

(a) We prove that if M is invertible, then the rows of M form a linearly inde-
pendent set of vectors by proving the contrapositive, which states that if the
rows of M form a linearly dependent set of vectors, then M must be singular.
So assume that the rows of M are linearly dependent. Then there exists a row
r that can be written as a linear combination of k other rows of the matrix as
follows.

 1 2

T T T T
1 2 kr s s k sa a a= + + +R R R R (3.48)

 The values of ia are scalars, and the values of is index k rows in the ma-
trix M other than row r. Let the n n× matrix iE be equal to the elementary
matrix representing the addition of ia times row is to row r. Then we can
write

 1 1k k− ′=M E E E M , (3.49)

 where ′M is equal to M, except that row r has been replaced by all zeros. By
Theorem 3.9, the matrix ′M is singular, and thus M is singular.

(b) Now assume that the rows of M form a linearly independent set of vectors.
We first observe that performing elementary row operations on a matrix does
not alter the property of linear independence within the rows. Running
through Algorithm 3.12, if step C fails, then rows j through n of the matrix at
that point form a linearly dependent set since the number of columns for
which the rows T

jR through T
nR have at least one nonzero entry is less than the

number of rows itself. This is a contradiction, so step C of the algorithm can-
not fail, and M must be invertible. 

3.4 Determinants 47

 This theorem tells us that every singular matrix can be written as a product of
elementary matrices and a matrix that has a row of zeros. With the introduction
of determinants in the next section, this fact allows us to devise a test for
singularity.

3.4 Determinants

The determinant of a square matrix is a scalar quantity derived from the entries of
the matrix. The determinant of a matrix M is denoted by det M. When displaying
the entries of a matrix, we replace the brackets on the left and right of the matrix
with vertical bars to indicate that we are evaluating the determinant. For example,
the determinant of a 3 3× matrix M is written as

11 12 13

21 22 23

31 32 33

det
M M M
M M M
M M M

=M . (3.50)

 The value of the determinant of an n n× matrix is given by a recursive formu-
la. For notational convenience, let the symbol { },i jM denote the () ()1 1n n− × −
matrix whose entries consist of the original entries of M after deleting the i-th
row and the j-th column. For example, suppose that M is the following 3 3×
matrix.

1 2 3
4 5 6
7 8 9

 
 =  
  

M (3.51)

Then { }2,3M is the following 2 2× matrix.

 { }2,3 1 2
7 8
 =   

M (3.52)

The formula for the determinant is recursive and can be expressed in terms of the
following definition.

Definition 3.16. Let M be an n n× matrix. We define the cofactor ()ijC M of the
matrix entry ijM as follows.

 () () { },1 det i ji j

ijC +≡ −M M (3.53)

48 3. Matrices

 Using cofactors, a method for calculating the determinant of an n n× matrix
can be expressed as follows. First, define the determinant of a 1 1× matrix to be
the entry of the matrix itself. Then the determinant of an n n× matrix M is given
by both the formula

 ()
1

det
n

ik ik
i

M C
=

=M M (3.54)

and the formula

 ()
1

det
n

kj kj
j

M C
=

=M M , (3.55)

where k is an arbitrarily chosen constant such that 1 k n≤ ≤ . Remarkably, both
formulas give the same value for the determinant regardless of the choice of k.
The determinant of M is given by the sum along any row or column of products
of entries of M and their cofactors.
 An explicit formula for the determinant of a 2 2× matrix is easy to extract
from Equations (3.54) and (3.55):

a b

ad bc
c d

= − . (3.56)

We also give an explicit formula for the determinant of a 3 3× matrix. The fol-
lowing is written as one would evaluate Equation (3.55) with 1k = .

() ()

()

11 12 13
22 23 21 23 21 22

21 22 23 11 12 13
32 33 31 33 31 32

31 32 33

11 22 33 23 32 12 21 33 23 31

13 21 32 22 31

a a a
a a a a a a

a a a a a a
a a a a a a

a a a
a a a a a a a a a a

a a a a a

= − +

= − − −
+ − (3.57)

 Clearly, the determinant of the identity matrix nI is 1 for any n since choos-
ing 1k = reduces Equation (3.55) to 11 1det detn nI −=I I .
 We can derive some useful information from studying how elementary row
operations (see Definition 3.3) affect the determinant of a matrix. This provides a
way of evaluating determinants that is usually more efficient than direct applica-
tion of Equations (3.54) and (3.55).

3.4 Determinants 49

Theorem 3.17. Performing elementary row operations on a matrix has the fol-
lowing effects on the determinant of that matrix.

 (a) Exchanging two rows negates the determinant.
 (b) Multiplying a row by a scalar a multiplies the determinant by a.
 (c) Adding a multiple of one row to another row has no effect on the
 determinant.

Proof.

(a) We prove this by induction. The operation does not apply to 1 1× matrices,
but for a 2 2× matrix, we can observe the result through direct computation.

 ()
c d a b

cb ad ad cb
a b c d

= − = − − = − (3.58)

 Now, for an n n× matrix, we can assume that the result is true for all ma-
trices up to size () ()1 1n n− × − . Let G represent the result of exchanging
rows r and s of a matrix F. Choosing another row k such that k r≠ and k s≠ ,
evaluation of Equation (3.55) gives us

 () () { },

1 1

det 1 det
n n

k jk j
kj kj kj

j j
G C G+

= =

= = − G G G . (3.59)

 Since { },k jG is an () ()1 1n n− × − matrix, we know by induction that { },det k jG
{ },det k j= − F for each j. Thus, det det= −G F.

(b) Let G represent the result of multiplying row k of a matrix F by the scalar a.
Then evaluation of Equation (3.55) gives us

()

()

1

1

det
n

kj kj
j

n

kj kj
j

G C

aF C

=

=

=

=





G G

F . (3.60)

 Thus, det deta=G F. 

Before we can prove part (c), we need the following corollary to part (a).

50 3. Matrices

Corollary 3.18. The determinant of a matrix having two identical rows is zero.

Proof. Suppose the matrix M has two identical rows. If we exchange these rows,
then no change has been made to the matrix, but the determinant has been negat-
ed. So det det= −M M, and we must therefore have det 0=M . 

Proof of Theorem 3.17(c). Let G represent the result of adding the scalar a times
row r of a matrix F to row k of F. Then evaluating Equation (3.55) gives us

()

() ()

()

1

1

1

det

det

n

kj kj
j

n

kj rj kj
j

n

rj kj
j

G C

F aF C

a F C

=

=

=

=

= +

= +







G G

F

F F . (3.61)

The sum ()1Σ k
j rj kjF C= F is equivalent to the determinant of the matrix F with the

entries in row k replaced by the entries of row r. Since this matrix has two identi-
cal rows, its determinant is zero by Corollary 3.18. Therefore, det det=G F. 

 Since elementary matrices are representative of elementary row operations
performed on the identity matrix, we can deduce their determinants from Theo-
rem 3.17. An elementary matrix that represents an exchange of rows has a deter-
minant of 1− , an elementary matrix that represents a row multiplied by a scalar a
has a determinant of a, and an elementary matrix that represents a multiple of one
row added to another row has a determinant of 1. These are the exact numbers by
which the determinant of any matrix is multiplied when the corresponding ele-
mentary row operations are performed on them. We can therefore conclude that
if E is an n n× elementary matrix, then det det det=EM E M for any n n× matrix
M since multiplication by E performs the elementary row operation on M. This
result leads us to the following two important theorems.

Theorem 3.19. An n n× matrix M is invertible if and only if det 0≠M .

Proof. Suppose that M is invertible. Then M can be written as a product of ele-
mentary matrices, each having a nonzero determinant. Since the determinant of a

3.4 Determinants 51

product of elementary matrices is equal to the product of the determinants of
those matrices, the determinant of M cannot be zero. Now suppose that M is sin-
gular. Then M can be written as a product of elementary matrices and a matrix
having a row of zeros because the rows of M must be linearly dependent. Since
the determinant of a matrix possessing a row of zeros is zero, the determinant of
the product is also zero. 

Theorem 3.20. For any two n n× matrices F and G, det det det=FG F G.

Proof. If either F or G is singular, then FG is singular and the equation holds
since both sides are zero. Otherwise, both F and G can be factored completely
into elementary matrices. Since the determinant of a product of elementary ma-
trices is the product of the determinants, the equation holds. 

 Theorem 3.19 gives us a test for singularity. Once we know that the determi-
nant of an n n× matrix M is not zero, we can use the following formula to calcu-
late the entries of 1−M .

Theorem 3.21. Let F be an n n× matrix and define the entries of an n n× matrix
G using the formula

 ()
det

ji
ij

C
=

F
G

F
, (3.62)

where ()jiC F is the cofactor of ()T

ijF . Then 1−=G F .

Proof. Using the multiplication formula for FG, we have

()

()

()

1

1

1

det
1

det

n

ij ik kj
k
n

jk
ik

k
n

ik jk
k

F G

CF

F C

=

=

=

=

=

=







FG

F

F

F
F

. (3.63)

If i j= , then the summation gives the determinant of F equivalently to Equation
(3.54), so multiplying by 1 det F gives us () 1ij =FG . If i j≠ , then the summation

52 3. Matrices

gives the determinant of a matrix equal to F except that row j has been replaced
by the entries in row i. Since the matrix has two identical rows, its determinant is
zero, and thus () 0ij =FG . Since the main diagonal entries of FG are 1 and all the
remaining entries are 0, FG is the identity matrix. A similar argument proves that
GF is the identity matrix, so 1−=G F . 

 Using Equation (3.62), we can derive explicit formulas for the inverses of
matrices having sizes that are commonly used in computer graphics. The inverse
of a 2 2× matrix A is given by

 22 121

21 11

1
det

A A
A A

− − =  − 
A

A
. (3.64)

The inverse of a 3 3× matrix B is given by

22 33 23 32 13 32 12 33 12 23 13 22

1
23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

1
det

B B B B B B B B B B B B
B B B B B B B B B B B B
B B B B B B B B B B B B

−

− − − 
 = − − − 

− − −  

B
B

. (3.65)

 The inverse of a matrix M can be expressed as C detM M , where the nota-
tion CM is used to denote the matrix of cofactors of the entries of TM . That is,
() ()C T

ij ijC=M M . Since calculating det M also requires that we calculate the
cofactor of every entry of M, we can use the entries of the matrix CM to evaluate
the determinant of M more efficiently. Equation (3.55) can be written as

()

()

()

1

T

1

C

1

det

.

n

kj kj
j

n

kj jk
j

n

kj jk
j

M C

M C

M

=

=

=

=

=

=







M M

M

M (3.66)

Thus, the determinant can be evaluated by choosing any row k of the matrix M
and summing the products with the entries of the k-th column of the matrix CM .
For the 3 3× matrix B, we have the following expression for 1−B in which we
have chosen 1k = .

3.4 Determinants 53

()

22 33 23 32 13 32 12 33 12 23 13 22
C

23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

C
1

C
1 1

1

n

j j
j

B B B B B B B B B B B B
B B B B B B B B B B B B
B B B B B B B B B B B B

B

−

=

− − − 
 = − − − 

− − −  

=


B

B
B

B
 (3.67)

 One final observation that we make in this section concerns linear systems of
the form =Mx r, where x is a vector of n unknowns and r is a vector of n con-
stants. If the matrix M is invertible, then the solution to this system is given by

1−=x M r. Again using the notation CM to denote the matrix of cofactors of the
entries of TM , we can write

C

det
= M

x r
M

. (3.68)

The k-th component of x is thus given by the formula

()

()

C

1

1

1
det

1
det

n

k ki i
i
n

ik i
i

x r

C r

=

=

=

=





M
M

M
M

. (3.69)

By the definition given in Equation (3.53), the quantity ()ikC M does not depend
on any entries in the k-th column of the matrix M. Comparing the summation

()1Σ n
i ik iC r= M to Equation (3.54), we see that it is equal to the determinant of the

matrix whose k-th column is equal to the vector r and whose other columns are
equal to those of the matrix M. Defining the notation

 () []1 1 1k k k n− +≡M r M M r M M  , (3.70)

where jM represents the j-th column of M, we can write Equation (3.69) as

 ()det
det

k
kx = M r

M
. (3.71)

 Equation (3.71) is known as Cramer’s rule. Since it requires a determinant
calculation for each unknown in a linear system, using Cramer’s rule is far less

54 3. Matrices

efficient than simply inverting the coefficient matrix and multiplying it by the
constant vector. Cramer’s rule does, however, tell us that if the coefficients and
constants in a linear system are all integers and det 1= ±M , then the unknowns
must all be integers.

3.5 Eigenvalues and Eigenvectors

For every invertible square matrix, there exist vectors that, when multiplied by
the matrix, are changed only in magnitude and not in direction. That is, for an
n n× matrix M, there exist nonzero n-dimensional vectors 1 2, , , nV V V such that

 i i iλ=MV V . (3.72)

The scalars iλ are called the eigenvalues of the matrix M, and the vectors iV are
called the eigenvectors that correspond to those eigenvalues.
 The eigenvalues of a matrix can be determined by first rearranging Equation
(3.72) to read

 ()i iλ− =M I V 0, (3.73)

where I is the n n× identity matrix. For this equation to be true for nonzero vec-
tors iV , the matrix iλ−M I must be singular. This is necessary because otherwise
we could invert iλ−M I and write

 () 1
i iλ −= − =V M I 0 0, (3.74)

contradicting the assumption that i ≠V 0. Since iλ−M I is singular, its determi-
nant must be zero, so we can calculate the eigenvalues iλ by solving the equation

 ()det 0λ− =M I . (3.75)

 The degree n polynomial in λ given by Equation (3.75) is called the charac-
teristic polynomial of the matrix M. The roots of this polynomial yield the eigen-
values of the matrix M.

Example 3.22. Calculate the eigenvalues of the matrix

1 1
3 1
 =  − 

M . (3.76)

3.5 Eigenvalues and Eigenvectors 55

Solution. The matrix λ−M I is given by

1 1

3 1
λ

λ
λ

− − =  − − 
M I .

Evaluating the determinant of λ−M I produces the characteristic polynomial

 ()()1 1 3λ λ− − − − . (3.77)

Simplifying this polynomial and setting it equal to zero gives us

 2 4 0λ − = , (3.78)

from which it follows that the eigenvalues of M are 1 2λ = and 2 2λ = − . 

 Once the eigenvalues have been determined, the corresponding eigenvectors
are calculated by solving the homogeneous system given by Equation (3.73).
Since the matrix iλ−M I is singular, its reduced form has at least one row of ze-
ros, so there are infinitely many solutions. An obvious property of Equation
(3.72) is that if iV is an eigenvector corresponding to the eigenvalue iλ , then any
scalar multiple iaV is also an eigenvector. Thus, eigenvectors are always written
in terms of an arbitrary constant, which if desired, may be chosen so that the ei-
genvector has unit length.

Example 3.23. Calculate the eigenvectors of the matrix

1 1
3 1
 =  − 

M . (3.79)

Solution. In Example 3.22, we found that the matrix M has the eigenvalues
1 2λ = and 2 2λ = − . Corresponding eigenvectors are found by solving the linear

system ()i iλ− =M I V 0. For the eigenvalue 1 2λ = we have

 1
1 1 0

3 3 0
−   =   −   

V , (3.80)

and for the eigenvalue 2 2λ = − we have

56 3. Matrices

 2
3 1 0
3 1 0
   =      

V . (3.81)

These systems yield the solutions

1

2

1
1
1
3

a

b

 =   
 =  − 

V

V , (3.82)

where the scalars a and b are arbitrary nonzero constants. 

 In general, the eigenvalues of a matrix, given by the roots of its characteristic
polynomial, are complex numbers. This means that the corresponding eigen-
vectors can also have complex entries. A type of matrix that is guaranteed to
have real eigenvalues and therefore real eigenvectors, however, is the symmetric
matrix.

Definition 3.24. An n n× matrix M is symmetric if and only if ij jiM M= for all
i and j. That is, a matrix whose entries are symmetric about the main diagonal
is called symmetric.

 The eigenvalues and eigenvectors of symmetric matrices possess the proper-
ties given by the following two theorems.

Theorem 3.25. The eigenvalues of a symmetric matrix M having real entries
are real numbers.

Proof. Let λ be an eigenvalue of the matrix M, and let V be a corresponding ei-
genvector such that λ=MV V. Multiplying both sides of this equation on the left
by the row vector TV gives us

 T T Tλ λ= =V MV V V V V, (3.83)

where the overbar denotes complex conjugation, which for vectors and matrices
is performed componentwise. Since the product of a complex number a bi+ and

3.5 Eigenvalues and Eigenvectors 57

its conjugate a bi− is equal to the real number 2 2a b+ , the product TV V is a real
number. By showing that the product TV MV is also a real number, we can con-
clude that λ is real. We can examine the conjugate of TV MV to get

 T T=V MV V MV, (3.84)

where we have used the fact that =M M because the matrix M has real entries.
Since the quantity TV MV is a 1 1× matrix, it is equal to its own transpose. We
may thus write

 ()T T T T T= =V MV V MV V M V. (3.85)

Because the matrix M is symmetric, T =M M, so we now have

 T T=V MV V MV, (3.86)

showing that the quantity TV MV is equal to its own conjugate and is therefore a
real number. This proves that the eigenvalue λ must be real. 

Theorem 3.26. Any two eigenvectors associated with distinct eigenvalues of a
symmetric matrix M are orthogonal.

Proof. Let 1λ and 2λ be distinct eigenvalues of the matrix M, and let 1V and 2V be
the associated eigenvectors. Then we have the equations 1 1 1λ=MV V and

2 2 2λ=MV V . We can show that T T
1 1 2 2 1 2λ λ=V V V V by writing

()
()

T T
1 1 2 1 1 2

T
1 2

T
1 2

T
2 1 2 ,

λ λ

λ

=

=

=
=

V V V V

MV V

V MV

V V (3.87)

where we have used the fact that T =M M. This tells us that

 () T
1 2 1 2 0λ λ− =V V , (3.88)

but the eigenvalues 1λ and 2λ are distinct, so we must have T
1 2 0=V V . Since this

quantity is simply the dot product 1 2⋅V V , the eigenvectors are orthogonal. 

58 3. Matrices

3.6 Diagonalization

Recall that a diagonal matrix is one that has nonzero entries only along the main
diagonal. That is, an n n× matrix M is a diagonal matrix if 0ijM = whenever
i j≠ . Given a square matrix M, if we can find a matrix A such that 1−A MA is a
diagonal matrix, then we say that A diagonalizes M. Although not true in gen-
eral, the following theorem states that any n n× matrix for which we can find n
linearly independent eigenvectors can be diagonalized.

Theorem 3.27. Let M be an n n× matrix having eigenvalues 1 2, , , nλ λ λ , and
suppose that there exist corresponding eigenvectors 1 2, , , nV V V that form a
linearly independent set. Then the matrix A given by

 []1 2 n=A V V V (3.89)

(i.e., the columns of the matrix A are the eigenvectors 1 2, , , nV V V) diago-
nalizes M, and the main diagonal entries of the product 1−A MA are the eigen-
values of M:

1

21

0 0
0 0

0 0 n

λ
λ

λ

−

 
 
 =
 
 
 

A MA




   


. (3.90)

Conversely, if there exists an invertible matrix A such that 1−A MA is a diago-
nal matrix, then the columns of A must be eigenvectors of M, and the main di-
agonal entries of 1−A MA are the corresponding eigenvalues of M.

Proof. We first examine the product MA. Since the j-th column of A is the ei-
genvector jV , the j-th column of MA is equal to jMV . Since jV is an eigenvector,
we have j j jλ=MV V , so the product MA can be written as

[]

[]

1 1 2 2

1

2
1 2

0 0
0 0

0 0

n n

n

n

λ λ λ
λ

λ

λ

=

 
 
 =
 
 
 

MA V V V

V V V






   



3.6 Diagonalization 59

1

2

0 0
0 0

.

0 0 n

λ
λ

λ

 
 
 =
 
 
 

A




   


 (3.91)

Since the eigenvectors jV are linearly independent, the matrix A is invertible, and
the product 1−A MA can be written as

1 1

2 21 1

0 0 0 0
0 0 0 0

0 0 0 0n n

λ λ
λ λ

λ λ

− −

   
   
   = =
   
   
   

A MA A A

 
 

       
 

. (3.92)

Now we prove the converse assertion that any invertible matrix A that diag-
onalizes M must be composed of the eigenvectors of M. Suppose that D is an
n n× diagonal matrix such that 1−=D A MA for some n n× matrix A. Then we
may write

 =AD MA. (3.93)

Let jV denote the j-th column of A, and let 1 2, , , nd d d be the main diagonal en-
tries of D. The product AD is given by

[]

[]

1

2
1 2

1 1 2 2

0 0
0 0

0 0
,

n

n

n n

d
d

d
d d d

 
 
 =
 
 
 

=

AD V V V

V V V





   


 (3.94)

and the product MA is given by

 []1 2 n=MA MV MV MV . (3.95)

Equating the j-th column of AD with the j-th column of MA demonstrates that
j j jd=MV V , and thus each jV is an eigenvector of M corresponding to the ei-

genvalue jd . 

60 3. Matrices

 Since the eigenvectors of a symmetric matrix M are orthogonal, the matrix A
whose columns are composed of unit-length eigenvectors of M is an orthogonal
matrix and therefore satisfies 1 T− =A A . The diagonal matrix D consisting of the
eigenvalues of a symmetric matrix M can thus be expressed as

 T=D A MA. (3.96)

Example 3.28. Find a matrix that diagonalizes the matrix

2 1 0
1 1 0
0 0 1

 
 =  

−  

M . (3.97)

Solution. The characteristic polynomial for M is

()

()()
3 2

2

det 2 2 1

1 3 1

λ λ λ λ
λ λ λ

− = − + + −

= − + − +

M I

. (3.98)

The roots of this polynomial give us the eigenvalues

1

2

3

1

3 5
2

3 5
2

λ

λ

λ

= −

+=

−= . (3.99)

The eigenvector 1V corresponding to the eigenvalue 1λ is given by the solution to
the homogeneous linear system

 1

3 1 0 0
1 2 0 0
0 0 0 0

   
   =   
      

V . (3.100)

Reducing the coefficient matrix gives us

 1

1 0 0 0
0 1 0 0
0 0 0 0

   
   =   
      

V , (3.101)

3.6 Diagonalization 61

and the solution is thus given by

 1

0
0
1

a
 
 =  
  

V . (3.102)

For the eigenvalue 2λ , we need to solve the system

 2

1 5 1 0
2 0

1 51 0 0
2

0
5 50 0

2

 −
 
    − −  =        − −
 
 

V . (3.103)

This reduces to

 2

1 51 0
2 0

0 0 1 0
0

0 0 0

 − −
 
      =        
 
 

V , (3.104)

and our second eigenvector is given by

 2

1 5
2
1
0

b

 +
 
 

=  
  

V . (3.105)

Similarly, the eigenvector 3V is equal to

 3

1 5
2
1
0

c

 −
 
 

=  
  

V . (3.106)

62 3. Matrices

We choose the constants a, b, and c so that the eigenvectors have unit length. A
quick test verifies that the eigenvectors are orthogonal as expected since the ma-
trix M is symmetric. Define the matrix A as

1 2 3

1 2 3

0 0.851 0.526
0 0.526 0.851
1 0 0

 =  
 

− 
 ≈  
  

V V V
A

V V V

. (3.107)

A is an orthogonal matrix that diagonalizes M:

 1 T

1 0 0

3 50 0
2

3 50 0
2

−

 
− 
 
 += =  
 
 −
  

A MA A MA .  (3.108)

Chapter 3 Summary

Matrix Products

If F is an n m× matrix and G is an m p× matrix, then the product FG is an n p×
matrix whose (),i j entry is given by

 ()
1

m

ij ik kj
k

F G
=

=FG .

Determinants

The determinant of an n n× matrix M is given by the formulas

 ()
1

det
n

ik ik
i

M C
=

=M M

and

Chapter 3 Summary 63

 ()
1

det
n

kj kj
j

M C
=

=M M ,

where ()ijC M is the cofactor of ijM defined by () () { },1 det i ji j
ijC += −M M .

The determinant of a 2 2× matrix is given by

a b

ad bc
c d

= − ,

and the determinant of a 3 3× matrix is given by

 () ()
()

11 12 13

21 22 23 11 22 33 23 32 12 21 33 23 31

31 32 33 13 21 32 22 31 .

a a a
a a a a a a a a a a a a a
a a a a a a a a

= − − −
+ −

Matrix Inverses

An n n× matrix M is invertible if and only if the columns of M form a linearly
independent set. Equivalently, M is invertible if and only if det 0≠M .

The entries of the inverse G of an n n× matrix F can be calculated by using the
explicit formula

 ()
det

ji
ij

C
=

F
G

F
.

Using this formula, the inverse of a 2 2× matrix A is given by

 22 121

21 11

1
det

A A
A A

− − =  − 
A

A
,

and the inverse of a 3 3× matrix B is given by

22 33 23 32 13 32 12 33 12 23 13 22

1
23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

1
det

B B B B B B B B B B B B
B B B B B B B B B B B B
B B B B B B B B B B B B

−

− − − 
 = − − − 

− − −  

B
B

.

Eigenvalues and Eigenvectors

The eigenvalues of an n n× matrix M are equal to the roots of the characteristic
polynomial given by

64 3. Matrices

 ()det λ−M I .

An eigenvector V associated with the eigenvalue λ of the matrix M is given by
the solution to the homogeneous linear system

 ()λ− =M I V 0.

The eigenvalues of a real symmetric matrix are real, and the eigenvectors corre-
sponding to distinct eigenvalues of a real symmetric matrix are orthogonal.

Diagonalization

If 1 2, , , nV V V are linearly independent eigenvectors of an n n× matrix M, then
the matrix A given by

 []1 2 n=A V V V

diagonalizes M, meaning that

1

21

0 0
0 0

0 0 n

λ
λ

λ

−

 
 
 =
 
 
 

A MA




   


,

where 1 2, , , nλ λ λ are the eigenvalues of M.

Exercises for Chapter 3

1. Calculate the determinants of the following matrices.

(a) 1
2

2 7
3

 
 − 

 (b)
0 0 1
0 1 0
1 0 0

 
 
 
  

(c)

31
2 2

3 1
2 2

0
0

0 0 1

 
 − 
  

 (d)
5 7 1

17 2 64
10 14 2

 
 
 
  

2. Calculate the inverses of the following matrices.

Exercises for Chapter 3 65

(a)
2 0 0
0 3 0
0 0 4

 
 
 
  

 (b)
1 0 0
0 2 2
3 0 8

 
 
 
  

(c)
cos 0 sin

0 1 0
sin 0 cos

θ θ

θ θ

− 
 
 
  

 (d)

1 0 0 4
0 1 0 3
0 0 1 7
0 0 0 1

 
 
 
 
 
 

3. Solve the following homogeneous linear system.

4 3 2 0

3 0
2 3 4 0

x y z
x y z

x y z

+ + =
− − =

+ + =

4. Calculate the eigenvalues of the following matrix.

2 0 0
5 2 3
4 3 2

 
 
 
−  

5. Let M be an n n× matrix whose rows are given by the vectors
T T T
1 2, , , nR R R . Prove that if the rows of M form a linearly independent set,

then the rows of the matrix EM, where E is an elementary matrix, also form
a linearly independent set.

6. An upper triangular matrix M is one for which 0ijM = whenever i j> . That
is, all the entries below the main diagonal are zero. Prove that the determi-
nant of an upper triangular matrix is equal to the product of the entries on
the main diagonal.

7. Let D be an n n× diagonal matrix whose main diagonal entries are
1 2, , , nd d d as shown below. Show that the inverse of D is also a diagonal

matrix, and that its main diagonal entries are given by 1 21 ,1 , ,1 nd d d .

1

2

0 0
0 0

0 0 n

d
d

d

 
 
 =
 
 
 

D




   


This page intentionally left blank

 67

Chapter 4
Transforms

Throughout any 3D graphics engine architecture, it is often necessary to trans-
form a set of vectors from one coordinate space to another. For instance, vertex
coordinates for a model may be stored in object space, but need to be trans-
formed to camera space before the model can be rendered. In this chapter, we
concern ourselves with linear transformations among different Cartesian coordi-
nate frames. Such transformations include simple scales and translations, as well
as arbitrary rotations.

4.1 Linear Transformations

Suppose that we have established a 3D coordinate system C consisting of an
origin and three coordinate axes, in which a point P has the coordinates , ,x y z .
The values x, y, and z can be thought of as the distances that one must travel
along each of the coordinate axes from the origin in order to reach the point P.
Suppose now that we introduce a second coordinate system C′ in which coordi-
nates , ,x y z′ ′ ′ can be expressed as linear functions of coordinates , ,x y z in C.
That is, suppose we can write

()
()
()

1 1 1 1

2 2 2 2

3 3 3 3

, ,
, ,
, ,

x x y z U x V y W z T
y x y z U x V y W z T
z x y z U x V y W z T

′ = + + +
′ = + + +
′ = + + + . (4.1)

This constitutes a linear transformation from C to C′ and can be written in matrix
form as follows.

1 1 1 1

2 2 2 2

3 3 3 3

x U V W x T
y U V W y T
z U V W z T

′       
       ′ = +       

′              

 (4.2)

68 4. Transforms

The coordinates x′, y′, and z′ can be thought of as the distances that one must
travel along the axes in C′ to reach the point P. The vector T represents the trans-
lation from the origin of C to the origin of C′, and the matrix whose columns are
the vectors U, V, and W represents how the orientation of the coordinate axes is
changed when transforming from C to C′. Assuming the transformation is invert-
ible, the linear transformation from C′ to C is given by

1
1 1 1 1

2 2 2 2

3 3 3 3

x U V W x T
y U V W y T
z U V W z T

− ′         
        ′= −         ′                

. (4.3)

 In Section 4.4, we will combine the 3 3× matrix and translation vector T into
a single 4 4× transformation matrix. Before we reach that point, we will focus
solely on linear transformations for which ≡T 0, in which case the vectors U, V,
and W represent the images in C′ of the basis vectors 1,0,0 , 0,1,0 , and 0,0,1
in C.
 Multiple linear transformations can be concatenated and represented by a
single matrix and translation. For example, vertex coordinates may need to be
transformed from object space to world space and then from world space to cam-
era space. The two transformations are combined into a single transformation that
maps object-space coordinates directly to camera-space coordinates.

4.1.1 Orthogonal Matrices

Most 3 3× matrices arising in computer graphics applications are orthogonal. An
orthogonal matrix is simply one whose inverse is equal to its transpose.

Definition 4.1. An invertible n n× matrix M is called orthogonal if and only if
1 T− =M M .

As the following theorem demonstrates, any matrix whose columns form an or-
thonormal set of vectors is orthogonal.

Theorem 4.2. If the vectors 1 2, , , nV V V form an orthonormal set, then the
n n× matrix constructed by setting the j-th column equal to jV for all 1 j n≤ ≤ is
orthogonal.

4.1 Linear Transformations 69

Proof. Suppose that the vectors 1 2, , , nV V V form an orthonormal set, and let M
be the n n× matrix whose columns are given by the jV ’s. Since the jV ’s are or-
thonormal, i j ijδ⋅ =V V where ijδ is the Kronecker delta symbol. Since the (),i j
entry of the matrix product TM M is equal to the dot product i j⋅V V , we have

T =M M I. Therefore, T 1−=M M . 

Orthogonal matrices also possess the property that they preserve lengths and an-
gles when they are used to transform vectors. A matrix M preserves length if for
any vector P we have

 =MP P . (4.4)

A matrix that preserves lengths also preserves angles if for any two vectors 1P
and 2P we have

 () ()1 2 1 2⋅ = ⋅MP MP P P . (4.5)

The following theorem proves that an orthogonal matrix satisfies Equations (4.4)
and (4.5).

Theorem 4.3. If the n n× matrix M is orthogonal, then M preserves lengths and
angles.

Proof. Let M be orthogonal. We will first show that the dot product between two
vectors 1P and 2P is preserved by a transformation by M, and then use that result
to show that M preserves lengths. Examining the dot product between the trans-
formed vectors gives us

 () () () T T T
1 2 1 2 1 2⋅ = =MP MP MP MP P M MP . (4.6)

Since M is orthogonal, 1 T− =M M , so

 T T T
1 2 1 2 1 2= = ⋅P M MP P P P P . (4.7)

This also implies that the length of a vector P is preserved when transformed by
the matrix M since 2 = ⋅P P P. 

 Since orthogonal matrices preserve lengths and angles, they preserve the
overall structure of a coordinate system. Orthogonal matrices can thus represent

70 4. Transforms

only combinations of rotations and reflections. Rotations are discussed in detail
in Section 4.3. A reflection transform (also called an inversion transformation)
refers to the operation performed when points are mirrored in a certain direction.
For example, the matrix

1 0 0
0 1 0
0 0 1

 
 
 

−  

 (4.8)

reflects the z coordinate of a point across the x-y plane.

4.1.2 Handedness

In three dimensions, a basis  for a coordinate system given by the 3D vectors
1V , 2V , and 3V possesses a property called handedness. A right-handed basis is

one for which ()1 2 3 0× ⋅ >V V V . That is, in a right-handed coordinate system, the
direction in which the cross product between 1V and 2V points (which follows the
right hand rule) forms an acute angle with the direction in which 3V points. If 
is an orthonormal right-handed basis, we have 1 2 3× =V V V . If ()1 2 3 0× ⋅ <V V V ,
then the basis  is left-handed.
 Performing an odd number of reflections reverses handedness. An even
number of reflections is always equivalent to a rotation, so any series of reflec-
tions can always be regarded as a single rotation followed by at most one reflec-
tion. The existence of a reflection within a 3 3× matrix can be detected by exam-
ining the determinant. If the determinant of a 3 3× matrix M is negative, then a
reflection is present, and M reverses the handedness of any set of basis vectors
transformed by it. If the determinant is positive, then M preserves handedness.
 An orthogonal matrix M can only have a determinant of 1 or 1− . If det 1=M ,
the matrix M represents a pure rotation. If det 1= −M , then the matrix M repre-
sents a rotation followed by a reflection.

4.2 Scaling Transforms

To scale a vector P by a factor of a, we simply calculate a′ =P P. In three dimen-
sions, this operation can also be expressed as the matrix product

0 0

0 0
0 0

x

y

z

a P
a P

a P

   
   ′ =    
      

P . (4.9)

4.3 Rotation Transforms 71

Figure 4.1. Nonuniform scaling.

This is called a uniform scale. If we wish to scale a vector by different amounts
along the x, y, and z axes, as shown in Figure 4.1, then we can use a matrix that is
similar to the uniform scale matrix, but whose diagonal entries are not necessari-
ly all equal. This is called a nonuniform scale and can be expressed as the matrix
product

0 0

0 0
0 0

x

y

z

a P
b P

c P

   
   ′ =    
      

P . (4.10)

 A slightly more complex scaling operation that one may wish to perform is a
nonuniform scale that is applied along three arbitrary axes. Suppose that we want
to scale by a factor a along the axis U, by a factor b along the axis V, and by a
factor c along the axis W. Then we can transform from the (), ,U V W coordinate
system to the (), ,i j k coordinate system, apply the scaling operation in this sys-
tem using Equation (4.10), and then transform back into the (), ,U V W coordinate
system. This gives us the following matrix product.

10 0
0 0
0 0

x x x x x x x

y y y y y y y

z z z z z z z

U V W a U V W P
U V W b U V W P
U V W c U V W P

−
       
       ′ =        
              

P (4.11)

4.3 Rotation Transforms

We can find 3 3× matrices that rotate a coordinate system through an angle θ
about the x, y, or z axis without much difficulty. We consider a rotation by a posi-

72 4. Transforms

tive angle about the axis A to be that which performs a counterclockwise rotation
when the axis A is pointing toward us.

 First, we will find a general formula for rotations in two dimensions. As
shown in Figure 4.2, we can perform a 90-degree counterclockwise rotation of a
2D vector P in the x-y plane by exchanging the x and y coordinates and negating
the new x coordinate. Calling the rotated vector Q, we have ,y xP P= −Q . The
vectors P and Q form an orthogonal basis for the x-y plane. We can therefore
express any vector in the x-y plane as a linear combination of these two vectors.
In particular, as shown in Figure 4.3, any 2D vector ′P that results from the rota-
tion of the vector P through an angle θ can be expressed in terms of its compo-
nents that are parallel to P and Q. Basic trigonometry lets us write

 cos sinθ θ′ = +P P Q . (4.12)

This gives us the following expressions for the components of ′P .

cos sin
cos sin

x x y

y y x

P P θ P θ
P P θ P θ

′ = −
′ = + (4.13)

We can rewrite this in matrix form as follows.

cos sin
sin cos

θ θ
θ θ

− ′ =   
P P (4.14)

 The 2D rotation matrix in Equation (4.14) can be extended to a rotation about
the z axis in three dimensions by taking the third row and column from the identi-
ty matrix. This ensures that the z coordinate of a vector remains fixed during a
rotation about the z axis, as we would expect. The matrix ()z θR that performs a
rotation through the angle θ about the z axis is thus given by

 ()
cos sin 0
sin cos 0

0 0 1
z

θ θ
θ θ θ

− 
 =  
  

R . (4.15)

 Similarly, we can derive the following 3 3× matrices ()x θR and ()y θR that
perform rotations through an angle θ about the x and y axes, respectively:

4.3 Rotation Transforms 73

()

()

1 0 0
0 cos sin
0 sin cos

cos 0 sin
0 1 0

sin 0 cos

x

y

θ θ θ
θ θ

θ θ
θ

θ θ

 
 = − 
  

 
 =  
−  

R

R . (4.16)

x

y

,x y

,y x−

Figure 4.2. Rotation by 90 degrees in the x-y plane.

θ

P

Q ′P
y

x

cosθ
P

sinθ
Q

Figure 4.3. A rotated vector ′P can be expressed as the linear combination of the original
vector P and the 90-degree counterclockwise rotation Q of the original vector.

74 4. Transforms

4.3.1 Rotation About an Arbitrary Axis

Suppose that we wish to rotate a vector P through an angle θ about an arbitrary
axis whose direction is represented by a unit vector A. We can decompose the
vector P into components that are parallel to A and perpendicular to A as shown
in Figure 4.4. Since the parallel component (the projection of P onto A) remains
unchanged during the rotation, we can reduce the problem to that of rotating the
perpendicular component of P about A.
 Since A is a unit vector, we have the following simplified formula for the
projection of P onto A.

 ()proj = ⋅A P A P A (4.17)

The component of P that is perpendicular to A is then given by

 ()perp = − ⋅A P P A P A. (4.18)

Once we rotate this perpendicular component about A, we will add the constant
parallel component given by Equation (4.17) to arrive at our final answer.
 The rotation of the perpendicular component takes place in the plane perpen-
dicular to the axis A. As before, we express the rotated vector as a linear combi-
nation of perp A P and the vector that results from a 90-degree counterclockwise
rotation of perp A P about A. Fortunately, such an expression is easy to find. Let α

P

A

()⋅A P A

()− ⋅P A P A

α

Figure 4.4. Rotation about an arbitrary axis.

4.4 Homogeneous Coordinates 75

be the angle between the original vector P and the axis A. Note that the length of
perp A P is equal to sinαP because it forms the side opposite the angle α shown
in Figure 4.4. A vector of the same length that points in the direction that we
want is given by ×A P.
 We can now express the rotation of perp A P through an angle θ as

 ()[] ()cos sinθ θ− ⋅ + ×P A P A A P . (4.19)

Adding projA P to this gives us the following expression for the rotation of the
original vector P about the axis A.

 () ()()cos sin 1 cosθ θ θ′ = + × + ⋅ −P P A P A A P (4.20)

Replacing ×A P and ()⋅A A P in Equation (4.20) with their matrix equivalents
given by Equations (2.25) and (2.20) respectively, we have

 ()

2

2

2

1 0 0 0
0 1 0 cos 0 sin
0 0 1 0

1 cos .

z y

z x

y x

x x y x z

x y y y z

x z y z z

A A
θ A A θ

A A

A A A A A
A A A A A θ
A A A A A

−   
   ′ = + −   
  −   
 
 + − 
  

P P P

P (4.21)

Combining these terms and setting cosc θ= and sins θ= gives us the following
formula for the matrix ()θAR that rotates a vector through an angle θ about the
axis A.

 ()
() () ()

() () ()
() () ()

2

2

2

1 1 1
1 1 1
1 1 1

x x y z x z y

x y z y y z x

x z y y z x z

c c A c A A sA c A A sA
θ c A A sA c c A c A A sA

c A A sA c A A sA c c A

+ − − − − + 
 = − + + − − − 
 − − − + + − 

AR (4.22)

4.4 Homogeneous Coordinates

Up to this point, we have dealt only with transforms that can be expressed as the
operation of a 3 3× matrix on a three-dimensional vector. A series of such trans-
forms could be represented by a single 3 3× matrix equal to the product of the
matrices corresponding to the individual transforms. An important transform that
has been left out is the translation operation. A coordinate system is translated in

76 4. Transforms

space without otherwise affecting the orientation or scale of the axes by simply
adding an offset vector. This operation cannot be expressed in terms of a 3 3×
matrix. Thus, to transform a point P from one coordinate system to another, we
usually find ourselves performing the operation

 ′ = +P MP T, (4.23)

where M is some invertible 3 3× matrix and T is a 3D translation vector. Per-
forming two operations of the type shown in Equation (4.23) results in the rather
messy equation

()

()
2 1 1 2

2 1 2 1 2

′ = + +
= + +

P M M P T T

M M P M T T , (4.24)

requiring that we keep track of the matrix component 1n n−M M as well as the
translation component 1n n n− +M T T at each stage when concatenating n trans-
forms.

4.4.1 Four-Dimensional Transforms

Fortunately, there is a compact and elegant way to represent these transforms
within a single mathematical entity. We can do this by extending our vectors to
four-dimensional homogeneous coordinates and using 4 4× matrices to transform
them. A 3D point P is extended to four dimensions by setting its fourth coordi-
nate, which we call the w coordinate, equal to 1. We construct a 4 4× transfor-
mation matrix F corresponding to the 3 3× matrix M and the 3D translation T as
follows.

11 12 13

21 22 23

31 32 33

1 0 0 0 1

x

y

z

M M M T
M M M T
M M M T

   
   
   = =
   
   
   

M T
F

0

 (4.25)

Multiplying this matrix by the vector , , ,1x y zP P P transforms the x, y, and z co-
ordinates of the vector in exactly the same way as Equation (4.23) and leaves a 1
in the w coordinate. Furthermore, multiplying two transformation matrices of the
form shown in Equation (4.25) yields another matrix of the same form that is
equivalent to the pair of transforms performed in Equation (4.24).
 If we solve Equation (4.23) for P, we have

4.4 Homogeneous Coordinates 77

 1 1− −′= −P M P M T. (4.26)

We would therefore expect the inverse of the 4 4× matrix F from Equation (4.25)
to be

()
()
()

1 1 1 1
11 12 13

1 1 1 1 1 1
21 22 231

1 1 1 1
31 32 33

1 0 0 0 1

x

y

z

M M M
M M M
M M M

− − − −

− − − − − −
−

− − − −

−   
   − −   = =   −
   
      

M T

M M T M T
F

M T

0

, (4.27)

and the following computation verifies that this is true.

()

1 1
1

1 1

3
4

1 1

1

1

− −
−

− −

   
   −   =
   
   
   
 
 − + =
 
 
 
 
 
 = =
 
 
 

M T M M T
FF

0 0

MM M M T T

0

I 0
I

0

 (4.28)

4.4.2 Points and Directions

We have now come to a point where it is necessary to make a distinction between
vectors that represent points in three-dimensional space and vectors that represent
directions in three-dimensional space. Unlike points, direction vectors should
remain invariant under translation.
 To transform direction vectors using the same 4 4× transformation matrices
that we use to transform points, we extend direction vectors to four dimensions
by setting the w coordinate to 0. This nullifies the fourth column of the matrix F

78 4. Transforms

in Equation (4.25), leaving only the upper left 3 3× portion of the matrix to affect
the direction vector.
 The difference between two points P and Q having a w coordinate of 1 re-
sults in a direction vector −Q P having a w coordinate of 0. This makes sense
because −Q P represents the direction pointing from P to Q, which we would
expect not to be affected by a translation.

4.4.3 Geometrical Interpretation of the w Coordinate

The w coordinates of the four-dimensional vectors with which we have been
working so far have a meaning that goes beyond their utility during transfor-
mations using 4 4× matrices. Before, we extended a three-dimensional point to
four-dimensional space by adding a 1 in the w coordinate position. Now, we de-
fine a mapping that works in the reverse direction. Suppose we have a 4D point

, , ,x y z w=P whose w coordinate is not 0. Then we define the image of P in
three-dimensional space, which we denote by P , as the projection of P into the
three-dimensional space in which 1w = using the formula

 , ,x y z
w w w

=P . (4.29)

As shown in Figure 4.5 (but without the z axis to make visualization easier), the
3D point P corresponds to the point where the line connecting the point P to the
origin intersects the space where 1w = . Thus, any scalar multiple of the 4D vector
P represents the same point in three-dimensional space. The importance of this
projection in 3D graphics is discussed in detail in Section 5.5.

4.5 Transforming Normal Vectors

In addition to its position in space, a vertex belonging to a polygonal model usu-
ally carries additional information about how it fits into the surrounding surface.
In particular, a vertex may have a tangent vector and a normal vector associated
with it. When we transform a model, we need to transform not only the vertex
positions, but these vectors as well.
 Tangent vectors can often be calculated by taking the difference between one
vertex and another, and thus we would expect that a transformed tangent vector
could be expressed as the difference between two transformed points. If M is a
3 3× matrix with which we transform a vertex position, then the same matrix M
can be used to correctly transform the tangent vector at that vertex. (We limit

4.5 Transforming Normal Vectors 79

, , ,x y z w=P

y

x

w

wPP 1w =

Figure 4.5. A 4D point P is projected into three-dimensional space by calculating the
point where the line connecting the point to the origin intersects the space where 1w = .

ourselves to 3 3× matrices in this section since tangent and normal directions are
unaffected by translations.) Some care must be taken when transforming normal
vectors, however. Figure 4.6 shows what can happen when a nonorthogonal ma-
trix M is used to transform a normal vector. The transformed normal can often
end up pointing in a direction that is not perpendicular to the transformed surface.
 Since tangents and normals are perpendicular, the tangent vector T and the
normal vector N associated with a vertex must satisfy the equation 0⋅ =N T . We
must also require that this equation be satisfied by the transformed tangent vector

′T and the transformed normal vector ′N . Given a transformation matrix M, we
know that ′ =T MT. We would like to find the transformation matrix G with
which the vector N should be transformed so that

 () () 0′ ′⋅ = ⋅ =N T GN MT . (4.30)

A little algebraic manipulation gives us

80 4. Transforms

N

MN

Figure 4.6. Transforming a normal vector N with a nonorthogonal matrix M.

() () () ()T

T T .

⋅ =

=

GN MT GN MT

N G MT (4.31)

Since T 0=N T , the equation T T 0=N G MT is satisfied if T =G M I. We therefore
conclude that ()1 T−=G M . This tells us that a normal vector is correctly trans-
formed using the inverse transpose of the matrix used to transform points. Vec-
tors that must be transformed in this way are called covariant vectors, and vec-
tors that are transformed in the ordinary fashion using the matrix M (such as
points and tangent vectors) are called contravariant vectors.
 If the matrix M is orthogonal, then 1 T− =M M , and thus ()1 T− =M M. There-
fore, the inverse transpose operation required to transform normal vectors can be
avoided when M is known to be orthogonal, as is the case when M is equal to
one of the rotation matrices xR , yR , zR , or AR presented earlier in this chapter.

4.6 Quaternions

A quaternion is an alternative mathematical entity that 3D graphics programmers
use to represent rotations. The use of quaternions has advantages over the use of
rotation matrices in many situations because quaternions require less storage
space, concatenation of quaternions requires fewer arithmetic operations, and
quaternions are more easily interpolated for producing smooth animation.

4.6.1 Quaternion Mathematics

The set of quaternions, known by mathematicians as the ring of Hamiltonian qua-
ternions and denoted by , can be thought of as a four-dimensional vector space
for which an element q has the form

4.6 Quaternions 81

 , , ,w x y z w xi yj zk= = + + +q . (4.32)

A quaternion is often written as s= +q v, where s represents the scalar part cor-
responding to the w-component of q, and v represents the vector part correspond-
ing to the x, y, and z components of q.
 The set of quaternions is a natural extension of the set of complex numbers.
Multiplication of quaternions is defined using the ordinary distributive law and
adhering to the following rules when multiplying the “imaginary” components i,
j, and k.

2 2 2 1i j k
ij ji k
jk kj i
ki ik j

= = = −
= − =
= − =
= − =

 (4.33)

Multiplication of quaternions is not commutative, and so we must be careful to
multiply terms in the correct order. For two quaternions 1 1 1 1 1w x i y j z k= + + +q
and 2 2 2 2 2w x i y j z k= + + +q , the product 1 2q q is given by

()
()
()
()

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

w w x x y y z z
w x x w y z z y i
w y x z y w z x j
w z x y y x z w k

= − − −
+ + + −
+ − + +
+ + − +

q q

. (4.34)

When written in scalar-vector form, the product of two quaternions 1 1 1s= +q v
and 2 2 2s= +q v can be written as

 1 2 1 2 1 2 1 2 2 1 1 2s s s s= − ⋅ + + + ×q q v v v v v v . (4.35)

 Like complex numbers (see Appendix A), quaternions have conjugates, and
they are defined as follows.

Definition 4.4. The conjugate of a quaternion s= +q v, denoted by q, is given
by s= −q v.

A short calculation reveals that the product of a quaternion q and its conjugate q
is equal to the dot product of q with itself, which is also equal to the square of the
magnitude of q. That is,

82 4. Transforms

 2 2q= = ⋅ = =qq qq q q q . (4.36)

This leads us to a formula for the multiplicative inverse of a quaternion.

Theorem 4.5. The inverse of a nonzero quaternion q, denoted by 1−q , is given
by

 1
2q

− = q
q . (4.37)

Proof. Applying Equation (4.36), we have

2

1
2 2 1q

q q
− = = =qq

qq (4.38)

and

2

1
2 2 1q

q q
− = = =qq

q q , (4.39)

thus proving the theorem. 

4.6.2 Rotations with Quaternions

A rotation in three dimensions can be thought of as a function φ that maps 3
onto itself. For φ to represent a rotation, it must preserve lengths, angles, and
handedness. Length preservation is satisfied if

 ()φ =P P . (4.40)

The angle between the line segments connecting the origin to any two points 1P
and 2P is preserved if

 () ()1 2 1 2φ φ⋅ = ⋅P P P P . (4.41)

Finally, handedness is preserved if

 () () ()1 2 1 2φ φ φ× = ×P P P P . (4.42)

Extending the function φ to a mapping from  onto itself by requiring that
() ()φ s s φ+ = +v v allows us to rewrite Equation (4.41) as

4.6 Quaternions 83

 () () ()1 2 1 2φ φ φ⋅ = ⋅P P P P . (4.43)

Treating 1P and 2P as quaternions with zero scalar part enables us to combine
Equations (4.42) and (4.43) since 1 2 1 2 1 2= − ⋅ + ×P P P P P P . We can therefore
write the angle preservation and handedness preservation requirements as the
single equation

 () () ()1 2 1 2φ φ φ=P P P P . (4.44)

A function φ that satisfies this equation is called a homomorphism.
 The class of functions given by

 () 1φ −=q P qPq , (4.45)

where q is a nonzero quaternion, satisfies the requirements stated in Equations
(4.40) and (4.44), and thus represents a set of rotations. This fact can be proven
by first observing that the function φq preserves lengths because

 () 1 1
2φ

q
− −= = = =q

q q
P qPq q P q P P . (4.46)

Furthermore, φq is a homomorphism since

 () () ()1 1 1
1 2 1 2 1 2 1 2φ φ φ− − −= = =q q qP P qP q qP q qP P q P P . (4.47)

 We now need to find a formula for the quaternion q corresponding to a rota-
tion through the angle θ about the axis A. A quick calculation shows that aφ φ=q q
for any nonzero scalar a, so to keep things as simple as possible, we will concern
ourselves only with unit quaternions.
 Let s= +q v be a unit quaternion. Then 1 s− = −q v, and given a point P, we
have

() ()
()()

() ()
()

1

2

2 2 .

s s
s s

s s s s
s s

− = + −
= − ⋅ + + × −

= − ⋅ + + × + ⋅ − − ×

= + × + ⋅ − × ×

qPq v P v

v P P v P v

v P P v P v P v Pv v P v

P v P v P v v P v (4.48)

After applying Theorem 2.9(f) to the cross product × ×v P v, this becomes

 () ()1 2 2 2 2s s− = − + × + ⋅qPq v P v P v P v. (4.49)

84 4. Transforms

Setting t=v A, where A is a unit vector, lets us rewrite this equation as

 () ()1 2 2 22 2s t st t− = − + × + ⋅qPq P A P A P A. (4.50)

When we compare this to the formula for rotation about an arbitrary axis given in
Equation (4.20), we can infer the following equalities.

2 2

2

cos
2 sin
2 1 cos

s t θ
st θ
t θ

− =
=
= − (4.51)

The third equality gives us

 1 cos sin
2 2
θ θt −= = . (4.52)

The first and third equalities together tell us that 2 2 1s t+ = , so we must have
()cos 2s θ= . (The fact that sin 2 2sin cosθ θ θ= verifies that the second equality

is satisfied by these values for s and t.)
 We have now determined that the unit quaternion q corresponding to a rota-
tion through the angle θ about the axis A is given by

 cos sin
2 2
θ θ= +q A . (4.53)

It should be noted that any scalar multiple of the quaternion q (in particular, −q)
also represents the same rotation since

 () ()
1

1 1a a a
a

−
− −= =q

q P q qP qPq . (4.54)

 The product of two quaternions 1q and 2q also represents a rotation. Specifi-
cally, the product 1 2q q represents the rotation resulting from first rotating by 2q
and then by 1q . Since

 () () () 11 1
1 2 2 1 1 2 1 2

−− − =q q Pq q q q P q q , (4.55)

we can concatenate as many quaternions as we want to produce a single quater-
nion representing the entire series of rotations. Multiplying two quaternions to-
gether requires 16 multiply-add operations, whereas multiplying two 3 3× matri-

4.6 Quaternions 85

ces together requires 27. Thus, some computational efficiency can be gained by
using quaternions in situations in which many rotations may be applied to an
object.
 It is often necessary to convert a quaternion into the equivalent 3 3× rotation
matrix, for instance, to pass the transform for an object to a 3D graphics library.
We can determine the formula for the matrix corresponding to the quaternion

s t= +q A by using Equations (2.25) and (2.20) to write Equation (4.50) in matrix
form. (This is nearly identical to the technique used in Section 4.3.1.) This gives
us

2 2

1 2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

0 0 0 2 2
0 0 2 0 2
0 0 2 2 0

2 2 2
2 2 2 .
2 2 2

z y

z x

y x

x x y x z

x y y y z

x z y z z

s t stA stA
s t stA stA

s t stA stA

t A t A A t A A
t A A t A t A A
t A A t A A t A

−

− −   
   = − + −   
   − −   

 
 +  
  

qPq P P

P (4.56)

Writing the quaternion q as the four-dimensional vector , , ,w x y z=q , we have
w s= , xx tA= , yy tA= , and zz tA= . Since A is a unit vector,

 2 2 2 2 2 2x y z t A t+ + = = . (4.57)

Rewriting Equation (4.56) in terms of the components w, x, y, and z gives us

2 2 2 2

1 2 2 2 2

2 2 2 2

2

2

2

0 0
0 0
0 0

0 2 2 2 2 2
2 0 2 2 2 2 .
2 2 0 2 2 2

w x y z
w x y z

w x y z

wz wy x xy xz
wz wx xy y yz
wy wx xz yz z

−

− − − 
 = − − − 
 − − − 

−   
   + − +   
   −   

qPq P

P P (4.58)

Since q is a unit quaternion, we know that 2 2 2 2 1w x y z+ + + = , so we can write

 2 2 2 2 2 2 21 2 2 2w x y z x y z− − − = − − − . (4.59)

Using this equation and combining the three matrices gives us the following for-
mula for the matrix qR , the rotation matrix corresponding to the quaternion q:

86 4. Transforms

2 2

2 2

2 2

1 2 2 2 2 2 2
2 2 1 2 2 2 2
2 2 2 2 1 2 2

y z xy wz xz wy
xy wz x z yz wx
xz wy yz wx x y

− − − + 
 = + − − − 
 − + − − 

qR . (4.60)

4.6.3 Spherical Linear Interpolation

Because quaternions are represented by vectors, they are well suited for interpo-
lation. When an object is being animated, interpolation is useful for generating
intermediate orientations that fall between precalculated key frames.
 The simplest type of interpolation is linear interpolation. For two unit qua-
ternions 1q and 2q , the linearly interpolated quaternion ()tq is given by

 () () 1 21t t t= − +q q q . (4.61)

The function ()tq changes smoothly along the line segment connecting 1q and 2q
as t varies from 0 to 1. As shown in Figure 4.7, ()tq does not maintain the unit
length of 1q and 2q , but we can renormalize at each point by instead using the
function

 () ()
()

1 2

1 2

1
1

t tt
t t

− +
=

− +
q q

q
q q

. (4.62)

()tq

1q

2q

()
()
t
t

q
q

Figure 4.7. Linear interpolation of quaternions.

4.6 Quaternions 87

t

θ

()()1
1cos t− ⋅q q

Figure 4.8. Graph of ()()1

1cos t− ⋅q q , where ()tq is the normalized linear interpolation
function given by Equation (4.62).

Now we have a function that traces out the arc between 1q and 2q , shown in Fig-
ure 4.7 as a two-dimensional cross-section of what is actually occurring on the
surface of the four-dimensional unit hypersphere.
 Although linear interpolation is efficient, it has the drawback that the func-
tion ()tq given by Equation (4.62) does not trace out the arc between 1q and 2q at
a constant rate. The graph of ()()1

1cos t− ⋅q q shown in Figure 4.8 demonstrates
that the rate at which the angle between ()tq and 1q changes is relatively slow at
the endpoints where 0t = and 1t = , and is the fastest where 1

2t = .
 We would like to find a function ()tq that interpolates the quaternions 1q and

2q , preserves unit length, and sweeps through the angle between 1q and 2q at a
constant rate. If 1q and 2q are separated by an angle θ , then such a function would
generate quaternions forming the angle θt between ()tq and 1q as t varies from 0
to 1.
 Figure 4.9 shows the quaternion ()tq lying on the arc connecting 1q and 2q ,
forming the angle θt with 1q , and forming the angle ()1θ t− with 2q . We can
write ()tq as

 () () ()1 2t a t b t= +q q q (4.63)

by letting ()a t and ()b t represent the lengths of the components of ()tq lying
along the directions 1q and 2q . As shown in Figure 4.9(a), we can determine the
length ()a t by constructing similar triangles. The perpendicular distance from 1q
to the line segment connecting the origin to 2q is equal to 1 sinθq . The perpen-

88 4. Transforms

dicular distance from ()tq to this line segment is equal to () ()sin 1t θ t−q . Using
similar triangles, we have the relation

 () () ()
1 1

sin 1
sin

a t t θ t
θ

−
=

q

q q
. (4.64)

Since 1 1=q and () 1t =q , we can simplify this to

 () ()sin 1
sin
θ ta t
θ
−

= . (4.65)

θt
()1θ t−

()a t

sinθ

()sin 1θ t−

1q

2q

()tq

O

θt
()1θ t−

1q

2q

()tq

O ()b t

sinθ

sinθt

(a)

(b)

Figure 4.9. Similar triangles can be used to determine the length of (a) the component of

()tq that lies along the direction of 1q and (b) the component of ()tq that lies along the
direction of 2q .

Chapter 4 Summary 89

Figure 4.9(b) shows the same procedure used to find the length ()b t , which is
given by

 () sin
sin
θtb t
θ

= . (4.66)

 We can now define the spherical linear interpolation function ()tq as
follows.

 () ()
1 2

sin 1 sin
sin sin
θ t θtt
θ θ
−= +q q q (4.67)

The angle θ is given by

 ()1
1 2cosθ −= ⋅q q , (4.68)

and thus, sinθ can be replaced by

 () 2
1 2sin 1θ = − ⋅q q (4.69)

if desired. Since the quaternions q and −q represent the same rotation, the signs
of the quaternions 1q and 2q are usually chosen such that 1 2 0⋅ ≥q q . This also
ensures that the interpolation takes place over the shortest path.

Chapter 4 Summary

Orthogonal Matrices

An invertible n n× matrix M is called orthogonal if and only if 1 T− =M M . A ma-
trix whose columns form an orthonormal set of vectors is orthogonal. Orthogonal
matrices preserve lengths and angles, and thus perform only rotations and
reflections.

Scaling Transforms

A scaling operation in three dimensions is performed using the transformation
matrix

0 0

0 0 .
0 0

a
b

c

 
 
 
  

90 4. Transforms

If a b c= = , then this matrix represents a uniform scale, which can also be per-
formed using scalar multiplication.

Rotation Transforms

Rotations through an angle θ about the x, y, and z axes are performed using the
following transformation matrices.

()

()

()

1 0 0
0 cos sin
0 sin cos
cos 0 sin

0 1 0
sin 0 cos

cos sin 0
sin cos 0

0 0 1

x

y

z

θ θ θ
θ θ

θ θ
θ

θ θ
θ θ

θ θ θ

 
 = − 
  
 
 =  
−  

− 
 =  
  

R

R

R

A rotation through an angle θ about an arbitrary axis A is performed using the
transformation matrix

 ()
() () ()

() () ()
() () ()

2

2

2

1 1 1
1 1 1
1 1 1

x x y z x z y

x y z y y z x

x z y y z x z

c c A c A A sA c A A sA
θ c A A sA c c A c A A sA

c A A sA c A A sA c c A

+ − − − − + 
 = − + + − − − 
 − − − + + − 

AR ,

where cosc θ= and sins θ= .

Homogeneous Coordinates

A vector P representing a three-dimensional point is extended to four-
dimensional homogeneous coordinates by setting the w coordinate to 1. A vector
D representing a three-dimensional direction is extended to homogeneous coor-
dinates by setting the w coordinate to 0.

A 3 3× transformation matrix M and a 3D translation vector T can be combined
using the 4 4× transformation matrix

Exercises for Chapter 4 91

11 12 13

21 22 23

31 32 33

0 0 0 1

x

y

z

M M M T
M M M T
M M M T

 
 
 =
 
 
 

F .

Normal vectors must be transformed using the inverse transpose of the matrix
used to transform points.

Quaternions

The unit quaternion corresponding to a rotation through an angle θ about the unit
axis A is given by

 cos sin
2 2
θ θ= +q A .

A quaternion q applies a rotation transformation to a point P using the homo-
morphism 1−′ =P qPq . The transformation performed by the quaternion

, , ,w x y z=q is equivalent to the transformation performed by the 3 3× matrix

2 2

2 2

2 2

1 2 2 2 2 2 2
2 2 1 2 2 2 2
2 2 2 2 1 2 2

y z xy wz xz wy
xy wz x z yz wx
xz wy yz wx x y

− − − + 
 = + − − − 
 − + − − 

qR .

Spherical Linear Interpolation

Two quaternions 1q and 2q are spherically interpolated using the formula

 () ()
1 2

sin 1 sin
sin sin
θ t θtt
θ θ
−= +q q q ,

where 0 1t≤ ≤ .

Exercises for Chapter 4

1. Calculate the 3 3× rotation matrices that perform a rotation of 30 degrees
about the x, y, and z axes.

2. Exhibit a unit quaternion that performs a rotation of 60 degrees about the
axis 0,3,4 .

92 4. Transforms

3. Prove Equation (4.35).

4. Let N be the normal vector to a surface at a point P, and let S and T be tan-
gent vectors at the point P such that × =S T N. Given an invertible 3 3× ma-
trix M, show that () () ()() ()1 Tdet −× = ×MS MT M M S T , supporting the fact
that normals are correctly transformed by the inverse transpose of the matrix
M. [Hint. Use Equation (2.25) to write the cross product () ()×MS MT as

 () ()
() ()

() ()
() ()

0
0

0

z y

z x

y x

− 
 × = − 
−  

MS MS

MS MT MS MS MT

MS MS

.

Then find a matrix G such that

() ()

() ()
() ()

0 0
0 0

0 0

z y z y

z x z x

y x y x

S S
S S
S S

− −   
   − = −   
− −      

MS MS

G MS MS M

MS MS

,

and finally use Equation (3.65) to show that ()()1 Tdet −=G M M .]

 93

Chapter 5

Geometry for 3D Engines

This chapter develops the mathematics that describe lines and planes in three-
dimensional space, and it discusses topics such as finding the intersection of two
such entities and calculating the distance between them. We then introduce the
view frustum and examine some of the important mathematics governing the vir-
tual camera through which we see our game universe.

5.1 Lines in 3D Space

Given two 3D points 1P and 2P , we can define the line that passes through these
points parametrically as

 () () 1 21t t t= − +P P P , (5.1)

where the parameter t ranges over all real numbers. The line segment connecting
1P and 2P corresponds to values of t between 0 and 1.

 A ray is a line having a single endpoint S and extending to infinity in a given
direction V. Rays are typically expressed by the parametric equation

 ()t t= +P S V, (5.2)

where t is allowed to be greater than or equal to zero. This equation is often used
to represent lines as well. Note that this equation is equivalent to Equation (5.1) if
we let 1=S P and 2 1= −V P P .

5.1.1 Distance Between a Point and a Line

The distance d from a point Q to a line defined by the endpoint S and the direc-
tion V can be found by calculating the magnitude of the component of −Q S that
is perpendicular to the line, as shown in Figure 5.1. Using the Pythagorean theo-

94 5. Geometry for 3D Engines

d

S V

Q

−Q S

()proj −V Q S
Figure 5.1. The distance d from a point Q to the line t+S V is found by calculating the
length of the perpendicular component of −Q S with respect to the line.

rem, the squared distance between the point Q and the line can be obtained by
subtracting the square of the projection of −Q S onto the direction V from the
square of −Q S. This gives us

() ()[]

() ()

2 2 2

2
2

2

projd

V

= − − −

− ⋅ = − −   

VQ S Q S

Q S V
Q S V . (5.3)

Simplifying a bit and taking the square root gives us the distance d that we
desire:

 () ()[] 2
2

2d
V

− ⋅
= − −

Q S V
Q S . (5.4)

5.1.2 Distance Between Two Lines

In two dimensions, two lines are either parallel or they intersect at a single point.
In three dimensions, there are more possibilities. Two lines that are not parallel
and do not intersect are called skew. A formula giving the minimum distance be-
tween points on skew lines can be found by using a little calculus.
 Suppose that we have two lines, as shown in Figure 5.2, defined by the par-
ametric functions

()1 1 1 1 1

2 2 2 2 2()
t t
t t

= +
= +

P S V

P S V , (5.5)

5.1 Lines in 3D Space 95

()1 1tP

()2 2tP

() ()1 1 2 2t t−P P

Figure 5.2. The distance between skew lines ()1 1tP and ()2 2tP is calculated by finding
the parameters 1t and 2t minimizing () ()1 1 2 2t t−P P .

where 1t and 2t range over all real numbers. Then the squared distance between a
point on the line ()1 1tP and a point on the line ()2 2tP can be written as the fol-
lowing function of the parameters 1t and 2t .

 () () () 2
1 2 1 1 2 2,f t t t t= −P P (5.6)

Expanding the square and substituting the definitions of the functions ()1 1tP and
()2 2tP gives us

() () () () ()
() ()

()

()

2 2
1 2 1 1 2 2 1 1 2 2

2 2
1 1 1 2 2 2

1 2 1 1 2 2 2 1 1 2 1 2

2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 1 2 2 2 1 1 2 1 2

, 2

2

2 2
2

f t t t t t t
t t

t t t t
S t V t S t V t

t t t t

= + − ⋅

= + + +
− ⋅ + ⋅ + ⋅ + ⋅

= + + ⋅ + + + ⋅
− ⋅ + ⋅ + ⋅ + ⋅

P P P P

S V S V

S S V S V S V V

S V S V

S S V S V S V V . (5.7)

The minimum value attained by the function f can be found by setting partial
derivatives with respect to 1t and 2t equal to zero. This provides us with the
equations

 2
1 1 1 1 1 2 2 1 2

1
2 2 2 2 0f t V t

t
∂ = + ⋅ − ⋅ − ⋅ =
∂

S V V S V V (5.8)

and

 2
2 2 2 2 2 1 1 1 2

2
2 2 2 2 0f t V t

t
∂ = + ⋅ − ⋅ − ⋅ =
∂

S V V S V V . (5.9)

96 5. Geometry for 3D Engines

After removing a factor of two, we can write these equations in matrix form as
follows.

()
()

2
2 11 1 2 1 1

2
2 11 2 2 2 2

V t
V t

− ⋅− ⋅     
=      − ⋅⋅ −     

S S VV V

S S VV V
 (5.10)

Solving this equation for 1t and 2t gives us

()
()

()
()
()

12
2 11 1 1 2 1

2
2 12 1 2 2 2

2
2 12 1 2 1

2 2 2 2
2 11 2 1 2 1 2 1 2

1

t V
t V

V
V V V

− − ⋅− ⋅     
=      − ⋅⋅ −     

− ⋅− ⋅   
=    − ⋅⋅ − − ⋅   

S S VV V

S S VV V

S S VV V

S S VV V V V
. (5.11)

Plugging these values of 1t and 2t back into the function f gives us the minimum
squared distance between the two lines. Taking a square root gives us the actual
distance that we want. If the direction vectors 1V and 2V have unit length, then
Equation (5.11) simplifies a bit since 2

1 1V = and 2
2 1V = .

 If the quantity () 2 2 2
1 2 1 2V V⋅ −V V is zero, then the lines are parallel, in which

case the distance between the two lines is equal to the distance between any point
on one of the lines and the other line. This is illustrated in Figure 5.3. In particu-
lar, we can use Equation (5.3) to measure the distance from the point 1S to the
line ()2 2tP or the distance from the point 2S to the line ()1 1tP .

1S

()1 1tP

()2 2tP

Figure 5.3. The distance between parallel lines is given by the distance from a point on
one line to the other line.

5.2 Planes in 3D Space 97

5.2 Planes in 3D Space

Given a 3D point P and a normal vector N, the plane passing through the point P
and perpendicular to the direction N can be defined as the set of points Q such
that () 0⋅ − =N Q P . As shown in Figure 5.4, this is the set of points whose differ-
ence with P is perpendicular to the normal direction N. The equation for a plane
is commonly written as

 0Ax By Cz D+ + + = , (5.12)

where A, B, and C are the x, y, and z components of the normal vector N, and
D = − ⋅N P. As shown in Figure 5.5, the value D N is the distance by which
the plane is offset from a parallel plane that passes through the origin.
 The normal vector N is often normalized to unit length because in that case
the equation

 d D= ⋅ +N Q (5.13)

gives the signed distance from the plane to an arbitrary point Q. If 0d = , then the
point Q lies in the plane. If 0d > , we say that the point Q lies on the positive side
of the plane since Q would be on the side in which the normal vector points.
Otherwise, if 0d < , we say that the point Q lies on the negative side of the plane.
 It is convenient to represent a plane using a four-dimensional vector. The
shorthand notation , DN is used to denote the plane consisting of points Q satis-
fying 0D⋅ + =N Q . If we treat our three-dimensional points instead as four-

N

Q
P

Figure 5.4. A plane is defined by the set of points Q whose difference with a point P,
known to lie in the plane, is perpendicular to the normal direction N.

98 5. Geometry for 3D Engines

N

O

D N

Figure 5.5. The value of D in Equation (5.12) is proportional to the perpendicular dis-
tance from the origin to the plane.

dimensional homogeneous points having a w coordinate of 1, then Equation
(5.13) can be rewritten as d = ⋅L Q, where , D=L N . A point Q lies in the plane
if 0⋅ =L Q .

5.2.1 Intersection of a Line and a Plane

Finding the point where a line intersects a plane is a common calculation per-
formed by 3D engines. In particular, it is used extensively during polygon clip-
ping, which is discussed in detail in Sections 8.4.1 and 9.2.2.
 Let ()t t= +P S V represent a line containing the point S and running parallel
to the direction V. For a plane defined by the normal direction N and the signed
distance D from the origin, we can find the point where the line intersects the
plane by solving the equation

 () 0t D⋅ + =N P (5.14)

5.2 Planes in 3D Space 99

for t. Substituting t+S V for ()tP gives us

 () 0t D⋅ + ⋅ + =N S N V , (5.15)

and after solving this for t, we arrive at

 ()Dt − ⋅ +=
⋅

N S

N V
. (5.16)

Plugging this value of t back into the line equation ()t t= +P S V produces the
point of intersection. If 0⋅ =N V , then the line is parallel to the plane (the plane
normal N is perpendicular to the line direction V). In this case, the line lies in the
plane itself if 0D⋅ + =N S ; otherwise, there is no intersection.
 We may also express the value of t given in Equation (5.16) in terms of the
four-dimensional representation of a plane. Given a plane , D=L N , we have

 t ⋅= −
⋅

L S

L V
. (5.17)

Since S is a point, its w coordinate is 1. However, since V is a direction vector,
its extension to homogeneous coordinates requires that we assign it a w coordi-
nate of 0 (as discussed in Section 4.4.2). This confirms that Equation (5.17) is
equivalent to Equation (5.16).

5.2.2 Intersection of Three Planes

Regions of space are often defined by a list of planes that form the boundary of a
convex polyhedron. The edges and vertices belonging to this polyhedron can be
found by performing a series of calculations that determine the points at which
sets of three planes intersect.
 Let 1 1 1, D=L N , 2 2 2, D=L N , and 3 3 3, D=L N be three arbitrary planes.
We can find a point Q that lies in all three planes by solving the following
system.

1

2

3

0
0
0

⋅ =
⋅ =
⋅ =

L Q

L Q

L Q (5.18)

This can be written in matrix form as

100 5. Geometry for 3D Engines

1

2

3

D
D
D

− 
 = − 
−  

MQ , (5.19)

where the matrix M is given by

() () ()
() () ()
() () ()

1 1 1

2 2 2

3 3 3

x y z

x y z

x y z

 
 =  
  

N N N

M N N N

N N N

. (5.20)

Assuming that the matrix M is invertible, solving for the point Q as follows pro-
duces the unique point where the three planes intersect.

1

1
2

3

D
D
D

−

− 
 = − 
−  

Q M (5.21)

If M is singular (i.e., det 0=M), then the three planes do not intersect at a point.
This happens when the three normal vectors all lie in the same plane, an example
of which is shown in Figure 5.6.

Figure 5.6. Three planes do not necessarily intersect at a point.

5.2 Planes in 3D Space 101

1N
2N

V
1 2= ×V N N

O

Figure 5.7. Two planes having normal vectors 1N and 2N intersect at a line running in the
direction V. A point on this line can be found by finding the intersection point with a
third plane passing through the origin and having normal V.

 When two nonparallel planes 1 1 1, D=L N and 2 2 2, D=L N intersect, they
do so at a line. As shown in Figure 5.7, the direction V in which the line of inter-
section runs is perpendicular to the normals of both planes and can thus be ex-
pressed by 1 2= ×V N N . To form a complete description of a line, we also need to
provide a point that lies on the line. This can be accomplished by constructing a
third plane 3 ,0=L V that passes through the origin and whose normal direction
is V. We can then solve for the point where all three planes intersect, which is
guaranteed to exist in this situation.
 Using Equation (5.21), we can compute a point Q that lies on the line of in-
tersection as follows.

() () ()
() () ()

1
1 1 1 1

2 2 2 2

0

x y z

x y z

x y z

D
D

V V V

− −   
   = −   
      

N N N

Q N N N (5.22)

The line where the two planes 1L and 2L intersect is given by ()t t= +P Q V.

5.2.3 Transforming Planes

Suppose that we wish to transform a plane using a 3 3× matrix M and a 3D trans-
lation vector T. We know that we can transform the normal direction N using the
inverse transpose of M, but we also have the signed distance from the origin D to
worry about. If we know that a point P lies in the original plane, then we can cal-

102 5. Geometry for 3D Engines

culate the signed distance D′ from the transformed plane to the origin using the
equation

()() ()
()() ()()

1 T

1 T T 1 T T

T 1 T 1

1 .

D

D

−

− −

− −

−

′ = − ⋅ +

= − −

= − −
= − ⋅

M N MP T

M N MP M N T

N M MP N M T

N M T (5.23)

 Recall from Equation (4.27) that the inverse of the 4 4× matrix F constructed
from the 3 3× matrix M and the 3D translation vector T is given by

1 1

1

1

− −
−

 
 − =
 
 
 

M M T
F

0

. (5.24)

We therefore have for the transpose of 1−F

 () ()1 T
1 T

1 1

−
−

−

 
 
 =
 
 − 

M 0
F

M T

. (5.25)

The quantity 1D −− ⋅N M T is exactly the dot product between the fourth row of
()1 T−F and the 4D vector , , ,x y z DN N N . This shows that we may treat planes as
four-dimensional vectors that transform in the same manner as three-dimensional
normal vectors, except that we use the inverse transpose of the 4 4× transfor-
mation matrix. Thus, the plane , D=L N transforms using the 4 4× matrix F as

 ()1 T−′ =L F L. (5.26)

5.3 The View Frustum

Figure 5.8 shows the view frustum, the volume of space containing everything
that is visible in a three-dimensional scene. The view frustum is shaped like a
pyramid whose apex lies at the camera position. It has this shape because it rep-
resents the exact volume that would be visible to a camera that is looking through

5.3 The View Frustum 103

C
n

f

Figure 5.8. The view frustum encloses the space bounded by the near plane lying at a
distance n from the camera, the far plane lying at a distance f from the camera, and four
side planes that pass through the camera position C.

a rectangular window—the computer screen. The view frustum is bounded by six
planes, four of which correspond to the edges of the screen and are called the left,
right, bottom, and top frustum planes. The remaining two planes are called the
near and far frustum planes, and define the minimum and maximum distances at
which objects in a scene are visible to the camera.
 The view frustum is aligned to camera space. Camera space, also called eye
space, is the coordinate system in which the camera lies at the origin, the x axis
points to the right, and the y axis points upward. The direction in which the z axis
points depends on the 3D graphics library being used. Within the OpenGL li-
brary, the z axis points in the direction opposite that in which the camera points.
This forms a right-handed coordinate system and is shown in Figure 5.9. (Under
Direct3D, the z axis points in the same direction that the camera points and forms
a left-handed coordinate system.)

5.3.1 Field of View

The projection plane, shown in Figure 5.10, is a plane that is perpendicular to the
camera’s viewing direction and lies at the distance e from the camera where the
left and right frustum planes intersect it at 1x = − and 1x = . The distance e, which
is sometimes called the focal length of the camera, depends on the angle α

104 5. Geometry for 3D Engines

O

x

y

z
Figure 5.9. Camera space in OpenGL.

x

z

2
α

2
α

1x = − 1x =

e

Figure 5.10. The distance e from the camera to the projection plane depends on the hori-
zontal field of view angle α.

5.3 The View Frustum 105

formed between the left and right frustum plane. The angle α is called the hori-
zontal field of view angle.
 For a desired horizontal field of view α, the distance e to the projection plane
is given by the trigonometric relation

()
1

tan 2
e

α
= . (5.27)

Larger fields of view are equivalent to shorter focal lengths. A camera can be
made to “zoom in” by diminishing the field of view angle, thus causing a longer
focal length.
 The aspect ratio of a display screen is equal to its height divided by its width.
For example, a 640 480× pixel display has an aspect ratio of 0.75. Since most
displays are not square, but rectangular, the vertical field of view is not equal to
the horizontal field of view. The bottom and top frustum planes intersect the pro-
jection plane at y a= ± , where a is the aspect ratio of the display. This forms the
triangle shown in Figure 5.11, and thus the vertical field of view angle β is given
by

 ()12 tanβ a e−= . (5.28)

 The four side planes of the view frustum carve a rectangle out of the projec-
tion plane at a distance e from the camera whose edges lie at 1x = ± and y a= ± .

z

y

e

y a=

y a= −

2
β

2
β

Figure 5.11. The vertical field of view angle β depends on the aspect ratio a.

106 5. Geometry for 3D Engines

x

z

O

0,0,1

0,0, 1−

,0, 1e − ,0, 1e− −

Left Plane Ri
gh

t P
lan

e

Near Plane

Far Plane

Figure 5.12. View frustum plane normal directions in OpenGL camera space.

The OpenGL function glFrustum() requires that we specify a rectangle at the
distance n from the camera, where n is the near plane distance. Scaling our rec-
tangle by a factor of n e, we place the left edge at x n e= − , the right edge at
x n e= , the bottom edge at y an e= − , and the top edge at y an e= .

5.3.2 Frustum Planes

The camera-space normal directions for the six view frustum planes are shown in
Figure 5.12. The inward-pointing normal directions for the four side planes are
found by rotating the directions along which the sides point 90 degrees toward
the center of the frustum. The four side planes each pass through the origin, so
they each have 0D = . The near plane lies at a distance n from the origin in the
same direction in which its normal points, so it has D n= − . The far plane lies at a

5.4 Perspective-Correct Interpolation 107

distance f from the origin in the opposite direction in which its normal points, so
it has D f= . The four-dimensional plane vectors corresponding to the six sides
of the view frustum are summarized in Table 5.1. In this table, the normal direc-
tions for the four side planes have been normalized to unit length.

Plane , DN

Near 0,0, 1, n− −

Far 0,0,1, f

Left
2 2

1,0, ,0
1 1

e
e e

−
+ +

Right
2 2

1,0, ,0
1 1

e
e e

− −
+ +

Bottom
2 2 2 2

0, , ,0e a
e a e a

−
+ +

Top
2 2 2 2

0, , ,0e a
e a e a

− −
+ +

Table 5.1. View frustum plane vectors in OpenGL camera space in terms of the focal
length e, the aspect ratio a, the near plane distance n, and the far plane distance f.

5.4 Perspective-Correct Interpolation

When a 3D graphics processor renders a triangle on the screen, it rasterizes it one
scanline at a time. The vertices of a triangle, in addition to their positions in cam-
era space, carry information such as lighting colors and texture mapping coordi-
nates, which must be interpolated across the face of the triangle. When a single
scanline of a triangle is drawn, the information at each pixel is an interpolated
value derived from the values known at the left and right endpoints.
 As shown in Figure 5.13, correct interpolation across the face of a triangle is
not linear since equally spaced steps taken on the projection plane correspond to
larger steps taken on the face of a triangle as the distance from the camera in-
creases. Graphics processors must use a nonlinear method of interpolation for
texture-mapping coordinates to avoid distortion of the texture map. Although
modern hardware now interpolates other types of information associated with a

108 5. Geometry for 3D Engines

Figure 5.13. Equally spaced steps taken on the projection plane correspond to larger
steps taken on the face of a triangle as the distance from the camera increases. Thus, cor-
rect interpolation across the face of a triangle is not linear.

vertex, such as lighting colors, older graphics cards simply use linear interpola-
tion since the difference is not as noticeable as it is with texture maps.

5.4.1 Depth Interpolation

It is important to note that the z coordinates (representing the depth) of points on
the face of a triangle are interpolated linearly by 3D graphics hardware, contrary
to the perspective-correct method presented in this section. An explanation for
this follows in Section 5.5.1, which discusses the perspective projection matrix.
 Figure 5.14 shows a line segment lying in the x-z plane that corresponds to a
single scanline of a triangle. During rasterization, points on this line segment are
sampled by casting rays through equally spaced points on the projection plane,
which represent pixels on the display screen. Assuming that the segment does not
belong to a line that passes through the origin (in which case the triangle would
be viewed edge-on and would thus not be visible), we can describe the line with
the equation

 ax bz c+ = , (5.29)

where 0c ≠ .

5.4 Perspective-Correct Interpolation 109

x

z

e

1,p e−
2 ,p e−

1 1,x z

2 2,x z

O

Figure 5.14. The line segment corresponding to a single scanline of a triangle is sampled
by casting rays through equally spaced points on the projection plane.

 Given a point ,x z that lies on the line, we can cast a ray from the origin (the
camera position) to the point ,x z and determine where it intersects the projec-
tion plane. The z coordinate at the projection plane is always equal to e− . We can
find the x coordinate p on the projection plane corresponding to the point ,x z by
using the following relationship derived from the similar triangles shown in
Figure 5.14.

 p e
x z

−= (5.30)

Solving this for x and it plugging back into Equation (5.29) lets us rewrite our
line equation as follows.

 ap b z c
e

 − + = 
 

 (5.31)

It is convenient for us to manipulate this equation further by writing it in such a
way that 1 z appears on one side:

 1 ap b
z ce c

= − + . (5.32)

110 5. Geometry for 3D Engines

 Let us call the endpoints of the line segment 1 1,x z and 2 2,x z , and their
images on the projection plane 1,p e− and 2 ,p e− . Let ()3 1 21p t p tp= − + , for
some t satisfying 0 1t≤ ≤ , be the x coordinate of an interpolated point on the pro-
jection plane. We would like to find the z coordinate of the point 3 3,x z where
the ray cast through the point 3 ,p e− intersects the face of the triangle. Plugging

()3 1 21p t p tp= − + and 3z into Equation (5.32) gives us

()

()

()

3

3

1 2

1 2

1 2

1

1

1

1 11 .

ap b
z ce c

ap ap bt t
ce ce c
ap b ap bt t
ce c ce c

t t
z z

= − +

= − − − +

   = − + − + − +   
   

= − + (5.33)

This result demonstrates that the reciprocal of the z coordinate is correctly inter-
polated in a linear manner across the face of a triangle.

5.4.2 Vertex Attribute Interpolation

Vertices carry information such as lighting colors and texture mapping coordi-
nates that from here on are collectively referred to as vertex attributes. Each ver-
tex attribute must be interpolated across the face of a triangle when it is raster-
ized. Suppose that the endpoints of a scanline have depth values of 1z and 2z , and
possess scalar attributes 1b and 2b , respectively. We would expect the interpolated
attribute value 3b to form the same proportion with the total difference along the
line segment as does the interpolated depth value 3z . That is, the equation

 3 1 3 1

2 1 2 1

b b z z
b b z z

− −=
− −

 (5.34)

should be satisfied. Substituting the value

()

3

1 2

1
1 11

z
t t

z z

=
− +

 (5.35)

given by Equation (5.33) and solving for 3b gives us

5.5 Projections 111

 ()
()

1 2 2 1
3

2 1

1
1

b z t b z tb
z t z t

− +
=

− +
. (5.36)

Multiplying the numerator and denominator by 1 21 z z allows us to extract a fac-
tor of 3z from the right-hand side of the equation as follows.

()

()

()

1 2

1 2
3

1 2

1 2
3

1 2

1

1 11

1

b bt t
z zb

t t
z z

b bz t t
z z

− +
=

− +

 = − +  
 (5.37)

This demonstrates that the value b z can be linearly interpolated across the face
of a triangle. Graphics processors first calculate the linearly interpolated value of
1 z when rasterizing a scanline. The reciprocal is then calculated and multiplied
by the linearly interpolated value of b z to obtain the perspective-correct interpo-
lated value of any vertex attribute b.

5.5 Projections

To render a three-dimensional scene on a two-dimensional display screen, we
need to determine where on the screen each vertex in the scene should be drawn.
As we have already seen, we can determine where a vertex located at a position P
falls on the projection plane by calculating where the ray cast from the origin
toward the point P intersects it. The x and y coordinates of the projected point are
given by the formulas

 x
z

ex P
P

= − and y
z

ey P
P

= − . (5.38)

(Remember that the value of zP is negative since the camera points in the nega-
tive z direction.)
 Applying the above formula to the z coordinate would always result in a pro-
jected depth of e− . Useful depth information is needed, however, to perform hid-
den surface removal, so 3D graphics systems instead use homogeneous coordi-
nates to project vertices in four-dimensional space.

112 5. Geometry for 3D Engines

5.5.1 Perspective Projections

A perspective projection that maps x and y coordinates to the correct place on the
projection plane while maintaining depth information is achieved by mapping the
view frustum to a cube, as shown in Figure 5.15. This cube is the projection into
3D space of what is called homogeneous clip space. It is centered at the origin in
OpenGL and extends from negative one to positive one on each of the x, y, and z
axes. The mapping to homogenous clip space is performed by first using a 4 4×
projection matrix that, among other actions, places the negative z coordinate of a
camera-space point into the w coordinate of the transformed point. Subsequent
division by the w coordinate produces a three-dimensional point having normal-
ized device coordinates.
 Let , , ,1x y zP P P=P be a homogeneous point in camera space that lies inside
the view frustum. The OpenGL function glFrustum() takes as parameters the
left edge x l= , the right edge x r= , the bottom edge y b= , and the top edge y t=
of the rectangle carved out of the near plane by the four side planes of the view
frustum. The near plane lies at z n= − , so we can calculate the projected x and y
coordinates of the point P on the near plane using the equations

 x
z

nx P
P

= − and y
z

ny P
P

= − . (5.39)

Any point in lying in the view frustum satisfies l x r≤ ≤ and b y t≤ ≤ on the near
plane. We want to map these ranges to the []1,1− range needed to fit the view

Figure 5.15. The perspective projection maps the view frustum to the cube representing
homogeneous clip space.

5.5 Projections 113

frustum into homogeneous clip space. This can be accomplished using the simple
linear functions

 () 2 1x x l
r l

′ = − −
−

 (5.40)

and

 () 2 1y y b
t b

′ = − −
−

. (5.41)

Substituting the values of x and y given in Equation (5.39) and simplifying yields

 2 x

z

n P r lx
r l P r l

+ ′ = − − − − 
 (5.42)

and

 2 y

z

Pn t by
t b P t b

+ ′ = − − − − 
. (5.43)

 Mapping the projected z coordinate to the range []1,1− involves somewhat
more complex computation. Since the point P lies inside the view frustum, its z
coordinate must satisfy zf P n− ≤ ≤ − , where n and f are the distances from the
camera to the near and far planes, respectively. We wish to find a function that
maps 1n− → − and 1f− → . (Note that such a mapping reflects the z axis; there-
fore, homogeneous clip space is left-handed.) Since z coordinates must have their
reciprocals interpolated during rasterization, we construct this mapping function
so that it is a function of 1 z, consequently allowing projected depth values to be
interpolated linearly. Our mapping function thus has the form

 Az B
z

′ = + . (5.44)

We can solve for the unknowns A and B by plugging in the known mappings
1n− → − and 1f− → to get

 1 A B
n

− = +
−

 and 1 A B
f

= +
−

. (5.45)

A little algebra yields the following values for A and B:

114 5. Geometry for 3D Engines

 2nfA
f n

=
−

 and f nB
f n

+=
−

. (5.46)

The z coordinate is thus mapped to the range []1,1− by the function

 2 1
z

nf f nz
f n P f n

+ ′ = − − + − − 
. (5.47)

 Equations (5.42), (5.43), and (5.47) each contain a division by zP− . The 3D
point , ,x y z′ ′ ′ ′=P is equivalent to the 4D homogeneous point

 , , ,z z z zx P y P z P P′ ′ ′ ′= − − − −P (5.48)

after division by the w coordinate. Since the values of zx P′− , zy P′− , and zz P′− giv-
en by the equations

 2
z x z

n r lx P P P
r l r l

+′− = +
− −

, (5.49)

 2
z y z

n t by P P P
t b t b

+′− = +
− −

, (5.50)

and

 2
z z

f n nfz P P
f n f n

+′− = − −
− −

 (5.51)

are linear functions of the coordinates of the point P, we can use a 4 4× matrix
frustumM to calculate the point ′P as follows.

 frustum

2 0 0

20 0

20 0
1

0 0 1 0

x

y

z

n r l
r l r l

Pn t b
Pt b t b

f n nf P
f n f n

+ 
 − −
 

+   
  − −   ′ = =

+   − −   − −   
 −  

P M P (5.52)

5.5 Projections 115

 The matrix frustumM in Equation (5.52) is the OpenGL perspective projection
matrix generated by the glFrustum() function. Camera-space points are trans-
formed by this matrix into homogeneous clip space in such a way that the w co-
ordinate holds the negation of the original camera-space z coordinate. When in-
terpolating vertex attributes (see Section 5.4.2), it is actually this w coordinate
whose reciprocal is interpolated, serving as the value of z in Equation (5.37).
 Figure 5.16 illustrates how the depth in the z coordinate is mapped from
camera space to normalized device coordinates (NDC) by the standard projection
matrix given by Equation (5.52) and the division by the projected w coordinate.
The z coordinates inside the view frustum (i.e., points between the near and far
planes) in camera space are mapped to the range []1,1− in NDC. Interestingly, the
infinite range of z coordinates beyond the far plane in camera space is com-
pressed into the finite range ()1, f n

f n
+
− in NDC, and the finite range of z coordinates

closer to the camera than the near plane in camera space is expanded to the infi-
nite range (), 1−∞ − in NDC. All of the points behind the camera actually get
moved, counterintuitively, to the range (),f n

f n
+
− ∞ in front of the camera in NDC.

n−

2 fn
f n

−
+

f−

0

f n
f n
+
−

0

1

1−

∞

−∞

Behind
Camera

Behind
Camera

Camera Space
Normalized

Device Coordinates

View
Frustum

View
Frustum

Beyond
Far Plane

Beyond
Far Plane

Closer Than
Near Plane

z+

z+

Figure 5.16. This diagram illustrates how z coordinates are mapped from camera space to
normalized device coordinates by the standard perspective projection matrix.

116 5. Geometry for 3D Engines

 It is possible to construct a view frustum that is not bounded in depth by al-
lowing the far plane distance f to tend to infinity. The resulting projection matrix

infiniteM is given by

 infinite frustum

2 0 0

20 0lim

0 0 1 2
0 0 1 0

f

n r l
r l r l

n t b
t b t b

n
→∞

+ 
 − −
 + = =  − −
 − − 
 − 

M M . (5.53)

This is a perfectly valid projection matrix that allows objects to be rendered at
any depth greater than or equal to n. Furthermore, it allows vertices having a w
coordinate of 0 to be rendered correctly. The interpretation of a camera-space
point , , ,0x y zQ Q Q=Q is that of a point that lies infinitely far from the camera
in the direction , ,x y zQ Q Q . Transforming Q with the matrix infiniteM gives us

 infinite

2 20 0

2 20 0

0 0 1 2 0
0 0 1 0

x z
x

y
y z

z

z

z

n r l n r lQ QQr l r l r l r l
n t b Q n t bQ Q

t b t b t b t bQ
n Q

Q

+ +   +    − − − −
    + +     += =   − − − − 
    − − −    
   − −   

M Q , (5.54)

which produces a projected point having the maximum z coordinate of 1 after
division by its w coordinate. This ability to project points lying at infinity is re-
quired by the shadow-rendering technique described in Chapter 10.

5.5.2 Orthographic Projections

An orthographic projection, also known as a parallel projection, is one in which
no perspective distortion occurs. As shown in Figure 5.17, camera-space points
are always mapped to the projection plane by casting rays that are parallel to the
camera’s viewing direction.
 The view volume for an orthographic projection is defined by a rectangle
lying in the x-y plane and near and far plane distances. Since there is no perspec-
tive distortion, depth values for a triangle in an orthographic projection can be
interpolated linearly. Thus, our mapping to normalized device coordinates can be

5.5 Projections 117

x

z

x l= x r=
z f= −

z n= −
Figure 5.17. In an orthographic projection, points are simply moved to the projection
plane along the camera’s viewing axis.

performed linearly on all three axes. The functions mapping the x and y coordi-
nates from the ranges [],l r and [],b t to the range []1,1− are given by

 2 r lx x
r l r l

+′ = −
− −

 (5.55)

and

 2 t by y
t b t b

+′ = −
− −

. (5.56)

In a similar manner, but negating z so that 1n− → − and 1f− → , we can map the
z coordinate from the range [],f n− − to the range []1,1− using the function

 2 f nz z
f n f n
− +′ = −
− −

. (5.57)

Writing these three functions in matrix form gives us

118 5. Geometry for 3D Engines

 ortho

2 0 0

20 0

20 0
1

0 0 0 1

x

y

z

r l
r l r l

Pt b
Pt b t b

f n P
f n f n

+ − − −
 

+   −   − −   ′ = =
− +   −   − −   

 
  

P M P . (5.58)

 The matrix orthoM in Equation (5.58) is the OpenGL orthographic projection
matrix generated by the glOrtho() function. Note that the w coordinate re-
mains 1 after the transformation, and thus no perspective projection takes place.

5.5.3 Extracting Frustum Planes

It is remarkably simple to extract the four-dimensional vectors corresponding to
the six camera-space view frustum planes from an arbitrary projection matrix M.
The technique presented here derives from the fact that the planes are always the
same in clip space. They are actually rather trivial since, as shown in Figure 5.18,
each plane’s normal is parallel to one of the principal axes.

1x = − 1x =

1z = −

1z =

0,0, 1−

0,0,1

1,0,0 1,0,0−

Figure 5.18. These are the normal vectors for the left, right, near, and far planes bound-
ing the cube-shaped homogeneous clip space. The normal vectors for the top and bottom
planes point in and out of the page.

5.5 Projections 119

 Let ′L be one of the six planes that bound clip space. The inverse of the ma-
trix M transforms from clip space into camera space. Since planes are trans-
formed by the inverse transpose of a matrix, the camera-space plane L corre-
sponding to the clip space plane ′L is given by

 ()1 1 T T− − ′ ′= =  L M L M L . (5.59)

The clip-space plane vectors are listed in Table 5.2. Since each plane vector con-
tains two nonzero entries, and these entries are all 1± , we can write each camera-
space view frustum plane as a sum or difference of two columns of the matrix

TM , which is equivalent to the sum or difference of two rows of the matrix M.

Plane , DN

Near 0,0,1,1

Far 0,0, 1,1−

Left 1,0,0,1

Right 1,0,0,1−

Bottom 0,1,0,1

Top 0, 1,0,1−

Table 5.2. Clip-space plane vectors.

 Using the notation iM to represent row i of the matrix M, we have the fol-
lowing formulas for the camera-space view frustum planes. These do not produce
plane vectors having unit normals, so they need to be rescaled.

4 3

4 3

4 1

4 1

4 2

4 2

near
far
left

right
bottom

top

= +
= −
= +
= −
= +
= −

M M

M M

M M

M M

M M

M M (5.60)

These equations are valid for any projection matrix, with the exception of the far
plane for the infinite projection matrix given by Equation (5.53). It should be

120 5. Geometry for 3D Engines

noted, however, that if the focal length and aspect ratio are known for a particular
view frustum, then the formulas in Table 5.1 provide a significantly more effi-
cient way of calculating normalized frustum planes.

5.6 Reflections and Oblique Clipping

Many scenes contain a reflective surface such as a mirror or a body of water for
which a reflection image needs to be rendered. The typical way in which reflec-
tions are shown in a scene is to establish a separate image buffer called the re-
flection buffer to hold the result of rendering the objects in the scene that are vis-
ible in the reflection. The reflected scene is first rendered into the reflection buff-
er, and then the main scene is rendered into the main image buffer. When the ge-
ometry representing the reflective surface is rendered, colors from the corre-
sponding pixels in the reflection buffer are read and used to contribute to the final
image.
 The reflected scene is rendered through a virtual camera that is the reflection
of the main camera through the plane of the reflection, as shown in Figure 5.19.

y

z

z

y

Reflection plane

Figure 5.19. The upper view frustum represents the actual camera rendering a scene that
contains a reflection plane. The virtual camera used to render the reflection is represented
by the lower view frustum, and it is itself a reflection of the upper view frustum. The x
axis points out of the page for both view frustums, and consequently, the camera-space
coordinate system for the camera rendering the reflection is left-handed.

5.6 Reflections and Oblique Clipping 121

Since this virtual camera is a reflection, the coordinate system changes from
right-handed to left-handed, and some steps need to be taken in order to account
for this. In OpenGL, it is convenient to call the glFrontFace() function to re-
verse the winding order of front-facing triangles for culling purposes.
 In the process of rendering from a virtual camera, it is possible that geometry
lies closer to the camera than the plane representing the reflective surface. This
typically happens when an object straddles the reflection plane and parts on the
opposite side of the plane are flipped backwards in the reflection. If such geome-
try is rendered in the reflection, it can lead to unwanted artifacts in the final im-
age, as shown in Figure 5.20.
 The simplest solution to this problem is to enable a user-defined clipping
plane to truncate all geometry at the reflective surface. Unfortunately, even
though most GPUs support generalized user-defined clipping operations, using
them requires that the vertex or fragment programs be modified—a task that may
not be convenient since it necessitates two versions of each program be kept
around to render a particular geometry. Furthermore, the necessary modifications
tend to be slightly different across various GPUs.

A B C

Figure 5.20. In this scene, a reflection is rendered about a plane coincident with the water surface.
In the left image, no clipping is performed at the reflection plane, and multiple artifacts appear. At
locations A and B, the portions of the posts that extend below the water surface are seen extending
upwards in the reflection. At location C, some polygons belonging to submerged terrain are visible
in the reflection. As shown in the right image, clipping at the reflection plane removes these
unwanted artifacts. (Image from the C4 Engine, courtesy of Terathon Software LLC.)

122 5. Geometry for 3D Engines

 In this section, we describe a trick that exploits the view frustum clipping
planes that already exist for every rendered scene.1 Normally, every geometric
primitive is clipped to the six sides of the view frustum by the graphics hardware.
Adding a seventh clipping plane that represents the reflective surface almost al-
ways results in a redundancy with the near plane, since we are now clipping
against a plane that slices through the view frustum further away from the cam-
era. Instead, we look for a way to modify the projection matrix so that the con-
ventional near plane is repositioned to coincide with the reflective surface, which
is generally oblique to the ordinary view frustum. Since we are still clipping only
against six planes, such a modification gives us our desired result at absolutely no
performance cost.
 Let , , ,x y z wC C C C=C be the plane shown in Figure 5.21, having coordi-
nates specified in camera space, to which we would like to clip our geometry.
The camera should lie on the negative side of this clipping plane, so we can as-
sume that 0wC < . The plane C will replace the ordinary near plane of the view
frustum. As shown in Table 5.2, the camera-space near plane is given by the sum
of the last two rows of the projection matrix M, so we must somehow satisfy

 4 3= +C M M . (5.61)

We cannot modify the fourth row of the projection matrix because perspective
projections use it to move the negation of the z coordinate into the w coordinate,

Near plane

Far plane

O

C

Figure 5.21. The near plane of the view frustum is replaced with the arbitrary plane C.

1 For a more detailed analysis, see Eric Lengyel, “Oblique Depth Projection and View
Frustum Clipping”, Journal of Game Development, Vol. 1, No. 2 (Mar 2005), pp. 5–16.

5.6 Reflections and Oblique Clipping 123

and this is necessary for perspective-correct interpolation of vertex attributes.
Thus, we are left with no choice but to replace the third row of the projection ma-
trix with

 3 4′ = −M C M . (5.62)

 After making the replacement shown in Equation (5.62), the far plane F of
the view frustum becomes

4 3

42
′= −

= −
F M M

M C . (5.63)

This fact presents a significant problem for perspective projections because the
near plane and far plane are no longer parallel if either xC or yC is nonzero. This
is extremely unintuitive and results in a view frustum having a very undesirable
shape. By observing that any point , ,0,x y w=P for which 0⋅ =C P implies that
we also have 0⋅ =F P , we can conclude that the intersection of the near and far
planes occurs in the x-y plane, as shown in Figure 5.22(a).
 Since the maximum projected depth of a point is achieved at the far plane,
projected depth no longer represents the distance along the z axis, but rather a
value corresponding to the position between the new near and far planes. This
has a severe impact on depth-buffer precision along different directions in the
view frustum. Fortunately, we have a recourse for minimizing this effect, and it is
to make the angle between the near and far planes as small as possible. The plane
C possesses an implicit scale factor that we have not yet restricted in any way.
Changing the scale of C causes the orientation of the far plane F to change, so we
need to calculate the appropriate scale that minimizes the angle between C and F
without clipping any part of the original view frustum, as shown in Figure
5.22(b).
 Let ()1 T−′ =C M C be the projection of the new near plane into clip space (us-
ing the original projection matrix M). The corner ′Q of the view frustum lying
opposite the plane ′C is given by

 () ()sgn ,sgn ,1,1x yC C′ ′ ′=Q . (5.64)

(For most perspective projections, it is safe to assume that the signs of xC′ and yC′
are the same as xC and yC , so the projection of C into clip space can be avoided.)
Once we have determined the components of ′Q , we obtain its camera-space
counterpart Q by computing 1− ′=Q M Q . For a standard view frustum, Q coin-

124 5. Geometry for 3D Engines

C

F

uC

Q

F

(a)

(b)

x

x

Figure 5.22. (a) The modified far plane F given by Equation (5.63) intersects the modi-
fied near plane C in the x-y plane. (b) Scaling the near plane C by the value u given by
Equation (5.66) adjusts the far plane so that the angle between the near and far planes is
as small as possible without clipping any part of the original view frustum. The shaded
area represents the volume of space that is not clipped by the modified view frustum.

cides with the point furthest from the plane C where two side planes meet the far
plane.
 To force the far plane to contain the point Q, we must require that 0⋅ =F Q .
The only part of Equation (5.63) that we can modify is the scale of the plane C,
so we introduce a factor u as follows:

 42 u= −F M C. (5.65)

5.6 Reflections and Oblique Clipping 125

Solving the equation 0⋅ =F Q for u yields

 42u ⋅=
⋅

M Q

C Q
. (5.66)

Replacing C with uC in Equation (5.62) gives us

 3 4u′ = −M C M , (5.67)

and this produces the optimal far plane orientation shown in Figure 5.22(b). For
perspective projection matrices, we have 4 0,0, 1,0= −M , so Equation (5.67)
simplifies to

 3
2 0,0,1,0zQ−′ = +
⋅

M C
C Q

. (5.68)

 Equation (5.68) is implemented in Listing 5.1. It should be noted that this
technique for optimizing the far plane also works correctly in the case that M is
the infinite projection matrix given by Equation (5.53) by forcing the new far
plane to be parallel to one of the edges of the view frustum where two side planes
meet. (See Exercise 7.)

Listing 5.1. The ModifyProjectionMatrix() function modifies the standard OpenGL per-
spective projection matrix so that the near plane of the view frustum is moved to coincide with a
given arbitrary plane specified by the clipPlane parameter.

inline float sgn(float x)

{

 if (x > 0.0F) return (1.0F);

 if (x < 0.0F) return (-1.0F);

 return (0.0F);

}

void ModifyProjectionMatrix(const Vector4D& clipPlane)

{

 float matrix[16];

 Vector4D q;

 // Grab the current projection matrix from OpenGL.

 glGetFloatv(GL_PROJECTION_MATRIX, matrix);

126 5. Geometry for 3D Engines

 // Calculate the clip-space corner point opposite the clipping plane

 // using Equation (5.64) and transform it into camera space by

 // multiplying it by the inverse of the projection matrix.

 q.x = (sgn(clipPlane.x) + matrix[8]) / matrix[0];

 q.y = (sgn(clipPlane.y) + matrix[9]) / matrix[5];

 q.z = -1.0F;

 q.w = (1.0F + matrix[10]) / matrix[14];

 // Calculate the scaled plane vector using Equation (5.68)

 // and replace the third row of the projection matrix.

 Vector4D c = clipPlane * (2.0F / Dot(clipPlane, q));

 matrix[2] = c.x;

 matrix[6] = c.y;

 matrix[10] = c.z + 1.0F;

 matrix[14] = c.w;

 // Load it back into OpenGL.

 glMatrixMode(GL_PROJECTION);

 glLoadMatrix(matrix);

}

Chapter 5 Summary

Lines

A line passing through the point 0P and running parallel to the direction V is ex-
pressed as

 () 0t t= +P P V.

The distance from a point Q to the line ()tP is given by

 () ()[] 2
2 0

0 2d
V

− ⋅
= − −

Q P V
Q P .

Planes

A plane having normal direction N and containing the point 0P is expressed as

 0D⋅ + =N P ,

Chapter 5 Summary 127

where 0D = − ⋅N P . This can also be expressed as 0⋅ =L P , where L is the 4D
vector , DN and P is a homogeneous point with a w coordinate of 1. The dis-
tance from a point Q to a plane L is simply ⋅L Q.

Planes must be transformed using the inverse transpose of a matrix used to trans-
form points.

Intersection of a Line and a Plane

The parameter t where a line ()t t= +P Q V intersects a plane L is given by

 t ⋅= −
⋅

L Q

L V
.

The View Frustum

The focal length e of a view frustum having a horizontal field of view angle α is
given by

()
1

tan 2
e

α
= .

For a display having an aspect ratio a, the rectangle carved out of the near plane
at a distance n from the camera is bounded by x n e= ± and y an e= ± .

Perspective-Correct Interpolation

In a perspective projection, depth values 1z and 2z are correctly interpolated by
linearly interpolating their reciprocals:

 ()
3 1 2

1 1 11 t t
z z z

= − + .

Perspective-correct vertex attribute interpolation uses the similar formula

 ()3 1 2

3 1 2
1b b bt t

z z z
 = − +  

,

where 1b and 2b are vertex attribute values.

Perspective Projections

The perspective projection matrix frustumM that transforms points from camera
space into clip space is given by

128 5. Geometry for 3D Engines

 frustum

2 0 0

20 0

20 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f n nf
f n f n

+ 
 − −
 

+ 
 − − =

+ − − − − 
 −  

M ,

where n and f are the distances from the camera to the near and far planes, and l,
r, b, and t are the left, right, bottom, and top edges of the viewing rectangle
carved out of the near plane.

An infinite view frustum can be constructed by allowing the far plane distance f
to tend to infinity. The corresponding projection matrix infiniteM is given by

 infinite frustum

2 0 0

20 0lim

0 0 1 2
0 0 1 0

f

n r l
r l r l

n t b
t b t b

n
→∞

+ 
 − −
 + = =  − −
 − − 
 − 

M M .

Oblique Near-Plane Clipping

A perspective projection matrix M can be modified so that the near plane is re-
placed by any camera-space clipping plane C, with 0wC < , by constructing a new
projection matrix ′M as follows,

1

2

4

2 0,0,1,0zQ

 
 
 

′ = − + ⋅ 
  

M

M

M
C

C Q

M

,

where 1− ′=Q M Q , and ′Q is given by Equation (5.64).

Exercises for Chapter 5 129

Exercises for Chapter 5

1. Determine a 4D vector , DN corresponding to the plane that passes through
the three points 1,2,0 , 2,0, 1− , and 3, 2, 1− − .

2. Find an expression for the parameter t representing the point on the line
()t t= +P S V that is closest to another point Q.

3. Show that the distance d from a point Q to the line ()t t= +P S V can be ex-
pressed as

 ()d − ×
=

Q S V

V
.

4. The horizontal field of view angle for a particular view frustum is 75 de-
grees. Calculate the corresponding vertical field of view angle for a
1280 1024× pixel display.

5. Calculate the left, right, bottom, and top planes for a view frustum having a
horizontal field of view of 90 degrees and an aspect ratio of 0.75.

6. Suppose that z coordinates in homogeneous clip space occupied the range
[]0,1 instead of []1,1− . In a manner similar to that used to derive the matrix in
Equation (5.52), derive a perspective projection matrix that maps 0n− →
and 1f− → .

7. Suppose that the third row of the infinite projection matrix given by Equa-
tion (5.53) is modified so that the view frustum has the oblique near plane

1,0, 1, 1= − −C . Show that the optimal far plane given by Equations (5.65)
and (5.66) is parallel to the right frustum plane.

This page intentionally left blank

 131

Chapter 6

Ray Tracing

The term ray tracing refers to any algorithm that follows beams of light to de-
termine with which objects they interact in the world. Applications include light
map generation, visibility determination, collision detection, and line-of-sight
testing. This chapter describes how the points of intersection where a ray strikes
an object can be found and how to alter the path of a ray when it strikes a reflec-
tive or refractive surface.

6.1 Root Finding

The problem of finding the points at which a line defined by the equation

 ()t t= +P S V (6.1)

intersects a surface generally requires finding the roots of a degree n polynomial
in t. For planar surfaces, the degree of the polynomial is one, and a solution is
easily found. For quadric surfaces, such as a sphere or cylinder, the degree of the
polynomial is two, and a solution can be found using the quadratic equation. For
more complex surfaces, such as splines and tori, the degree of the polynomial is
three or four, in which case we can still find solutions analytically, but at much
greater computational expense.
 Analytic solutions to polynomials of degrees two, three, and four are present-
ed in this section. Complete derivations of the solutions to cubic and quartic
equations are beyond the scope of this book, however. We also examine a numer-
ical root-finding technique known as Newton’s method.

6.1.1 Quadratic Polynomials

The roots of a quadratic polynomial in t can be found by using a little algebraic
manipulation to solve the equation

132 6. Ray Tracing

 2 0at bt c+ + = . (6.2)

Subtracting c from both sides and then dividing by a gives us

 2 b ct t
a a

+ = − . (6.3)

We can complete the square on the left side of the equation by adding 2 24b a to
both sides as follows.

2 2

2
2 24 4

b b c bt t
a a a a

+ + = − + (6.4)

Writing the left side of the equation as a square and using a common denomina-
tor on the right side gives us

2 2

2

4
2 4
b b act
a a

− + = 
 

. (6.5)

Taking square roots and then subtracting 2b a from both sides yields

2 4

2
b b act

a
− ± −= . (6.6)

This is the well-known quadratic formula. The quantity 2 4D b ac= − is called the
discriminant of the polynomial and reveals how many real roots it has. If 0D > ,
then there are two real roots. If 0D = , then there is one real root, and it is given
by 2t b a= − . For the remaining case in which 0D < , there are no real roots.
Evaluating the discriminant allows us to determine whether a ray intersects an
object without actually calculating the points of intersection.

6.1.2 Cubic Polynomials

A cubic equation having the form

 3 2 0t at bt c+ + + = (6.7)

(where we have performed any necessary division to produce a leading co-
efficient of 1) can be shifted to eliminate the quadratic term by making the
substitution

6.1 Root Finding 133

3
at x= − . (6.8)

This gives us the equation

 3 0x px q+ + = , (6.9)

where

2

3

1
3

2 1
27 3

p a b

q a ab c

= − +

= − + . (6.10)

Once a solution x to Equation (6.9) is found, we subtract 3a to obtain the solu-
tion t to Equation (6.7).
 The discriminant D of a cubic polynomial is given by

 3 24 27D p q= − − . (6.11)

By setting

3

3

1 1
2 108

1 1
2 108

r q D

s q D

= − + −

= − − − , (6.12)

we can express the three complex roots of Equation (6.9) as

1

2
2

2
3

x r s
x ρr ρ s
x ρ r ρs

= +
= +
= + , (6.13)

where ρ is the primitive cube root of unity given by 31
2 2ρ i= − + . (Note that

2 31
2 2ρ i= − − .)

 We can simplify our arithmetic significantly by making the substitutions

2

3

1 1
3 9 3

1 1 1
2 27 6 2

pp a b

qq a ab c

′ = = − +

′ = = − + . (6.14)

134 6. Ray Tracing

The discriminant is then given by

 ()3 2108D p q′ ′= − + . (6.15)

Setting

 ()3 2

108
DD p q′ ′ ′= = − + (6.16)

lets us express r and s as

3

3

r q D

s q D

′ ′= − + −

′ ′= − − − . (6.17)

 As with quadratic equations, the discriminant gives us information about how
many real roots exist. In the case that 0D′ < , the value of 1x given in Equation
(6.13) represents the only real solution of Equation (6.9).
 In the case that 0D′ = , we have r s= , so there are two real solutions, one of
which is a double root:

 ()
1

2
2 3

2
,
x r

x x ρ ρ r r
=
= + = − . (6.18)

 In the remaining case that 0D′ > , Equation (6.13) yields three distinct real
solutions. Unfortunately, we still have to use complex numbers to calculate these
solutions. An alternative method can be applied in this case that does not require
complex arithmetic. The method relies on the trigonometric identity

 34cos 3cos cos3θ θ θ− = , (6.19)

which can be verified using the Euler formula (see Exercise 1 at the end of this
chapter). Making the substitution 2 cosx m θ= in Equation (6.9) with 3m p= − ,
gives us

 3 38 cos 2 cos 0m θ pm θ q+ + = . (6.20)

(Note that p must be negative in order for D′ to be positive.) Replacing p with
23m− and factoring 32m out of the first two terms yields

 ()3 32 4cos 3cos 0m θ θ q− + = . (6.21)

6.1 Root Finding 135

Applying Equation (6.19) and solving for cos3θ gives us

 3 3 3

2cos3
2 27

q q qθ
m p p

′− − −= = =
′− −

. (6.22)

Since 0D′ > , Equation (6.16) implies that 2 3q p′ ′< − , thereby guaranteeing that
the right side of Equation (6.22) is always less than 1 in absolute value. The in-
verse cosine is thus defined, and we can solve for θ to arrive at

 1

3

1 cos
3

qθ
p

−  ′−=   ′− 
. (6.23)

Therefore, one solution to Equation (6.9) is given by

 1 2 cos 2 cosx m θ p θ′= = − . (6.24)

Since () ()cos 3 2 cos 3θ πk θ+ = for any integer k, we can write

 1

3

1 2cos
3 3k

q πθ k
p

−  ′−= −  ′− 
. (6.25)

Distinct values of cos kθ are generated by choosing three values for k that are
congruent to 0, 1, and 2 modulo 3. Using 1k = ± , we can express the remaining
two solutions to Equation (6.9) as

2

3

22 cos
3

22 cos
3

πx p θ

πx p θ

 ′= − + 
 
 ′= − − 
 

. (6.26)

6.1.3 Quartic Polynomials

A quartic equation having the form

 4 3 2 0t at bt ct d+ + + + = (6.27)

(where again we have performed any necessary division to produce a leading
coefficient of 1) can be shifted to eliminate the cubic term by making the
substitution

136 6. Ray Tracing

4
at x= − . (6.28)

This gives us the equation

 4 2 0x px qx r+ + + = , (6.29)

where

2

3

4 2

3
8

1 1
8 2

3 1 1
256 16 4

p a b

q a ab c

r a a b ac d

= − +

= − +

= − + − + . (6.30)

Once a solution x to Equation (6.29) is found, we subtract 4a to obtain the solu-
tion t to Equation (6.27).
 The roots of the quartic equation are found by first finding a solution to the
cubic equation

2

3 2 4 0
2 8
p rp qy y ry −− − + = . (6.31)

Let y be any real solution to this equation. If 0q ≥ , then the solutions to the quar-
tic equation are equal to the solutions to the two quadratic equations

2 2

2 2

2 0

2 0

x x y p y y r

x x y p y y r

+ − + − − =

− − + + − = . (6.32)

If 0q < , then the solutions to the quartic equation are equal to the solutions to the
two quadratic equations

2 2

2 2

2 0

2 0

x x y p y y r

x x y p y y r

+ − + + − =

− − + − − = . (6.33)

6.1.4 Newton’s Method

The Newton-Raphson iteration method, usually just called Newton’s method, is a
numerical technique that can find roots of an arbitrary continuous function by
iterating a formula that depends on the function and its derivative.

6.1 Root Finding 137

x

y

nx1nx +

()f x

(),n nx f x

Figure 6.1. The tangent to a function tends to intersect the x axis closer to a root of the
function.

 Suppose that we wish to find the root of the function f graphed in Figure 6.1.
For now, let us assume that we have an initial guess 0x for the root of the function
(more is said about how to choose this value shortly). The slope of the tangent
line to the curve at the point ()()0 0,x f x is given by the derivative ()0f x′ . We
can write the equation for this tangent line as follows.

 () ()()0 0 0y f x f x x x′− = − (6.34)

Notice that this line intersects the x axis at a point that is much closer to the actu-
al root of f than our initial guess 0x . Solving Equation (6.34) for x when 0y =
gives us the refinement formula

 ()
()1

i
i i

i

f xx x
f x+ = −

′
, (6.35)

where we have relabeled x with 1ix + and 0x with ix . Applying this formula multi-
ple times produces a sequence 0 1 2, , ,x x x  whose values, under the right condi-
tions, approach the root of f.

138 6. Ray Tracing

 Newton’s method converges extremely quickly and thus requires very few
iterations to exceed any desired precision. We can in fact show that Newton’s
method converges quadratically, which means that with each iteration, the num-
ber of significant digits in an approximated root roughly doubles. We prove this
claim by first setting

 () ()
()

f xg x
f x

=
′

. (6.36)

Let r be the actual root of the function f to which we are converging. We define iε
to be the error between the i-th approximation ix and the root r:

 i iε x r= − . (6.37)

Using this in Equation (6.35) allows us to write

 ()1i i iε ε g x+ = − . (6.38)

We can approximate the function ()ig x with the first three terms of its Taylor
series (see Appendix D) as follows.

 () () () () ()
2

2
i

i i i
εg x g r ε g r ε g r g r′ ′′= + ≈ + + (6.39)

The first and second derivatives of ()g x are given by

() () ()
()[]

() () () ()[] ()[] () () () ()[]
()[]

2

2 2

4

1

2

f x f xg x
f x

f x f x f x f x f x f x f x f xg x
f x

′′
′ = −

′

′ ′′ ′ ′′′ ′ ′′− +′′ =
′

. (6.40)

Since () 0f r = , these expressions simplify greatly when evaluated at r. The func-
tion g and its first two derivatives produce the following values at r.

()
()

() ()
()

0
1

g r
g r

f rg r
f r

=
′ =

′′
′′ = −

′
 (6.41)

6.1 Root Finding 139

Plugging these into Equation (6.39) gives us

 () ()
()

2

2
i

i i
f rεg x ε
f r
′′

≈ −
′

. (6.42)

Finally, substituting this into Equation (6.38) yields

 ()
()

2

1 2
i

i
f rεε
f r+
′′

≈
′

. (6.43)

 Newton’s method is not guaranteed to converge to a solution. In particular, if
the initial guess is chosen at a point where the derivative of the function is zero,
then the tangent line is horizontal and does not intersect the x axis, preventing us
from proceeding any further. The initial guess has to be somewhat close to the
actual root to guarantee a convergence. When searching for the intersection of a
ray with a complex object, we can usually find a good initial guess by first inter-
secting the ray with the surface of a relatively simple bounding volume. For ex-
ample, to find where a ray defined by ()t t= +P S V intersects a torus, we can first
find a value of t where the ray intersects a box bounding the torus, and then use
this value of t as our initial guess for the torus intersection.

6.1.5 Refinement of Reciprocals and Square Roots

Most modern CPUs, as well as most graphics hardware, have instructions that
can approximate the reciprocal of a number and the reciprocal square root of a
number to at least a few bits of precision. The results produced by these instruc-
tions can be refined to greater precision using Newton’s method.
 The reciprocal of a number r can be found by calculating the root of the
function

 () 1f x x r−= − (6.44)

since ()1 0f r = . Plugging this function into Equation (6.35) gives us

 ()

1

1 2

2 .

n
n n

n

n n

x rx x
x

x rx

−

+ −

−= −
−

= − (6.45)

This formula can be iterated to produce a high-precision reciprocal of the number
r, provided that each 0ix > . This is due to the fact that the function ()f x attains a

140 6. Ray Tracing

singularity at 0x = . Enforcing this condition on the first refinement 1x allows us
to determine the interval inside which our initial approximation 0x must fall.
Since 1x must be greater than zero, we have

 ()0 02 0x rx− > , (6.46)

which yields the following restriction on 0x .

 0
20 x
r

< < (6.47)

Thus, the initial approximation cannot be worse than double the reciprocal of r.
 The reciprocal of the square root of a number r can be found by calculating
the positive root of the function

 () 2f x x r−= − . (6.48)

Plugging this function into Equation (6.35) gives us

 ()

2

1 3

2

2
1 3
2

n
n n

n

n n

x rx x
x

x rx

−

+ −

−= −
−

= − . (6.49)

This sequence converges as long as each 0ix > , so our initial approximation 0x
must satisfy

 0
30 x
r

< < . (6.50)

Once the reciprocal square root has been calculated to acceptable precision, the
square root of r can be calculated using a single multiplication because

()1r r r= ⋅ .

6.2 Surface Intersections

Computing the point at which a ray intersects a surface is central to ray tracing.
We define a ray ()tP using the equation

 ()t t= +P S V, (6.51)

6.2 Surface Intersections 141

where S represents the ray’s starting position and V represents the direction in
which the ray points. In this section, we present specific solutions for the inter-
section of a ray with a few common types of objects (additional objects are left as
exercises). With the exception of the triangle, intersections are computed in ob-
ject space, the space in which the natural center of an object coincides with the
origin and the object’s natural axes are aligned to the coordinate axes. Intersec-
tions with arbitrarily oriented objects are performed by first transforming the ray
into object space. Once an intersection is detected, information such as the point
of intersection and the normal vector at that point can be transformed back into
world space.

6.2.1 Intersection of a Ray and a Triangle

A triangle is described by the position in space of its three vertices 0P , 1P , and 2P .
We determine the plane in which the triangle lies by first calculating the normal
vector N as follows.

 () ()1 0 2 0= − × −N P P P P (6.52)

The signed distance d to the origin is given by the negative dot product of N with
any point in the plane, so we choose the vertex 0P to construct the 4D plane vec-
tor 0,= − ⋅L N N P . As discussed in Section 5.2.1, the value of t corresponding to
the point where the ray in Equation (6.51) intersects the plane L is given by

 t ⋅= −
⋅

L S

L V
. (6.53)

If 0⋅ =L V , then no intersection occurs. Otherwise, plugging this value of t back
into Equation (6.51) produces the point P where the ray intersects the plane of
the triangle.
 We now have the problem of determining whether the point P lies inside the
triangle’s edges. We do so by calculating the barycentric coordinates of P with
respect to the triangle’s vertices 0P , 1P , and 2P . The barycentric coordinates repre-
sent a weighted average of the triangle’s vertices and are expressed as the scalars

0w , 1w , and 2w such that

 0 0 1 1 2 2w w w= + +P P P P , (6.54)

where 0 1 2 1w w w+ + = . Replacing 0w with 1 21 w w− − , we can write

142 6. Ray Tracing

()

() ()
1 2 0 1 1 2 2

0 1 1 0 2 2 0

1 w w w w
w w

= − − + +
= + − + −

P P P P

P P P P P . (6.55)

We perform the remainder of our calculations relative to the point 0P by defining

0

1 1 0

2 2 0

= −
= −
= −

R P P

Q P P

Q P P . (6.56)

Equation (6.55) now becomes

 1 1 2 2w w= +R Q Q . (6.57)

Taking the dot product of both sides of Equation (6.57) first with 1Q and then
with 2Q gives us the two equations

()

()

2
1 1 1 2 1 2

2
2 1 1 2 2 2

w Q w

w w Q

⋅ = + ⋅

⋅ = ⋅ +

R Q Q Q

R Q Q Q , (6.58)

which are written in matrix form as

2

1 1 2 1 1
2

1 2 2 2 2

Q w
Q w
⋅ ⋅     =     ⋅ ⋅     

Q Q R Q

Q Q R Q
. (6.59)

We can now easily solve for 1w and 2w as follows.

()

12
1 1 21 1

2
1 2 22 2

2
2 1 2 1

2 2 2 2
1 2 1 2 1 2 1 2

1

w Q
w Q

Q
Q Q Q

−⋅ ⋅     =     ⋅ ⋅     
− ⋅ ⋅   =    − ⋅ − ⋅ ⋅   

Q Q R Q

Q Q R Q

Q Q R Q

Q Q Q Q R Q
 (6.60)

The point R lies inside the triangle if and only if all three weights 0w , 1w , and 2w
are nonnegative. Since 0 1 21w w w= − − , this implies that 1 2 1w w+ ≤ .
 If the vertices 0P , 1P , and 2P have any associated attributes, such as a color or
texture coordinate set, then the interpolated value of those attributes at the point
R can be calculated using the weights 0w , 1w , and 2w . For instance, if the texture
coordinates 0 0,s t , 1 1,s t , and 2 2,s t are associated with the vertices 0P , 1P , and

2P , then the texture coordinates ,s t at the point R are given by

6.2 Surface Intersections 143

0 0 1 1 2 2

0 0 1 1 2 2 .
s w s w s w s
t w t w t w t

= + +
= + + (6.61)

6.2.2 Intersection of a Ray and a Box

A box is described by the six plane equations

0
0
0 ,

x

y

z

x x r
y y r
z z r

= =
= =
= = (6.62)

where xr , yr , and zr represent the dimensions of the box. At most three of these
planes need to be considered for intersection by the ray since at least three planes
must face away from the ray’s direction V. We can determine which planes need
to be tested by examining the components of V one at a time. For instance, if

0xV = , then we know that the ray cannot intersect either of the planes 0x = or
xx r= because V is parallel to them. If 0xV > , then we do not need to test for an

intersection with the plane xx r= since it represents a back side of the box from
the ray’s perspective. Similarly, if 0xV < , then we do not need to test for an inter-
section with the plane 0x = . The same principle applies to the y and z compo-
nents of V.
 Once we have found the point where a ray intersects a plane, we must check
that the point falls within the face of the box by examining the two coordinates
corresponding to the directions parallel to the plane. For instance, the value of t
corresponding to the point where the ray given by Equation (6.51) intersects the
plane xx r= is given by

 x x

x

r St
V
−= . (6.63)

To lie within the corresponding face of the box, the y and z coordinates of the
point ()tP must satisfy

()[]
()[]

0
0

y y

z z

t r
t r

≤ ≤
≤ ≤

P

P . (6.64)

If either of these conditions fails, then no intersection takes place within the face.
If both conditions pass, then an intersection has been found, in which case there
is no need to test any other planes since no closer intersection can occur.

144 6. Ray Tracing

6.2.3 Intersection of a Ray and a Sphere

A sphere of radius r centered at the origin is described by the equation

 2 2 2 2x y z r+ + = . (6.65)

Substituting the components of the ray ()tP in Equation (6.51) for x, y, and z
gives us

 () () ()2 2 2 2
x x y y z zS tV S tV S tV r+ + + + + = . (6.66)

Expanding the squares and collecting on t yields the following quadratic
equation.

 () ()2 2 2 2 2 2 2 22 0x y z x x y y z z x y zV V V t S V S V S V t S S S r+ + + + + + + + − = (6.67)

The coefficients a, b, and c used in Equation (6.2) can be expressed in terms of
the vectors S and V as follows.

()

2

2 2

2
a V
b
c S r

=
= ⋅

= −

S V

 (6.68)

Calculating the discriminant 2 4D b ac= − tells us whether the ray intersects the
sphere. As illustrated in Figure 6.2, if 0D < , then no intersection occurs; if 0D = ,
then the ray is tangent to the sphere; and if 0D > , then there are two distinct
points of intersection. If the ray intersects the sphere at two points, then the point
closer to the ray’s origin S, which corresponds to the smaller value of t, is always
given by

2

b Dt
a

− −= (6.69)

because a is guaranteed to be positive.
 The intersection of a ray and an ellipsoid can be determined by replacing
Equation (6.65) with the equation

 2 2 2 2 2 2x m y n z r+ + = , (6.70)

where m is the ratio of the x semiaxis length to the y semiaxis length, and n is the
ratio of the x semiaxis length to the z semiaxis length. Plugging the components

6.2 Surface Intersections 145

0D <

0D >

0D =

r

Figure 6.2. The discriminant D indicates whether a ray intersects a sphere. If 0D < , then
no intersection occurs. If 0D = , then the ray is tangent to the sphere at a single point. If

0D > , then the ray intersects the sphere at two distinct points.

of the ray into this equation yields another quadratic polynomial whose coeffi-
cients are given by

()
2 2 2 2 2

2 2

2 2 2 2 2 2

2

.

x y z

x x y y z z

x y z

a V m V n V

b S V m S V n S V

c S m S n S r

= + +

= + +

= + + − (6.71)

Again, the discriminant indicates whether an intersection occurs. If so, the inter-
section parameter t is given by Equation (6.69).

6.2.4 Intersection of a Ray and a Cylinder

The lateral surface of an elliptical cylinder whose radius on the x axis is r, whose
radius on the y axis is s, whose height is h, and whose base is centered on the
origin of the x-y plane (see Figure 6.3) is described by the equation

2 2 2 2

0 ,
x m y r

z h
+ =

≤ ≤ (6.72)

146 6. Ray Tracing

r s

h

y
x

z

Figure 6.3. Object space for an elliptical cylinder.

where m r s= . If r s= , then the cylinder is circular and 1m = . Substituting the
components of the ray ()tP in Equation (6.51) for x and y gives us

 () ()2 2 2 2
x x y yS tV m S tV r+ + + = . (6.73)

Expanding the squares and collecting on t yields the following quadratic
equation.

 () ()2 2 2 2 2 2 2 2 22 0x y x x y y x yV m V t S V m S V t S m S r+ + + + + − = (6.74)

As with the sphere, the discriminant indicates whether an intersection occurs.
Solutions to this equation give the values of t where the ray intersects the infinite
cylinder centered on the z axis. The z coordinates of the points of intersection
must be tested so that they satisfy 0 z h≤ ≤ .
 In the context of collision detection, the problem arises in which we need to
know whether a moving sphere intersects a line segment representing an edge of
a polygonal model. The problem is transformed into determining whether a ray
intersects a cylinder with a given radius and arbitrary endpoints. This situation is
discussed in Section 12.2.

6.2 Surface Intersections 147

6.2.5 Intersection of a Ray and a Torus

A cross section of the surface of a circular torus having primary radius 1r and
secondary radius 2r is shown in Figure 6.4. The circle of radius 1r lying in the x-y
plane represents the center of another circle of radius 2r perpendicular to the first,
which is revolved about the z axis. The equation describing the revolved circle is

 2 2 2
2s z r+ = , (6.75)

where the value of s is the distance to the primary circle in the x-y plane:

 2 2
1s x y r= + − . (6.76)

Substituting this into Equation (6.75) and expanding the square gives us

 2 2 2 2 2 2 2
1 2 12 0x y z r r r x y+ + + − − + = . (6.77)

Isolating the radical and squaring again yields the following equation for a torus.

 () ()2 2 2 2 2 2 2 2 2
1 2 14x y z r r r x y+ + + − = + (6.78)

Substituting the components of the ray ()tP in Equation (6.51) for x, y, and z
gives us

() () ()
() ()

2 2 2 2 2 2
1 2

2 2 2
14 .

x x y y z z

x x y y

S tV S tV S tV r r

r S tV S tV

+ + + + + + −  
= + + +   (6.79)

z

1r2r

Figure 6.4. A torus and its cross section.

148 6. Ray Tracing

After considerable algebraic simplification, this can be expressed as the quartic
equation

 4 3 2 0at bt ct dt e+ + + + = , (6.80)

where

()
() () ()

4

2

2 2 2 2 2 2 2 2
1 2 1

4

2 4 4x y

a V
b V
c V S r r r V V

=
= ⋅

= + − − + + ⋅

S V

S V

()()
()
() ()()

2 2 2 2
1 1 2

4 4 4 2 2 2
1 2

2 2 2 2 2 2 2 2 2 2
1 2 1 2

8 4

2

z z

x y z

x y z x y z

d r S V S r r

e S S S r r

S S S r r S S S r r

= + ⋅ − −

= + + + −

+ + − + + − −  

S V

. (6.81)

After dividing by a to obtain a leading coefficient of 1, this equation can be
solved using the method presented in Section 6.1.3. If the vector V is normalized,
then the division by a is unnecessary, and the calculations for b and c simplify to

()
() () ()2 2 2 2 2 2

1 2 1

4

2 4 1 4z

b
c S r r r V

= ⋅

= + − − − + ⋅

S V

S V . (6.82)

6.3 Normal Vector Calculation

It is sometimes convenient to represent a surface using an implicit function
(), ,f x y z whose value is zero at any point , ,x y z on the surface and whose val-

ue is nonzero elsewhere. An example of such a function is that of an ellipsoid:

 ()
2 2 2

2 2 2, , 1x y zf x y z
a b c

= + + − . (6.83)

Using the implicit function representation, it is possible for us to derive a general
formula for the normal direction at any point on a surface.
 Suppose that (), ,f x y z represents a surface S, so that (), , 0f x y z = for any
point on S. Let C be a curve defined by differentiable parametric functions ()x t ,

()y t , and ()z t which lies on the surface S. Then the tangent vector T to the curve
C at the point () () (), ,x t y t z t is given by

6.4 Reflection and Refraction Vectors 149

 () () (), ,d d dx t y t z t
dt dt dt

=T . (6.84)

Since the curve C lies on the surface S, T is also tangent to the surface S. Also,
since () () ()(), , 0f x t y t z t = for any value of t, we know that 0df dt = every-
where on the curve C. Using the chain rule, we can write

 0 , ,df f dx f dy f dz f f f
dt x dt y dt z dt x y z

∂ ∂ ∂ ∂ ∂ ∂= = + + = ⋅
∂ ∂ ∂ ∂ ∂ ∂

T. (6.85)

Because its dot product with T is always zero, the vector , ,f x f y f z∂ ∂ ∂ ∂ ∂ ∂
must be normal to the surface S. This vector is called the gradient of f at the point

, ,x y z and is usually written (), ,f x y z∇ , where the symbol ∇ is the del operator
defined by

x y z

∂ ∂ ∂= + +
∂ ∂ ∂

i j k∇ . (6.86)

 We can now express the formula for the normal vector N to a surface defined
by the equation (), , 0f x y z = as

 (), ,f x y z=N ∇ . (6.87)

Continuing the example given in Equation (6.83), we have the following expres-
sion for the normal to the surface of an ellipsoid.

 2 2 2

2 2 2, ,x y z
a b c

=N (6.88)

6.4 Reflection and Refraction Vectors

When a beam of light strikes the surface of an object, part of its energy is ab-
sorbed by the surface, part of its energy is reflected away from the surface, and
part of its energy may be transmitted through the object itself. Chapter 7 discuss-
es this interaction in detail. This section explains how the direction of reflection
and refraction can be calculated for a ray that intersects a shiny or transparent
surface.

150 6. Ray Tracing

6.4.1 Reflection Vector Calculation

The direction of the reflection of light on a shiny surface (such as a mirror) fol-
lows the simple rule that the angle of incidence is equal to the angle of reflection.
As shown in Figure 6.5, this is the same as saying that the angle between the
normal vector N and the direction L pointing toward the incoming light is equal
to the angle between the normal vector and the direction R of the reflected light.
 We assume that the vectors N and L have been normalized to unit length. To
derive a formula that gives us the reflection direction R in terms of the light di-
rection L and the normal vector N, we first calculate the component of L that is
perpendicular to the normal direction:

 ()perp = − ⋅N L L N L N. (6.89)

The vector R lies at twice the distance from L as does its projection onto the
normal vector N. We can thus express R as

()[]

()

2perp
2

2 .

= −
= − − ⋅
= ⋅ −

NR L L

L L N L N

N L N L (6.90)

N

L R()⋅N L N
()− ⋅L N L N

α α

Figure 6.5. The direction of reflection R forms the same angle with the normal vector N
as the direction L pointing toward the incoming light. It is found by subtracting twice the
component of L that is perpendicular to N from L itself.

6.4 Reflection and Refraction Vectors 151

6.4.2 Refraction Vector Calculation

Transparent surfaces possess a property called the index of refraction. According
to Snell’s law, the angle of incidence θL and the angle of transmission θT (shown
in Figure 6.6) are related by the equation

 sin sinη θ η θ=L L T T, (6.91)

where ηL is the index of refraction of the material that the light is leaving, and ηT
is the index of refraction of the material that the light is entering. The index of
refraction of air is usually taken to be 1.00. Higher indexes of refraction create a
greater bending effect at the interface between two materials.
 We assume that the normal vector N and the direction toward the incoming
light L have been normalized to unit length. We express the direction T in which
the transmitted light travels in terms of its components parallel and perpendicular
to the normal vector. As shown in Figure 6.6, the component of T parallel to the
normal vector is simply given by cosθ− TN . The component of T perpendicular
to the normal vector can be expressed as sinθ− TG , where the vector G is the unit
length vector parallel to perp N L. Since L has unit length, perp sinθ=N LL , so

 ()perp
sin sinθ θ

− ⋅
= =N

L L

L N L NL
G . (6.92)

We can now express the refraction vector T as

 ()[]

cos sin
sincos
sin

θ θ
θθ
θ

= − −

= − − − ⋅

T T

T
T

L

T N G

N L N L N . (6.93)

Using Equation (6.91), we can replace the quotient of sines with η ηL T :

 ()[]cos ηθ
η

= − − − ⋅L
T

T

T N L N L N . (6.94)

Replacing cosθT with 21 sin θ− T and then using Equation (6.91) again to re-
place sinθT with ()sinη η θL T L gives us

 ()[]
2

2
21 sinη ηθ
η η

= − − − − ⋅L L
L

T T

T N L N L N . (6.95)

152 6. Ray Tracing

N

L

θL

perpN L

cosθ− TN
T

sinθ− TGG

θT

ηL
ηT

Figure 6.6. The angle of incidence θL and the angle of transmission θT are related by
Snell’s law, given in Equation (6.91). The refraction vector T is expressed in terms of its
components parallel and perpendicular to the normal vector N.

Replacing 2sin θL with ()2 21 cos 1θ− = − ⋅L N L finally yields

 ()
2

2
21 1η η η

η η η
 

= ⋅ − − − ⋅ −    
 

L L L

T T T

T N L N L N L. (6.96)

 If η η>L T, then it is possible for the quantity inside the radical in Equation
(6.96) to be negative. This happens when light inside a medium having a higher
index of refraction makes a wide angle of incidence with the surface leading to a
medium having a lower index of refraction. Specifically, Equation (6.96) is only
valid when sinθ η η≤L T L . If the quantity inside the radical is negative, a phe-
nomenon known as total internal reflection occurs. This means that light is not
refracted, but is actually reflected inside the medium using Equation (6.90).

Chapter 6 Summary 153

Chapter 6 Summary

Analytic Root Finding

Solutions to the quadratic equation 2 0at bt c+ + = are given by the quadratic
formula:

2 4

2
b b act

a
− ± −= .

Cubic and quartic equations can also be solved analytically.

Numerical Root Finding

Roots of a function ()f x can be found numerically using Newton’s method,
which refines an approximate solution nx using the formula

 ()
()1

n
n n

n

f xx x
f x+ = −

′
.

The refinement formula for the reciprocal nx of a number r is

 ()1 2n n nx x rx+ = − ,

and the refinement formula for the reciprocal square root nx of a number r is

 ()2
1

1 3
2n n nx x rx+ = − .

Intersection of a Ray and a Sphere

The points where a ray ()t t= +P S V intersect a sphere of radius r are given by
the solutions of the quadratic equation

 ()2 2 2 22 0V t t S r+ ⋅ + − =S V .

Normal Vector Calculation

The normal vector at a point , ,x y z on a surface defined by the function
(), , 0f x y z = is given by (), ,f x y z=N ∇ .

Reflection Vector Calculation

The reflection R of a vector L across the normal vector N is given by

154 6. Ray Tracing

 ()2= ⋅ −R N L N L.

Transmission Vector Calculation

The direction T in which light is transmitted when leaving a medium having in-
dex of refraction ηL and entering a medium having index of refraction ηT is given
by

 ()
2

2
21 1η η η

η η η
 

= ⋅ − − − ⋅ −    
 

L L L

T T T

T N L N L N L,

where L is the direction pointing toward the incident light, and N is the surface
normal.

Exercises for Chapter 6

1. Use the Euler formula (which states that cos sinαie α i α= +) to verify the
trigonometric identity

 34cos 3cos cos3θ θ θ− = .

 [Hint. Equate the real components of the equation () ()33 θ iθie e= .]

2. Use Newton’s method to approximate the root of the function ()f x =
ln 7x x+ − .

3. Find a general formula that can be used to refine an approximation nx of the
p-th root of a number r using Newton’s method.

4. Let 0P , 1P , and 2P be the three vertices of the triangle T shown in Figure 6.7.
Show that each of the barycentric coordinates iw of a point P lying inside
the triangle is given by the ratio of the area of the subtriangle iU formed us-
ing P and the two vertices ()1 mod 3i+P and ()2 mod3i+P to the area of the triangle T.

5. Let 1w , 2w , and 3w be the barycentric coordinates of a point P with respect to
a triangle whose vertices are 0P , 1P , and 2P . Let N be the direction normal to
the triangle. Show that the barycentric coordinates of the point r+P N are
the same as those of the point P for any scalar r.

6. Calculate the unit length surface normal to the paraboloid defined by
() 2 2, , 2 3 0f x y z x y z= + − = at the point 1,2,14− .

Exercises for Chapter 6 155

P

0P

1P

2P

0U
1U

2U

Figure 6.7. The triangle used in Exercise 4.

7. Derive the polynomial whose roots give the values of t at which the ray
()t t= +P S V intersects a cone whose radius (at the base) is r, whose height

is h, and whose base is centered on the origin of the x-y plane as shown in
Figure 6.8.

h

rr

z

x y

Figure 6.8. The cone used in Exercise 7.

156 6. Ray Tracing

8. The critical angle at the interface between two media is the smallest angle
of incidence at which total internal reflection occurs. Determine the critical
angle for a beam of light traveling upward through water toward the surface
where it meets the air. The index of refraction of water is 1.33, and the index
of refraction of air is 1.00.

 157

Chapter 7

Lighting and Shading

This chapter describes the mathematics used to illuminate and shade a surface.
The term lighting or illumination is often used to describe the process by which
the color and intensity of light reaching a surface is determined. The term shad-
ing normally describes the methods used to determine the color and intensity of
light reflected toward the viewer for each point on a surface. This color depends
on the properties of the light sources illuminating the surface as well as the re-
flective characteristics of the surface itself.
 The interaction between light and a surface is a complex physical process.
Photons can be absorbed, reflected, or transmitted when they strike the surface of
a material. To model this interaction using the whole of today’s knowledge of
physics would be far too computationally time-consuming. Instead, we must set-
tle for models that approximate the expected appearance of a surface. We begin
this chapter with simple models that are widely used because they are computa-
tionally efficient and produce acceptable results, but really are not physically ac-
curate. Later, we examine more costly techniques that more closely model the
true physical interaction of light with a surface.

7.1 RGB Color

A precise model describing the reflection of light by a surface would account for
every wavelength of light in the visible spectrum. However, the cone cells in the
human eye are generally sensitive to three different overlapping regions of the
visible spectrum corresponding to the colors red, green, and blue. Thus, TVs and
computer displays are able to produce a wide range of colors by combining red,
green, and blue light in different proportions. For instance, yellow is produced by
blending equal parts red and green. This system is commonly referred to as RGB
color. Colors that are made up of more than one wavelength of light, such as
brown, can also be simulated using RGB color.

158 7. Lighting and Shading

 The lighting models presented in this chapter utilize the RGB color system.
The intensity of reflected light at a point on a surface is calculated for red, green,
and blue wavelengths simultaneously. Since the same operations are performed
for each of these components, we express our mathematical formulas using a
three-component entity that we simply call a color.
 Colors are expressed as triplets of red, green, and blue components whose
values range from 0 to 1. These colors represent both the spectral composition of
light, which determines what color the eye perceives, as well as the intensity of
light. We denote colors by script letters to distinguish them from vectors. A sin-
gle red, green, or blue component of a color  is denoted by using a subscript r,
g, or b (hence, we can write (), ,r g bC C C=).
 A color  can be multiplied by a scalar s to produce a new color:

 (), ,r g bs sC sC sC= . (7.1)

Addition and multiplication of colors are performed componentwise. That is, for
two colors  and , we have

()
()

, ,
, , .

r r g g b b

r r g g b b

C D C D C D
C D C D C D

+ = + + +
=

 

 (7.2)

 Color multiplication, either by another color or by a scalar, is also called
modulation. The color of a pixel belonging to a rendered triangle is usually de-
termined through some combination of colors from multiple sources. The color
of a pixel on the face of a triangle is commonly derived from the product of a
color looked up in a texture map and another color that is interpolated among the
triangle’s vertices. In this case, we say that the texture color is modulated by the
vertex color.

7.2 Light Sources

The color that we calculate for any point on a surface is the sum of contributions
from all the light sources that illuminate the surface. The standard types of light
sources supported by 3D graphics systems come in four varieties: ambient, direc-
tional, point, and spot. This section describes each of these types of light sources
and how they contribute to the radiation present at a point in space.

7.2.1 Ambient Light

The ambient light present at a certain location is the low-intensity light that arises
from the many reflections of light on all nearby surfaces in an environment. Us-

7.2 Light Sources 159

ing ambient light provides a rough approximation of the general brightness of an
area and replaces the complexities of calculating all the interobject reflections in
a scene.
 Ambient light appears to come from every direction with equal intensity, and
thus illuminates every part of an object uniformly. The color  of the ambient
light is usually a constant in a scene, but it may also be a function of spatial posi-
tion. For instance, one can use a three-dimensional texture map to store samples
of the ambient light on a regular grid that permeates a region of the world.

7.2.2 Directional Light Sources

A directional light source, also known as an infinite light source, is one that radi-
ates light in a single direction from infinitely far away. Directional lights are typ-
ically used to model light sources such as the sun, whose rays can be considered
parallel. Since they have no position in space, directional lights have infinite
range, and the intensity of the light they radiate does not diminish over distance,
as does the intensity of point lights and spot lights.

7.2.3 Point Light Sources

A point light source is one that radiates light equally in every direction from a
single point in space. The intensity of light naturally decreases with distance ac-
cording to the inverse square law. The fixed-function features of OpenGL and
Direct3D both provide a generalization of this concept that allows us to control
the intensity of light radiated by a point light source using the reciprocal of a
quadratic polynomial.
 Suppose that a point light source has been placed at a point P. The intensity 
of light reaching a point in space Q is given by

 02

1
c l qk k d k d

=
+ +

  , (7.3)

where 0 is the color of the light, d is the distance between the light source and Q
(i.e., d = −P Q), and the constants ck , lk , and qk are called the constant, linear,
and quadratic attenuation constants.
 In the newer programmable shading environments provided by OpenGL and
Direct3D, any kind of fall-off function can be achieved, and it’s often the case
that a point light’s intensity is intentionally made to become zero beyond a cer-
tain distance from the light. This limits the light’s volume of influence so that
objects too far from the light to receive significant illumination don’t have to be

160 7. Lighting and Shading

rendered for that light source. This by itself helps game engines run faster, but an
even more aggressive optimization for point lights is described in Section 10.4.7.

7.2.4 Spot Light Sources

A spot light is similar to a point light but has a preferred direction of radiation.
The intensity of a spot light is attenuated over distance in the same way that it is
for a point light and is also attenuated by another factor called the spot light
effect.
 Suppose that a spot light source has been placed at a point P and has a spot
direction R. The intensity  of light reaching a point in space Q is given by

 { }
02

max ,0 p

c l qk k d k d
− ⋅

=
+ +

R L
  , (7.4)

where 0 is the color of the light; d is the distance between the light source and
Q; ck , lk , and qk are the attenuation constants; and L is the unit length direction
pointing from Q toward the light source:

 −=
−

P Q
L

P Q
. (7.5)

The exponent p controls how concentrated the spot light is. As shown in Figure
7.1, a large value of p corresponds to a highly focused spot light having a sharp
falloff, whereas a smaller value of p corresponds to a less concentrated beam.
The spot light is most intense when = −R L and gradually falls off as the angle
between R and −L increases. No radiation from a spot light reaches a point for
which the angle between R and −L is greater than 90 degrees.

Figure 7.1. The spot light exponent p in Equation (7.4) controls how concentrated the
beam of a spot light is. From left to right, the spot light exponents used to illuminate the
ground are 2, 10, 50, and 100.

7.3 Diffuse Reflection 161

7.3 Diffuse Reflection

A diffuse surface is one for which part of the light incident on a point on the sur-
face is scattered in random directions. The average effect is that a certain color of
light, the surface’s diffuse reflection color, is reflected uniformly in every direc-
tion. This is called the Lambertian reflection, and because light is reflected equal-
ly in every direction, the appearance of the Lambertian reflection does not de-
pend on the position of the observer.
 As shown in Figure 7.2, a beam of light having a cross-sectional area A illu-
minates the same area A on a surface only if the surface is perpendicular to the
direction in which the light is traveling. As the angle between the normal vector
and the light direction increases, so does the surface area illuminated by the beam
of light. If the angle between the normal vector and light direction is θ , then the
surface area illuminated by the beam of light is equal to cosA θ. This results in a
decrease in the intensity of the light per unit surface area by a factor of cosθ.
 The value of cosθ is given by the dot product between the normal vector N
and the unit direction to the light source L. A negative dot product means that the
surface is facing away from the light source and should not be illuminated at all.
Thus, we clamp the dot product to zero in our illumination calculations.
 We can now begin to construct a formula that calculates the color of light 
that is reflected toward the viewer from a given point Q on a surface. This formu-
la is written in terms of the intensity i of each of n lights illuminating the point
Q, which is constant for directional light sources and is given by Equations (7.3)
and (7.4) for point and spot light sources. The reflected light is modulated by the

L

N
θ

cos
A
θ

A

Figure 7.2. The surface area illuminated by a beam of light increases as the angle θ be-
tween the surface normal and direction to the light increases, decreasing the intensity of
incident light per unit area.

162 7. Lighting and Shading

surface’s diffuse reflection color . Adding the contributions from n light
sources and considering the ambient intensity , we can express the diffuse
component of our lighting formula as

 { }diffuse
1

max ,0
n

i i
i=

= + ⋅ N L    , (7.6)

where the unit vector iL points from Q toward the i-th light source.

7.4 Specular Reflection

In addition to the uniform diffuse reflection, surfaces tend to reflect light strongly
along the path given by the reflection of the incident direction across the surface
normal. This results in the appearance of a shiny highlight on a surface called a
specularity. Unlike the diffuse reflection, the specular reflection visible on a sur-
face depends on the position of the viewer.
 Figure 7.3 shows the normal vector N at a point Q on a surface, the unit di-
rection to viewer vector V, the unit direction to light vector L, and the direct re-
flection vector R calculated using Equation (6.90). Specular highlights are the
most intense when the reflection direction R points toward the viewer and de-

N

V

LR

Q

αα

Figure 7.3. The intensity of the specular reflection is related to the angle between the
direction to viewer vector V and the direct reflection vector R corresponding to the direc-
tion to light vector L.

7.4 Specular Reflection 163

crease in intensity as the angle between R and the direction to the viewer V
increases.
 A model that produces a believable (but having almost no real physical basis)
rendition of specular highlights uses the expression

 { } ()max ,0 0m⋅ ⋅ >R V N L (7.7)

to calculate the specular contribution from a single light source, where  is the
surface’s specular reflection color,  is the intensity of the incident light, and m is
called the specular exponent. The expression ()0⋅ >N L is a boolean expression
that evaluates to 1 if true and 0 otherwise. This prevents specular highlights from
showing up at points on a surface that face away from the light source.
 The specular exponent m controls the sharpness of the specular highlight. As
shown in Figure 7.4, a small value of m produces a dull highlight that fades out
over a relatively large distance, and a large value of m produces a sharp highlight
that fades out quickly as the vectors V and R diverge.
 An alternative formulation of specular highlights that requires less calcula-
tion in some cases makes use of a direction called the halfway vector. Shown in
Figure 7.5, the halfway vector H is the vector lying exactly halfway between the
direction to viewer vector V and the direction light vector L. Specular highlights
are the most intense when H points in the direction of the normal vector N. Using
this model, we replace the dot product ⋅R V in Equation (7.7) with the dot prod-
uct ⋅N H. This produces different results in terms of the rate at which the specu-
lar highlights diminish, but still retains the general characteristics of our original
model.

Figure 7.4. The specular exponent m in Equation (7.7) controls the sharpness of the
specular highlight seen on a surface. From left to right, the specular exponents used to
shade the tori are 2, 10, 50, and 100. The specular reflection color  is white.

164 7. Lighting and Shading

N

V

L
H

α
α

Q

Figure 7.5. The angle between the normal vector N and the halfway vector H can also be
used to determine specular intensity.

 Adding the contributions from n light sources, we can express the specular
component of our lighting formula as

 { } ()specular
1

max ,0 0
n

m
i i i

i=
= ⋅ ⋅ > N H N L   , (7.8)

where iH is the halfway vector for the i-th light source given by

 i
i

i

+=
+

L V
H

L V
. (7.9)

7.5 Texture Mapping

One or more texture maps may be applied to a surface to achieve greater detail,
as shown in Figure 7.6. At each point on a surface, a texel (texture pixel) is
looked up in each texture map and combined in some way with the lighting for-
mula. In the simplest case, a sample from a diffuse texture map is looked up and
used to modulate the diffuse reflection color. More advanced applications are
discussed later in this chapter.

7.5 Texture Mapping 165

Figure 7.6. Applying a texture map adds detail to a surface. (Image from the game The
31st, courtesy of Terathon Software LLC.)

 Let the color  represent a filtered sample from a texture map at a point on a
surface. Using this color to modulate the diffuse reflection color produces the
following augmented version of Equation (7.6).

 { }diffuse
1

max ,0
n

i i
i=

= + ⋅ N L    (7.10)

 Just as a texture map can be used to modulate the diffuse component of the
lighting formula, we can also use a texture map to modulate the specular compo-
nent. Such a map is sometimes called a gloss map and determines the intensity of
the specularity at each point on a surface. Using the color  to represent a filtered
sample from the gloss map, we can augment the formula for the specular contri-
bution as follows.

 { } ()specular
1

max ,0 0
n

m
i i i

i=
= ⋅ ⋅ > N H N L   (7.11)

 The actual color sampled from the texture map is determined by texture co-
ordinates applied to an object. Texture coordinates are either precomputed and
stored with each vertex of a triangle mesh or calculated at runtime to produce
some special effect. The texture coordinates are then interpolated using Equation
(5.37) across the face of a triangle when it is rendered. There may be from one to

166 7. Lighting and Shading

four coordinates at each vertex, and they are labeled s, t, p, and q.1 The next few
sections describe the different varieties of texture maps and how texture coordi-
nates are used to look up a texel in each type.

7.5.1 Standard Texture Maps

One, two, or three texture coordinates may be used to look up texels in one-,
two-, or three-dimensional texture maps. As shown in Figure 7.7, the entire
width, height, and depth of a texture map corresponds to coordinate values lying
between 0 and 1 in the s, t, and p directions, respectively.

0 1
s

0

0
0

0

0
1

1

1

1

1

s

s
t

t

p

(a)

(b)

(c)

Figure 7.7. Texture space for (a) 1D texture maps, (b) 2D texture maps, and (c) 3D
texture maps.

 A one-dimensional texture map can be thought of as a two-dimensional tex-
ture map that is only a single pixel in height. Likewise, a two-dimensional texture
map can be thought of as a three-dimensional texture map that is only a single
pixel in depth. When t and p coordinates are not specified, they are assumed to be
zero.

1 Originally, texture coordinates were labeled s, t, r, and q in OpenGL. However, the let-
ter r conflicted with the label for the red channel of a color when used as a swizzle or
mask in a shader program, so the label used for the third texture coordinate was replaced
with the letter p. (See the OpenGL Shading Language specification, Section 5.5.)

7.5 Texture Mapping 167

7.5.2 Projective Texture Maps

The fourth texture coordinate is used for projective texture mapping, an applica-
tion of which is described later in this section. The q coordinate behaves in much
the same way the w coordinate does for homogeneous points and is assumed to
be one when not specified. The interpolated s, t, and p coordinates are divided by
the interpolated q coordinate. For a scanline whose endpoints have texture coor-
dinates 1 1 1 1, , ,s t p q and 2 2 2 2, , ,s t p q , we can use Equation (5.37) to calculate
interpolated values 3s and 3q at some intermediate parameter []0,1u ∈ . The quo-
tient of these two values gives the following expression for the s coordinate used
to sample the texture map.

()

()

1 2

3 1 2

1 23

1 2

1

1

s su u
s z zs q qq u u

z z

− +
= =

− +
 (7.12)

Similar expressions give the projected t and p texture coordinates.
 One application of projective texture maps is the simulation of a spot light
that projects an image onto the environment. As shown in Figure 7.8, the project-
ed image becomes larger as the distance from the spot light increases. The effect
is achieved by using a 4 4× texture matrix to map the vertex positions of an ob-
ject to texture coordinates , ,0,s t q such that division by q produces the correct
2D texture coordinates ,s t used to sample the projected image.
 Suppose that a spot light has been placed at the point P and points in the di-
rection Z. Let the unit vectors S and T lie in the plane perpendicular to Z such
that they are aligned to the directions in which the s and t axes of the projected
texture image should be oriented (see Figure 7.8). Each vertex position , , ,1x y z
belonging to a surface illuminated by the spot light must first be transformed into
the coordinate system in which the spot light lies at the origin, and the x, y, and z
axes correspond to the directions S, T, and Z. This can be accomplished using
the inverse of the matrix whose columns are the vectors S, T, Z, and P. If S and
T are orthogonal (i.e., the projected image is not skewed), the transformation is
given by

 1

0 0 0 1

x y z

x y z

x y z

S S S
T T T
Z Z Z

− ⋅ 
 − ⋅ =

− ⋅ 
 
 

S P

T P
M

Z P
. (7.13)

168 7. Lighting and Shading

T

S

s

t Z
P

Figure 7.8. A projective texture map can be used to simulate a spot light that projects an
image onto the environment.

(Note that this matrix transforms into a left-handed coordinate system since
× = −S T Z.)

 Now we need to multiply the matrix in Equation (7.13) by a second matrix
that performs the projection. Just as we define the focal length of the view frus-
tum, we can define the focal length of the spot light projection in terms of an
apex angle α. The focal length e is given by

()
1

tan 2
e

α
= . (7.14)

Let a be the aspect ratio of the texture map, equal to its height divided by its
width. Every vertex position should be projected onto the plane lying at a dis-
tance e from the spot light, where we want to map the interval []1,1− in the x di-
rection to []0,1 , and we want to map the interval [],a a− in the y direction to []0,1 .
The matrix

 2

2 0 1 2 0
0 2 1 2 0
0 0 0 0
0 0 1 0

e
e a

 
 
 =
 
 
 

M (7.15)

7.5 Texture Mapping 169

performs this mapping and causes the projection to occur when the s and t coor-
dinates are divided by the q coordinate of the result. Combining the matrices giv-
en in Equations (7.13) and (7.15), the 4 4× texture matrix M used to implement a
projected spot light image is given by 2 1=M M M .

7.5.3 Cube Texture Maps

Another method of texturing an object is enabled through the use of a cube tex-
ture map. Cube texture maps are often used to approximate an environmental
reflection on the surface of a model. Shown in Figure 7.9, a cube texture map
consists of six two-dimensional components that correspond to the faces of a cu-
be. The s, t, and p coordinates represent a direction vector emanating from the
center of the cube that points toward the texel to be sampled.

, ,s t p

Figure 7.9. A cube texture map consists of six components that correspond to the faces
of a cube.

 Which face to sample is determined by the sign of the coordinate having the
largest absolute value. The other two coordinates are divided by the largest coor-
dinate and remapped to the range []0,1 using the formulas listed in Table 7.1 to
produce 2D texture coordinates ,s t′ ′ . These coordinates are then used to sample
the two-dimensional texture map for the corresponding face of the cube texture
map. Figure 7.10 shows the orientation of the cube map axes relative to each of
the six faces.
 Texture coordinates used in conjunction with cube texture maps are typically
generated at runtime. For instance, environment mapping can be performed by
calculating the reflection of the direction to the camera and storing it in the

, ,s t p coordinates at each vertex of a triangle mesh. The reflection direction cal-
culation is normally implemented in hardware, so this can be done very
efficiently.

170 7. Lighting and Shading

Face s′ t′

Positive x
1
2 2

p
s

− 1
2 2

t
s

−

Negative x
1
2 2

p
s

− 1
2 2

t
s

+

Positive y
1
2 2

s
t

+ 1
2 2

p
t

+

Negative y
1
2 2

s
t

− 1
2 2

p
t

+

Positive z
1
2 2

s
p

+
1
2 2

t
p

−

Negative z
1
2 2

s
p

+
1
2 2

t
p

+

Table 7.1. Formulas used to calculate the 2D coordinates ,s t′ ′ used to sample a texel in
one of the six faces of a cube texture map.

z+ x+ x−z−

y−

y+

s′ s′ s′ s′

s′

s′

t′ t′ t′ t′

t′

t′

Figure 7.10. Orientation of the cube map axes relative to each of the six faces.

7.5 Texture Mapping 171

 One application of cube texture maps on some graphics hardware is that of
normalizing vectors. A normalization cube map is a cube texture map that, in-
stead of storing color images in each of its six faces, stores an array of vectors
that are encoded as RGB colors using the following formulas.

1red
2

1green
2

1blue
2

x

y

z

+=

+=

+= (7.16)

The vector stored at each pixel of a face of the cube map is the unit length vector
, ,s t p that causes that pixel to be sampled. The use of a normalization cube map

becomes desirable when performing per-pixel lighting because interpolation of
surface normals across the face of a triangle inexorably produces normal vectors
whose length is less than unity.

7.5.4 Filtering and Mipmaps

When a model is rendered with a texture map applied to its surface, it is almost
never the case that the resolution of a texture map matches the resolution of the
viewport in which it is displayed. As a model moves closer to the camera, the
relative resolution of the viewport increases compared to that of the texture map.
Using only one sample from the texture map at each pixel results in a blocky ap-
pearance, so rendering hardware normally fetches four samples from the texture
map at each pixel and blends them together. In a process called bilinear filtering,
the four samples are blended using a weighted average that depends on the exact
texture coordinates corresponding to the pixel being rendered.
 Suppose a two-dimensional texture map having width w and height h is being
sampled using the texture coordinates ,s t and make the following definitions.

()
()

1
2

1
2

1
2

1
2

frac
frac

i ws
j ht
α ws
β ht

= −  
= −  
= −
= − (7.17)

The bilinearly filtered texture value  is given by

172 7. Lighting and Shading

Figure 7.11. These are the largest seven mipmap images for a particular texture map con-
taining dirt and stones. Each smaller image is exactly half the width and half the height of
the preceding image. Although not shown in its entirety here, the mipmap chain contin-
ues to an image that is only one pixel in size.

()() ()

()
, 1,

, 1 1, 1

1 1 1
1 ,

i j i j

i j i j

α β α β
α β αβ

+

+ + +

= − − + −
+ − +

  

  (7.18)

where ,i j represents the value stored in the texture map at the integral texel co-
ordinates ,i j .
 As a model moves away from the camera and the relative resolution of the
viewport decreases compared to that of the texture map, the area of a single pixel
can cover a region enclosing many texels in the texture map. Even if bilinear fil-
tering is applied, the low sampling resolution often leads to severe aliasing arti-
facts. The solution to this problem is to generate prefiltered versions of a texture
map at lower resolutions. As shown in Figure 7.11, each smaller image is exactly
half the width and half the height of the image that is one size larger. The array of
texture images is called a mipmap.2 Since the sum of the infinite series

 1 1 11
4 16 64

+ + + + (7.19)

2 The term mipmap is derived from the Latin phrase multum in parvo, meaning “much in
a small place”.

7.5 Texture Mapping 173

is 4
3 , adding mipmap images to a texture map increases the storage requirements

by only one-third of the texture map’s original size.
 When using mipmaps and bilinear filtering, rendering hardware chooses a
mipmap image at each pixel by examining the derivatives x∂ ∂S and y∂ ∂S ,
where x and y are the viewport coordinates of the pixel, and S represents the in-
terpolated components of the texture coordinate set at the pixel. The largest im-
age in a mipmap is called level 0, and smaller images are numbered sequentially.
Larger texture coordinate derivatives cause higher-numbered mipmap images
being used. Let n and m be the base-2 logarithms of the width and height of a
two-dimensional texture map (whose width and height are thus 2 n and 2 m). Let

(),s x y and (),t x y be functions that map viewport coordinates x and y to texture
coordinates s and t, and define () (), 2 ,nu x y s x y= and () (), 2 ,mv x y t x y= . The
level-of-detail parameter λ is determined by calculating

 ()[]

2 2

2 2

2log max ,

x

y

x y

u vρ
x x

u vρ
y y

λ ρ ρ

∂ ∂   = +   ∂ ∂   

∂ ∂   = +   ∂ ∂   

= . (7.20)

When using bilinear filtering (or no filtering), the value of λ is rounded to the
nearest integer and clamped to the range ()[]0,max ,n m . Four texture samples are
then fetched from the corresponding mipmap image level and blended using
Equation (7.18).
 As a model moves toward or away from the camera, abrupt changes in the
mipmap level may be unsightly, so rendering hardware provides a mode called
trilinear filtering in which two mipmap levels are sampled (using bilinear filter-
ing) and blended together. Texture values 1 and 2 are sampled from mipmap
levels λ   and 1λ +   , respectively, and blended using the formula

 ()() ()1 21 frac fracλ λ= − +   (7.21)

to arrive at the final texture value .
 Mipmapping for one-dimensional and three-dimensional texture maps oper-
ates by considering one or three texture coordinates in Equation (7.20). For cube
texture maps, mipmapping operates independently for each of the six two-
dimensional faces.

174 7. Lighting and Shading

7.6 Emission

Some objects may emit light in addition to reflecting it. To give an object the
appearance of emitting a uniform glow, we add an emission color  to our light-
ing formula. This emission color can also be modulated by an emission map that
determines the color and intensity of the glow at each point on a surface. Using
the color  to represent a filtered sample from the emission map, the emission
component of the lighting formula is given by the simple expression

 emission = . (7.22)

Figure 7.12 demonstrates the application of an emission map to the surface of a
model in addition to an ordinary texture map.

(a)

(b)

Figure 7.12. (a) The left image is an ordinary texture map, and the right image is an
emission map. (b) The model on the left has only the ordinary texture map applied to it.
The model on the right includes the emission map. Unlike the ordinary texture map, the
emission map is unaffected by the direction of the surface normal, and it determines
which parts of the surface appear to give off a glow. (Image from the game The 31st,
courtesy of Terathon Software LLC.)

7.7 Shading Models 175

7.7 Shading Models

Information about the surface of a model, such as the positions of points on the
surface and the normal vectors at those points, are stored only for each vertex of
a triangle mesh. When a single triangle is rendered, information known at each
vertex is interpolated across the face of the triangle, as discussed in Section 5.4.2.
Conventional lighting pipelines calculate diffuse and specular illumination only
at the vertices of a mesh. More modern graphics hardware enables the calculation
of the entire illumination formula at every individual pixel drawn to the display.
The manner in which lighting is determined for the surface of a triangle, com-
bined with any number of texture maps, is called shading.

7.7.1 Calculating Normal Vectors

To apply the lighting formula to a triangle mesh, we need to have a representa-
tion of the surface normal at each vertex. We can calculate the normal vector for
a single triangle by using the cross product. The unit-length normal vector N of a
triangle whose vertices lie at the points 0P , 1P , and 2P is given by

 () ()
() ()

1 0 2 0

1 0 2 0

− × −
=

− × −
P P P P

N
P P P P

. (7.23)

This assumes that the vertices are oriented in a counterclockwise fashion when
the normal points toward the viewer, as shown in Figure 7.13.
 The normal vector at a single vertex is typically calculated by averaging the
normal vectors of all triangles that share that vertex. Using the formula

0P 1P

2P

Figure 7.13. The vertices of a triangle should be oriented in a counterclockwise fashion
when the normal vector points toward the viewer.

176 7. Lighting and Shading

1N

2N

3N

4N
Figure 7.14. By averaging the unnormalized normal vectors of each triangle sharing a
vertex, a vertex normal can be calculated that is influenced more strongly by triangles
with greater area.

 1
vertex

1

k

i
i
k

i
i

=

=

=




N
N

N
 (7.24)

to calculate the normal vector vertexN for a vertex shared by k triangles results in a
vertex normal that is influenced equally by the normal vector iN of each of the
triangles surrounding it.
 An alternative formulation, illustrated in Figure 7.14, makes use of the fact
that the cross product of two vectors is proportional to the area of the triangle that
they form. By using the unnormalized triangle normals calculated with the
equation

 () ()1 0 2 0= − × −N P P P P (7.25)

instead of Equation (7.23) and then averaging using Equation (7.24), we can cal-
culate a vertex normal that is more strongly influenced by triangles with greater
area. This method produces more appealing vertex normals for some models.

7.7.2 Gouraud Shading

The interpolation of lighting values calculated at each vertex across the face of a
triangle is known as Gouraud shading. Before the advent of graphics hardware

7.7 Shading Models 177

capable of performing per-pixel lighting calculations, diffuse and specular colors
were calculated only at each vertex of a triangle mesh. This method calculates the
colors

{ }

{ } ()

primary
1

secondary
1

max ,0

max ,0 0

n

i i
i

n
m

i i i
i

=

=

= + + ⋅

= ⋅ ⋅ >





N L

N H N L

    

   (7.26)

at each vertex and interpolates them across the face of a triangle. The color  of
a pixel is then calculated using the equation

 primary 1 2 secondaryk= +        , (7.27)

where each i represents a color sampled from one of k texture maps, and the
operation  is one of several available texture combination operations that include
modulation and addition.

7.7.3 Blinn-Phong Shading

Instead of interpolating lighting values calculated at each vertex, the Blinn-Phong
shading model interpolates the vertex normal N, the direction to the light source
L, and the direction to the viewer V across a triangle and evaluates the lighting
formula at each pixel. The halfway vector H is calculated using Equation (7.9) at
every pixel.
 Graphics hardware that can perform complex calculations on a per-pixel ba-
sis (a process called pixel shading or fragment shading) can be configured to
evaluate the entire expression

 () () ()

emission diffuse specular

1
0

n
m

i i i i
i=

= + +

 = + + ⋅ + ⋅ ⋅ >  N L N H N L

   

     (7.28)

at each pixel composing the face of a triangle. In the interests of simplicity, we
have omitted the maximum functions here, but it should be noted that the diffuse
and specular dot products in this equation are clamped to zero. The intensity i of
each of the n light sources is still calculated at each vertex and interpolated across
the face of a triangle. These values and the interpolated normal vector are used to

178 7. Lighting and Shading

evaluate  at each pixel. Of course, not every component of Equation (7.28)
needs to be present.
 An advantage that Blinn-Phong shading possesses over Gouraud shading is
that it does a far better job of modeling specularity due to the fact that the dot
product ⋅N H is evaluated at every pixel. When a sharp specular highlight falls in
the interior of a triangle, Gouraud shading produces poor results because the
specular component calculated at the triangle’s vertices is unrepresentative of the
true values existing elsewhere on the face of the triangle.
 A problem that arises when using Blinn-Phong shading is that interpolated
normal vectors do not retain the unit length that they have at the vertices. Dense-
ly tessellated models for which the normal vectors belonging to neighboring ver-
tices differ in direction by only a small amount may not produce visually unac-
ceptable artifacts, but most models exhibit a noticeable darkening of the specular-
ity in the interior of each triangle. This problem is solved by explicitly normaliz-
ing the interpolated normal vectors either through direct calculation or by using a
normalization cube map (see Section 7.5.3).

7.8 Bump Mapping

The surface detail that an observer perceives when an object is viewed from any
direction other than edge-on is generally determined by the way in which its sur-
face is illuminated. The illumination at each pixel rendered is determined by the
normal vector used during the evaluation of the lighting formula. So far, we have
been limited to calculating normal vectors only at the vertices of a triangle mesh
and using a smoothly interpolated normal vector elsewhere. This coarse resolu-
tion prevents us from illuminating any details that are smaller in size than a typi-
cal triangle in a mesh. Bump mapping is a technique that presents the illusion of
greater detail to the viewer by using a texture map to perturb the normal vector at
each pixel.

7.8.1 Bump Map Construction

High-resolution information about how the normal vector is perturbed is stored in
a two-dimensional array of three-dimensional vectors called a bump map or nor-
mal map. Each vector in the bump map represents the direction in which the
normal vector should point relative to the interpolated normal vector at a point
inside the face of a triangle. The vector 0,0,1 represents an unperturbed normal,
whereas any other vector represents a modification to the normal that affects the
result of the lighting formula.

7.8 Bump Mapping 179

 A bump map is typically constructed by extracting normal vectors from a
height map whose contents represent the height of a flat surface at each pixel. To
derive the normal vector corresponding to a particular pixel in the height map, we
first calculate tangents in the s and t directions, which are based on the difference
in height between adjacent pixels. Using the notation (),H i j to represent the
value stored at coordinates ,i j in a w h× pixel height map, we can express the
tangent vectors (),i jS and (),i jT , aligned to the s and t directions, respectively,
as follows.

() () ()
() () ()

, 1,0, 1, 1,
, 0,1, , 1 , 1

i j aH i j aH i j
i j aH i j aH i j

= + − −
= + − −

S

T (7.29)

The constant a is a scale factor that can be used to vary the range of the height
values, controlling how pronounced the perturbed normals are. If we let zS and zT
denote the z components of (),i jS and (),i jT , then the normal vector (),i jN is
calculated using the cross product

 () () ()
() () 2 2

, , , ,1,
, , 1

z z

z z

i j i j S Ti j
i j i j S T

× − −= =
× + +

S T
N

S T
. (7.30)

The components of each normal vector are encoded as an RGB color using the
relations given in Equation (7.16). Figure 7.15 shows a grayscale height map and
the corresponding bump map calculated using Equation (7.30).

Figure 7.15. A height map and the corresponding bump map containing perturbed nor-
mal vectors. A pastel purple color is prevalent in the bump map since the unperturbed
normal vector 0,0,1 corresponds to the RGB color ()1 1

2 2, ,1 .

180 7. Lighting and Shading

7.8.2 Tangent Space

Since the vector 0,0,1 in a bump map represents an unperturbed normal, we
need it to correspond to the interpolated normal vector that we would ordinarily
use in the lighting formula. This can be achieved by constructing a coordinate
system at each vertex in which the vertex normal always points along the positive
z axis. In addition to the normal vector, we need two vectors that are tangent to
the surface at each vertex in order to form an orthonormal basis. The resulting
coordinate system is called tangent space or vertex space and is shown in
Figure 7.16.
 Once a tangent-space coordinate system has been established at each vertex
of a triangle mesh, the direction to light vector L is calculated at each vertex and
transformed into the tangent space. The tangent-space vector L is then interpolat-
ed across the face of a triangle. Since the vector 0,0,1 in tangent space corre-
sponds to the normal vector, the dot product between the tangent-space direction
to light L and a sample from a bump map produces a valid Lambertian reflection
term.
 The tangent vectors at each vertex must be chosen so that they are aligned to
the texture space of the bump map. For surfaces generated by parametric func-
tions, tangents can usually be calculated by simply taking derivatives with re-
spect to each of the parameters. Arbitrary triangle meshes, however, can have
bump maps applied to them in any orientation, which necessitates a more general
method for determining the tangent directions at each vertex.

7.8.3 Calculating Tangent Vectors

Our goal is to find a 3 3× matrix at each vertex that transforms vectors from ob-
ject space into tangent space. To accomplish this, we consider the more intuitive
problem of transforming vectors in the reverse direction from tangent space into
object space. Since the normal vector at a vertex corresponds to 0,0,1 in tangent
space, we know that the z axis of our tangent space always gets mapped to a ver-
tex's normal vector.
 We want our tangent space to be aligned such that the x axis corresponds to
the s direction in the bump map and the y axis corresponds to the t direction in
the bump map. That is, if Q represents a point inside the triangle, we would like
to be able to write

 () ()0 0 0s s t t− = − + −Q P T B, (7.31)

7.8 Bump Mapping 181

0,0,1=N

1,0,0=T

Figure 7.16. Tangent space is aligned to the tangent plane and normal vector at a vertex.

where T and B are tangent vectors aligned to the texture map, 0P is the position
of one of the vertices of the triangle, and 0 0,s t are the texture coordinates at that
vertex. The letter B stands for bitangent, and it represents the direction orthogo-
nal to the tangent vector T in the tangent plane to the surface.3
 Suppose that we have a triangle whose vertex positions are given by the
points 0P , 1P , and 2P , and whose corresponding texture coordinates are given by

0 0,s t , 1 1,s t , and 2 2,s t . Our calculations can be made much simpler by work-
ing relative to the vertex 0P , so we let

1 1 0

2 2 0

= −
= −

Q P P

Q P P (7.32)

and

1 1 1 0 1 0

2 2 2 0 2 0

, ,
, ,

s t s s t t
s t s s t t

= − −
= − − . (7.33)

We need to solve the following equations for T and B.

1 1 1

2 2 2

s t
s t

= +
= +

Q T B

Q T B (7.34)

3 In some texts, the term binormal is still used to describe the tangent direction B, but this
is a misnomer often retained for historical reasons or out of ignorance. As discussed in
Section 15.8, a binormal forms part of the local coordinate system following a curve in
which there is a single tangent direction and two orthogonal normal directions.

182 7. Lighting and Shading

This is a linear system with six unknowns (three for each T and B) and six equa-
tions (the x, y, and z components of the two equations). We can write this in ma-
trix form as follows.

() () ()
() () ()

1 1 1 1 1

2 2 2 2 2

x y z x y z

x y z x y z

s t T T T
s t B B B

     =          

Q Q Q

Q Q Q
 (7.35)

Multiplying both sides by the inverse of the ,s t matrix, we have

() () ()
() () ()

2 1 1 1 1

2 1 2 2 21 2 2 1

1x y z x y z

x y z x y z

T T T t t
B B B s ss t s t

−     =     −−     

Q Q Q

Q Q Q
. (7.36)

This gives us the (unnormalized) T and B tangent vectors for the triangle whose
vertices are 0P , 1P , and 2P . To find the tangent vectors for a single vertex, we av-
erage the tangents for all triangles sharing that vertex in a manner similar to the
way in which vertex normals are commonly calculated. In the case that neighbor-
ing triangles have discontinuous texture mapping, vertices along the border are
generally already duplicated since they have different mapping coordinates any-
way. We do not average tangents from such triangles because the result would
not accurately represent the orientation of the bump map for either triangle.
 Once we have the normal vector N and the tangent vectors T and B for a ver-
tex, we can transform from tangent space into object space using the matrix

x x x

y y y

z z z

T B N
T B N
T B N

 
 
 
  

. (7.37)

To transform in the opposite direction (from object space to tangent space—what
we want to do to the light direction), we can simply use the inverse of this matrix.
It is not necessarily true that the tangent vectors are perpendicular to each other
or to the normal vector, so the inverse of this matrix is not generally equal to its
transpose. It is safe to assume, however, that the three vectors will at least be
close to orthogonal, so using the Gram-Schmidt algorithm (see Algorithm 2.16)
to orthogonalize them should not cause any unacceptable distortions. Using this
process, new (still unnormalized) tangent vectors ′T and ′B are given by

()
() ()

′ = − ⋅
′ ′ ′= − ⋅ − ⋅

T T N T N

B B N B N T B T . (7.38)

7.8 Bump Mapping 183

Normalizing these vectors and storing them as the tangent and bitangent for a
vertex lets us use the matrix

x y z

x y z

x y z

T T T
B B B
N N N

′ ′ ′ 
 ′ ′ ′ 
  

 (7.39)

to transform the direction to light from object space into tangent space. Taking
the dot product of the transformed light direction with a sample from the bump
map then produces the correct Lambertian diffuse lighting value.
 It is not necessary to store an extra array containing the per-vertex bitangent
since the cross product ′×N T can be used to obtain m ′B , where 1m = ± represents
the handedness of the tangent space. The handedness value must be stored per-
vertex since the bitangent ′B obtained from ′×N T may point in the wrong direc-
tion. The value of m is equal to the determinant of the matrix in Equation (7.39).
One may find it convenient to store the per-vertex tangent vector ′T as a four-
dimensional entity whose w coordinate holds the value of m. Then the bitangent

′B can be computed using the formula

 ()wT′ ′ ′= ×B N T , (7.40)

where the cross product ignores the w coordinate. This works nicely for vertex
programs by avoiding the need to specify an additional array containing the per-
vertex m values.
 Code that demonstrates how per-vertex tangent vectors can be calculated for
an arbitrary mesh is shown in Listing 7.1 This code calculates the tangent and
bitangent directions for each triangle in a mesh and adds them to a cumulative
total for each vertex used by the triangle. It then loops over all vertices, or-
thonormalizes the tangent and bitangent for each one, and outputs a single four-
dimensional tangent vector for each vertex whose fourth coordinate contains a
handedness value.

184 7. Lighting and Shading

Listing 7.1. This code generates an array of vertex tangents for an arbitrary input mesh.

void CalculateTangentArray(long vertexCount, const Point3D *vertex,

 const Vector3D *normal, const Point2D *texcoord, long triangleCount,

 const Triangle *triangle, Vector4D *tangent)

{

 Vector3D *tan1 = new Vector3D[vertexCount * 2];

 Vector3D *tan2 = tan1 + vertexCount;

 ZeroMemory(tan1, vertexCount * sizeof(Vector3D) * 2);

 for (long a = 0; a < triangleCount; a++)

 {

 long i1 = triangle->index[0];

 long i2 = triangle->index[1];

 long i3 = triangle->index[2];

 const Point3D& v1 = vertex[i1];

 const Point3D& v2 = vertex[i2];

 const Point3D& v3 = vertex[i3];

 const Point2D& w1 = texcoord[i1];

 const Point2D& w2 = texcoord[i2];

 const Point2D& w3 = texcoord[i3];

 float x1 = v2.x - v1.x;

 float x2 = v3.x - v1.x;

 float y1 = v2.y - v1.y;

 float y2 = v3.y - v1.y;

 float z1 = v2.z - v1.z;

 float z2 = v3.z - v1.z;

 float s1 = w2.x - w1.x;

 float s2 = w3.x - w1.x;

 float t1 = w2.y - w1.y;

 float t2 = w3.y - w1.y;

 float r = 1.0F / (s1 * t2 - s2 * t1);

 Vector3D sdir((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r,

 (t2 * z1 - t1 * z2) * r);

 Vector3D tdir((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r,

 (s1 * z2 - s2 * z1) * r);

7.8 Bump Mapping 185

 tan1[i1] += sdir;

 tan1[i2] += sdir;

 tan1[i3] += sdir;

 tan2[i1] += tdir;

 tan2[i2] += tdir;

 tan2[i3] += tdir;

 triangle++;

 }

 for (long a = 0; a < vertexCount; a++)

 {

 const Vector3D& n = normal[a];

 const Vector3D& t = tan1[a];

 // Gram-Schmidt orthogonalize.

 tangent[a] = (t - n * Dot(n, t)).Normalize();

 // Calculate handedness.

 tangent[a].w = (Dot(Cross(n, t), tan2[a]) < 0.0F) ? -1.0F : 1.0F;

 }

 delete[] tan1;

}

7.8.4 Implementation

During shading, bump mapping operations can be divided into those calculated
for each vertex and those calculated for each pixel. At each vertex, we must cal-
culate the direction to the camera V and the direction to the light L and transform
them into tangent space using the matrix in Equation (7.39). The vertex shader
shown in Listing 7.2 performs these calculations for a surface illuminated by a
directional light source (for which L is constant).
 The tangent-space vectors V and L are interpolated over the face of each tri-
angle. The fragment shader must normalize these and use Equation (7.9) to calcu-
late the normalized halfway vector H. The dot products ⋅N L and ⋅N H are then
calculated for every fragment, where the normal vector N is sampled from the
bump map. The results of these dot products are finally used to calculate the dif-
fuse and specular components of the standard shading equation.

186 7. Lighting and Shading

Listing 7.2. This vertex shader performs the calculations necessary for bump mapping.

in vec4 vertexPosition; // The object-space vertex position.

in vec3 normal; // The object-space vertex normal.

in vec4 tangent; // The object-space vertex tangent.

out vec3 view; // The tangent-space view direction.

out vec3 light; // The tangent-space light direction.

uniform vec4 mvpMatrix[4]; // The model-view-projection matrix.

uniform vec3 cameraPosition; // The object-space camera position.

uniform vec3 lightDirection; // The object-space light direction.

void main()

{

 // Transform the vertex into clip space.

 gl_Position = vec4(dot(mvpMatrix[0], vertexPosition),

 dot(mvpMatrix[1], vertexPosition),

 dot(mvpMatrix[2], vertexPosition),

 dot(mvpMatrix[3], vertexPosition));

 // Calculate the bitangent B = (N x T) * T.w.

 vec3 bitangent = cross(normal, tangent.xyz) * tangent.w;

 // Transform V into tangent space.

 view = cameraPosition - vertexPosition;

 view = vec3(dot(tangent, view), dot(bitangent, view),

 dot(normal, view));

 // Transform L into tangent space.

 light = vec3(dot(tangent, lightDirection),

 dot(bitangent, lightDirection), dot(normal, lightDirection));

}

7.9 A Physical Reflection Model 187

7.9 A Physical Reflection Model

The manner in which we have calculated the reflection of light on a surface be-
fore this point is computationally cheap and produces visually pleasing results in
many cases, but it is not an accurate model of the physically correct distribution
of reflected light. Achieving greater realism requires that we use a better model
of a surface’s microscopic structure and that we apply a little electromagnetic
theory.

7.9.1 Bidirectional Reflectance Distribution Functions

In general, our goal is to model the way in which the radiant energy contained in
a beam of light is redistributed when it strikes a surface. Some of the energy is
absorbed by the surface, some may be transmitted through the surface, and what-
ever energy remains is reflected. The reflected energy is usually scattered in eve-
ry direction, but not in a uniform manner. A function that takes the direction L to
a light source and a reflection direction R, and returns the amount of incident
light from the direction L that is reflected in the direction R is called a bidirec-
tional reflectance distribution function (BRDF).
 The precise definition of a BRDF requires that we first introduce some ter-
minology from the field of radiometry, the study of the transfer of energy via
radiation. The radiant power (energy per unit time) emitted by a light source or
received by a surface is called flux and is measured in watts (W). The power
emitted by a light source or received by a surface per unit area is called flux den-
sity and is measured in watts per square meter (2W m−⋅). The flux density emitted
by a surface is called the surface’s radiosity, and the flux density incident on a
surface is called the irradiance of the light.
 Figure 7.17 illustrates a situation in which a light source is emitting P watts
of power toward a surface of area A. The power received by the surface is equal
to the power emitted by the light source, but the flux densities received and emit-
ted are different because of the Lambertian effect. The area of the beam is equal
to ()A ⋅N L , where N is the unit surface normal and L is the unit direction-to-light
vector. The flux density Φ E emitted by the light source is thus given by

()

Φ E
P

A
=

⋅N L
. (7.41)

Since the flux density Φ I incident on the surface is equal to P A, we have the
relation

188 7. Lighting and Shading

N L

A

()A ⋅N L

Figure 7.17. The flux density incident on an area A of a surface is equal to the flux densi-
ty of an incident light beam scaled by a factor of ⋅N L.

l

r r
θ ω

A

Figure 7.18. Planar angles are equal to the arc length that they sweep out divided by the
radius of the circle. Similarly, solid angles are equal to the surface area that subtends
them divided by the square of the radius of the sphere.

 ()Φ ΦI E= ⋅N L . (7.42)

 The direction from which light illuminates a surface is defined in terms of
solid angles, the three-dimensional analog of planar angles. As Figure 7.18 illus-
trates, the measure of a planar angle θ in radians is given by the arc length l
swept out on a circle divided by the radius r of the circle: θ l r= . Extending this
to three dimensions, the measure of a solid angle ω corresponding to an area A on
the surface of a sphere of radius r is defined as 2ω A r= . The unit of solid angle
measure is the steradian, abbreviated sr. Since the surface area of a sphere of

7.9 A Physical Reflection Model 189

radius r is equal to 24πr , there are 4π steradians in the solid angle representing
the entire sphere.
 A differential solid angle dω can be written in terms of the differential azi-
muthal angle dθ and the differential polar angle dφ. As shown in Figure 7.19, the
circle at the polar angle φ that lies parallel to the x-y plane and passes through the
point , ,r θ φ has radius sinr φ. Thus, the differential arc length in the azimuthal
direction on this circle is equal to sinr φdθ. Multiplying this by the differential
arc length r dφ in the polar direction gives us the following expression for the
differential surface area dA.

 2 sindA r φdθ dφ= (7.43)

Dividing by 2r gives us the expression for the corresponding differential solid
angle dω:

 sin .dω φdθ dφ= (7.44)

 Radiance is the term used to describe the flux density of radiation per unit
solid angle and is measured in watts per square meter per steradian
(2 1W m sr− −⋅ ⋅). The irradiance (flux density) Φ I of the light received by a differ-
ential area dA on a surface is equal to the following integral of the radiance

()IC L received by the area, where the direction to light L ranges over the unit
hemisphere Ω above the surface. (The angles θ and φ are the azimuthal and polar
angles corresponding to the direction L.)

x

z

rφ

sinr φ
sinr dφ r φdθ×

Figure 7.19. The differential surface area at the point , ,r θ φ on a sphere is equal to

2 sinr φdθ dφ.

190 7. Lighting and Shading

()

()
Ω

2 2

0 0

Φ

, sin

I I

π π
I

C dω

C θ φ φdφdθ

=

=


 

L

 (7.45)

For the same reason that the flux density received by a surface and the flux densi-
ty emitted by a light source are related by Equation (7.42), the radiance IC re-
ceived by a surface and the radiance EC emitted by a light source are related by

 () cosI E EC C C φ= ⋅ =N L . (7.46)

We can therefore rewrite Equation (7.45) as

()()

()
Ω

2 2

0 0

Φ

, cos sin

I E

π π
E

C dω

C θ φ φ φdφdθ

= ⋅

=


 

L N L

. (7.47)

 The bidirectional reflectivity (),ρ V L at a point on a surface is a function of
the direction to viewer V and the direction to light L. It is equal to the ratio of the
differential reflected radiance RdC to the differential incident irradiance Φ Id :

 ()
()()

,
Φ

R R

I E

dC dCρ
d C dω

= =
⋅

V L
L N L

. (7.48)

The function (),ρ V L is the BRDF that we use to calculate the radiance of the
light reflected in a specific direction from a surface using the equation

 () ()(),R EdC ρ C dω= ⋅V L L N L . (7.49)

Directional, point, and spot light sources illuminate a point on a surface from a
single direction. Thus, instead of integrating Equation (7.49) to determine the
amount of light ()RC V from n sources reflected in the direction to viewer V, we
simply sum over the discrete directions to light iL :

 () () ()
1

,
n

R i i i
i

C ρ C
=

= ⋅V V L N L . (7.50)

 Up to this point in our discussion of BRDFs, we have not said anything about
color. In addition to the incoming and outgoing light directions, a BRDF should
be a function of the wavelength of the light. Applications requiring accurate re-
flection models across the entire spectrum typically evaluate a BRDF at several

7.9 A Physical Reflection Model 191

wavelengths and then fit a curve to the resulting numbers. For real-time computer
graphics, we find it sufficient to treat our BRDFs as functions that take the RGB
color of the incident light and return the RGB color of the reflected light. From
this point on, we assume that all operations involving a BRDF take place for each
of the red, green, and blue components of light.
 The diffuse and specular reflection formulas given in Equations (7.6) and
(7.8) can be reproduced by defining the RGB-color BRDF  as

 () (),
m⋅

= +
⋅

N H
V L

N L
   . (7.51)

The term bidirectional means that the function  should be invariant when the
directions V and L are exchanged. That is,  should satisfy the reciprocity
property

 () (), ,=V L L V  (7.52)

required by the fact that reversing the direction that light travels along a certain
path should not produce different results. The function  given by Equation
(7.51) does not satisfy the bidirectional requirement, however, and therefore can-
not be physically correct.
 Another physical law violated by Equation (7.51) is conservation of energy.
Any physically correct BRDF must not reflect more light from a point on a sur-
face than is incident at that point. We can divide the reflected energy given by the
BRDF  into diffuse and specular components by writing

 () () (), 1 ,sk k= + −V L V L   , (7.53)

where  is the surface’s diffuse reflection color and k represents the fraction of
the incident light that is diffusely reflected. The remaining fraction 1 k− of the
incident light is either absorbed or makes up a specular reflection. These effects
are modeled by the function s , which is described in the next section.

7.9.2 Cook-Torrance Illumination

The Cook-Torrance illumination model4 produces a realistic specular reflection
by treating a surface as being composed of planar microscopic facets called

4 Robert L. Cook and Kenneth E. Torrance, “A Reflectance Model for Computer
Graphics,” ACM Transactions on Graphics, Vol. 1, No. 1 (January 1982), pp. 7–24.

192 7. Lighting and Shading

Figure 7.20. Surface roughness is characterized by how much the slopes of the micro-
facets vary.

microfacets. Each microfacet is treated as a perfect reflector that obeys the reflec-
tive laws of electromagnetic theory. The roughness of a surface is characterized
by the slopes of the microfacets. As shown in Figure 7.20, a rough surface is
composed of microfacets having greatly varying slopes, whereas the microfacets
for a relatively smooth surface have only small slopes.
 Cook and Torrance use the following formula for the specular component s
of the BRDF given in Equation (7.53).

 () () () ()
()()

, ,, ,s
D G
π

=
⋅ ⋅

V L V L
V L V L

N V N L
  (7.54)

 is the Fresnel factor, which describes the amount and color of light reflected as
a function of the angle of incidence; D is the microfacet distribution function,
which returns the fraction of microfacets oriented in a given direction; and G is
the geometrical attenuation factor, which accounts for self-shadowing of the mi-
crofacets. Since the microfacets are perfect reflectors, only those microfacets
whose normal vectors point in the direction of the halfway vector H contribute to
the specular reflection.
 The π appearing in the denominator of Equation (7.54) is a normalization
factor that accounts for the fact that the incident flux density Φ I at a surface for a
constant emitted radiance EC is given by

 ()
2

Ω
0 0

Φ cos sin
π π

I E EC dω φ φdφdθ πC= ⋅ = =  N L . (7.55)

7.9.3 The Fresnel Factor

The interaction of an electromagnetic wave and a surface results in a reflected
wave and a transmitted wave. The energy contained in the reflected wave is equal
to the energy contained in the incident wave minus the energy contained in the

7.9 A Physical Reflection Model 193

transmitted wave (which is quickly absorbed by opaque materials). The electric
field of the incident light can be decomposed into components that are polarized
with respect to the plane containing the surface normal N and the direction to
light L. The component parallel to this plane is called p-polarized, and the com-
ponent perpendicular to this plane is called s-polarized. The Fresnel factors giv-
ing, for a single wavelength, the fractions pF and sF of the amount of light re-
flected for these components are

 ()
()

2
1 2

2
1 2

tan
tanp

θ θF
θ θ

−
=

+
 (7.56)

and

 ()
()

2
1 2

2
1 2

sin
sins

θ θF
θ θ

−
=

+
, (7.57)

where 1θ is the angle of incidence and 2θ is the wavelength-dependent angle of
transmittance. For unpolarized light, we simply average these to obtain the Fres-
nel factor λF corresponding to the wavelength λ:

 ()
()

()
()

2 2
1 2 1 2

2 2
1 2 1 2

tan sin1
2 tan sinλ

θ θ θ θF
θ θ θ θ

− − = + + + 
. (7.58)

 The angle of incidence 1θ is equal to ()1cos − ⋅L H since every microfacet con-
tributing to the specular reflection is oriented such that its normal vector points
along the halfway vector H. It turns out that we can write the Fresnel factor in
terms of ⋅L H and the indexes of refraction 1η and 2η of the two materials by ap-
plying some trigonometric identities and using Snell’s law. Factoring the sine
function out of Equation (7.58) gives us

 ()
()

()
()

2 2
1 2 1 2

2 2
1 2 1 2

sin cos1 1
2 sin cosλ

θ θ θ θF
θ θ θ θ

− + = + + − 
. (7.59)

Applying the trigonometric identities for sums and differences of angles to the
sine factors yields

()
()

1 2 1 2 1 2

1 2 1 2 1 2

2 1

2 1

sin sin cos cos sin
sin sin cos cos sin

cos cos ,
cos cos

λ

λ

θ θ θ θ θ θ
θ θ θ θ θ θ

η θ θ
η θ θ

− −=
+ +

−=
+

 (7.60)

194 7. Lighting and Shading

where Snell’s law has been used to obtain

 2 1

1 2

sin
sinλ

η θη
η θ

= = . (7.61)

We can express 2cosθ in terms of 1cosθ and η by writing Snell’s law in the form

 2 2
1 1 2 21 cos 1 cosη θ η θ− = − (7.62)

and solving for 2cosθ :

 ()2
2 12

1cos 1 1 cos
λ

θ θ
η

= − − . (7.63)

Defining the variable g as

 ()2 2
2cos 1λ λg η θ η= = − + ⋅L H (7.64)

lets us express the quotient of the sine functions as

 ()
()

1 2

1 2

sin
sin

θ θ g
θ θ g

− − ⋅=
+ + ⋅

L H

L H
. (7.65)

A similar procedure allows us to express the cosine factors in terms of g and
⋅L H. We begin by applying angle sum and difference identities:

()
()

1 2 1 2 1 2

1 2 1 2 1 2

2
1 2 2

2
1 2 2

cos cos cos sin sin
cos cos cos sin sin

cos cos sin .
cos cos sin

λ

λ

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ η θ
θ θ η θ

+ −=
− +

−=
+

 (7.66)

Again using the variable g defined in Equation (7.64), we can write this as

()
()

()
()

()()
()()

2 2
1 21 2

2 2
1 2 1 2

2 2
1

2 2
1

cos 1 coscos
cos cos 1 cos

cos
cos

1.
1

λ

λ

λ

λ

g θ η θθ θ
θ θ g θ η θ

g θ η g
g θ η g

g
g

− −+
=

− + −

− +=
+ −

⋅ + ⋅ −
=

⋅ − ⋅ +
L H L H

L H L H
 (7.67)

7.9 A Physical Reflection Model 195

The Fresnel factor can now be entirely expressed in terms of ⋅L H and λη as
follows.

 () ()
()

()()[]
()()[]

22

2 2

11, 1
2 1λ

ggF
g g

⋅ + ⋅ −− ⋅  = + + ⋅ ⋅ − ⋅ + 

L H L HL H
V L

L H L H L H
 (7.68)

The RGB color Fresnel factor (),V L simply consists of the function (),λF V L
evaluated at red, green, and blue wavelengths.
 We can make a couple of observations about the behavior of the function λF .
First, as the angle of incidence approaches 90 degrees, the value of ⋅L H ap-
proaches 0, and thus the value of λF approaches 1. This means that at grazing an-
gles, all the incident light is reflected, leaving none to be absorbed by the surface.
Second, for normal incidence in which the incident angle is 0, the value of ⋅L H
is 1, and λF reduces to

 ()
21

1
λ

λ
λ

ηF
η=

− =  + 
L H . (7.69)

This gives us a convenient way of deriving an approximate value for λη if all that
is known about a material is the specular color  reflected at normal incidence.
Solving Equation (7.69) for λη yields

 ()
()

1
1

λ
λ

λ

Fη
F

=

=

+
=

−
L H

L H

. (7.70)

Once a value of λη has been calculated with this equation by setting the value of
()λF =L H at red, green, and blue wavelengths equal to the red, green, and blue
components of , it can be used in Equation (7.68) to calculate reflectance for
any other angle of incidence.

7.9.4 The Microfacet Distribution Function

Given a halfway vector H, the microfacet distribution function returns the frac-
tion of microfacets whose normal vectors point along the direction H. For rough
surfaces, the Beckmann distribution function5 given by

 ()
()

()
()

2

2 4 2 2

11, exp
4mD

m m
⋅ − =  ⋅ ⋅ 

N H
V L

N H N H
 (7.71)

5 Petr Beckmann and André Spizzichino, The Scattering of Electromagnetic Waves from
Rough Surfaces, Macmillan, 1963.

196 7. Lighting and Shading

describes the distribution of microfacet orientations in terms of the root mean
square slope m. Large values of m correspond to rough surfaces and thus produce
a wide distribution of microfacet orientations. As shown in Figure 7.21, smaller
values of m correspond to smoother surfaces and produce relatively narrow dis-
tributions, which result in a sharper specularity.
 The function given by Equation (7.71) is isotropic, meaning that it is invari-
ant under a rotation about the normal vector N. As long as the angle between the
direction to viewer V and direction to light L remains constant, and the angle
between each of these vectors and the normal vector remains constant, the distri-
bution of microfacets also remains constant. Many surfaces, however, possess
different degrees of roughness in different directions. These surfaces are called
anisotropic reflectors and include materials such as brushed metal, hair, and cer-
tain fabrics.

(a) N

L

(b) N

L

Figure 7.21. Microfacet distributions given by Equation (7.71) modeling (a) a rough sur-
face using 0.6m = and (b) a relatively smooth surface using 0.25m = .

7.9 A Physical Reflection Model 197

 We can modify the microfacet distribution function to account for aniso-
tropic surface roughness by changing Equation (7.71) to

 ()
()

() () ()
()

2 2 2

4 2 2 2

1 11, exp
4 x y x y

D
m m m m

⋅ − ⋅ ⋅ −  = +  ⋅ ⋅  
m

T P T P N H
V L

N H N H
, (7.72)

where m is a two-dimensional roughness vector, T is the tangent to the surface
aligned to the direction in which the roughness is xm , and P is the normalized
projection of the halfway vector H onto the tangent plane:

 ()
()

− ⋅
=

− ⋅
H N H N

P
H N H N

. (7.73)

Figure 7.22 shows a disk rendered with both isotropic and anisotropic surface
roughness values. Some surfaces exhibit roughness at multiple scales. This can
be accounted for by calculating a weighted average of microfacet distribution
functions

 ()
1

, (,)i

n

i
i

D w D
=

= mV L V L , (7.74)

where multiple roughness values im are used and the weights iw sum to unity.
Figure 7.23 shows two objects rendered with different values of m and another
object rendered using a weighted sum of those same values.

Figure 7.22. A disk rendered using the anisotropic distribution function given by Equa-
tion (7.72). For each image 0.1ym = . From left to right the values of xm are 0.1 (iso-
tropic), 0.12, 0.15, and 0.2. The tangent vectors are aligned to concentric rings around the
center of the disk—they are perpendicular to the radial direction at every point on the
surface.

198 7. Lighting and Shading

Figure 7.23. Copper vases rendered with isotropic microfacet distributions. The first two
images use a single roughness value of 1 0.1m = (left) and 2 0.25m = (center). The right-
most image combines these using the weights 1 0.4w = and 2 0.6w = .

7.9.5 The Geometrical Attenuation Factor

Some of the light incident on a single microfacet may be blocked by adjacent
microfacets before it reaches the surface or after it has been reflected. This block-
ing results in a slight darkening of the specular reflection and is accounted for by
the geometrical attenuation factor. Blocked light is essentially scattered in ran-
dom directions and ultimately contributes to the surface’s diffuse reflection.
 We can derive an estimate of how much light is blocked due to surface
roughness by assuming that microfacets always form V-shaped grooves. Figure
7.24(a) illustrates a situation in which light reflected by a microfacet is partially
blocked by an adjacent microfacet. In this case, light is blocked after being re-
flected. Reversing the direction in which the light travels exhibits the case in
which light is blocked before reaching the microfacet, as shown in Figure
7.24(b).
 The application of a little trigonometry leads us to a formula giving the frac-
tion of light reflected by a microfacet that still reaches the viewer after being par-
tially blocked by an adjacent microfacet. As shown in Figure 7.25, we would like
to determine the portion x of the width w of a microfacet that is visible to the
viewer. We first observe that

 1
sin

w
α

= , (7.75)

and that by the law of sines (see Appendix B, Section B.6),

7.9 A Physical Reflection Model 199

L H

V

V H

L

(a) (b)

Figure 7.24. (a) Light reflected by the left microfacet is partially blocked by the right
microfacet. (b) Light is blocked by the right microfacet before reaching the left micro-
facet.

()
2sin

sin 2
γx

β π
=

+
. (7.76)

We can express each of the sine functions in Equations (7.75) and (7.76) as co-
sine functions that have been shifted by 2π radians by writing

()
()

()

sin cos 2
sin 2 cos
sin cos 2 .

α π α
β π β
γ π γ

= − = ⋅
+ = = ⋅
= − = ⋅

N H

V H

N V (7.77)

Using the dot products corresponding to each of the cosine functions lets us ex-
press the fraction of light 1G reaching the viewer as

 ()()
1

2xG
w

⋅ ⋅= =
⋅

N H N V

V H
. (7.78)

 When light is blocked before reaching a microfacet, we can calculate the
fraction 2G that still reaches the viewer by simply exchanging the vectors V and
L in Figure 7.25 to obtain

 ()()
2

2xG
w

⋅ ⋅
= =

⋅
N H N L

L H
. (7.79)

 The three possible cases pertaining to light reflected by a microfacet are that
the light is completely unobstructed (the fraction of light reaching the viewer is

200 7. Lighting and Shading

L N

H

V

αα

β
γ

γ
x

w

1

Figure 7.25. The fraction of light reflected from the left microfacet that reaches the
viewer is equal to x w. The halfway vector H is normal to the microfacet surface since
only microfacets possessing that orientation contribute to the specular reflection.

one), that some of the reflected light is blocked, and that some of the incident
light is blocked. We account for all three cases by defining the geometrical atten-
uation factor as the minimum fraction of light that reaches the viewer:

{ }
()() ()(){ }
1 2(,) min 1, ,

2 2
min 1, ,

G G G=
⋅ ⋅ ⋅ ⋅

=
⋅ ⋅

V L

N H N V N H N L

L H L H
. (7.80)

We have changed the denominator of 1G to ⋅L H. This is allowable because, by
the definition of the halfway vector, the angle between L and H is equal to the
angle between V and H, and thus ⋅ = ⋅V H L H.

7.9.6 Implementation

Ray tracing applications can directly apply Equation (7.54) in its entirety when-
ever a ray intersects a surface. For real-time applications where greater efficiency
is required, we need to sacrifice a little precision for better performance. For suf-
ficiently tessellated surfaces, evaluating Equation (7.54) at each vertex might
produce good results, but architectural geometry in games generally does not

7.9 A Physical Reflection Model 201

possess such tessellation. Modern GPUs can evaluate Equation (7.54) at every
pixel with a fragment program. We can avoid many of the microfacet shading
calculations by using texture maps to essentially store lookup tables that are in-
dexed by quantities such as ⋅N H and ⋅L H.
 Adding a texture map factor  and a gloss map factor  to Equation (7.53)
and substituting the BRDF  into Equation (7.50) gives us the following formula
for the color of light  reflected toward the viewer by a surface illuminated by a
single light source, where  is the color of the light and k is the fraction of light
that is reflected diffusely.

 () () ()[]1 ,sk k= ⋅ + −N L V L    (7.81)

Substituting Equation (7.54) for (),s V L gives us

 () () () () ()
()
, ,1 , mD Gk k
π

= ⋅ + −
⋅

V L V L
N L V L

N V
   . (7.82)

 The only quantity on which the Fresnel factor (),V L depends is ⋅L H, and
the only quantity on which the isotropic microfacet distribution function

(),mD V L depends is ⋅N H. Given a normal-incidence specular reflection color 
and a microfacet root mean square slope m, we can construct a texture map
whose s and t coordinates correspond to ⋅N H and ⋅L H, respectively, and whose
color values represent the product () (), ,mD πV L V L . An example of such a
texture map is shown in Figure 7.26.
 For small values of m, the value of the microfacet distribution function mD is
significant only when ⋅N H is near 1. To maximize the resolution of the useful
information in the texture containing the products () (), ,mD πV L V L , we map
the range []0,1 of s texture coordinates to the range [],1x , where x is the value of

⋅N H for which (),mD π ε=V L for some small threshold ε . We cannot find the
value of x analytically, but we can apply Newton’s method (see Section 6.1.4) to
the function

 ()
2

2 4 2 2

1 1exp
4

xf x ε
πm x m x

− = − 
 

. (7.83)

The refinement formula used to find the value of x for which () 0f x = is given
by

202 7. Lighting and Shading

⋅N H

⋅L H

0.0

1.0

0.9 1.0

Figure 7.26. A texture map representing the product () (), ,mD πV L V L . The s coordi-
nate corresponds to the quantity ()10 9⋅ −N H , and the t coordinate corresponds to the
quantity ⋅L H. This image was generated using the normal-incidence specular reflection
color ()0.8,0.6,0.1= and the microfacet root mean square slope 0.2m = .

()
()

()()2 2 2

1

2 3
12 4

2 2 1 4
2 4

i i

i
i i

i

x m xi
i i

i

f xx x
f x

m xx πεm x e
m x

+

−

= −
′

= − −
−

. (7.84)

Using an initial value of 0 1x = may require several iterations of this refinement
formula since the slope of the function ()f x may be steep at 1x = . Once the val-
ue of x for which () 0f x = is known, we map values of ⋅N H from the range [],1x
to the range []0,1 using the formula

1

xs
x

⋅ −=
−

N H . (7.85)

 It is convenient for us to perform the microfacet lighting calculations in tan-
gent space since, in this setting, 0,0,1=N and, for calculations pertaining to
anisotropic microfacet distributions, 1,0,0=T . The vertex shader shown in List-
ing 7.2 can be used again to transform the view direction V and light direction L

7.9 A Physical Reflection Model 203

into tangent space for each vertex. The fragment shader shown in Listing 7.3 can
then be used to implement isotropic microfacet shading.
 In tangent space without bump mapping, zL⋅ =N L , zV⋅ =N V , and ⋅ =N H

zH . The specular component of Equation (7.82) becomes

 () () ()
specular

,1 ,z
z

Gk H
V

= − ⋅
V L

L Hs  , (7.86)

where (),zH ⋅L H represents the product () (), ,mD πV L V L that is looked
up in a texture map. The fragment program shown in Listing 7.3 calculates the
halfway vector H, performs a texture fetch to obtain the value of (),zH ⋅L H ,
and multiplies it by the precomputed value of ()1 k− . The geometrical attenua-
tion factor (),G V L sometimes makes a subtle contribution and may be omitted.
When present, its value is calculated in tangent space using the formula

 () ()2, min ,z
z z

HG V L=
⋅

V L
L H

 (7.87)

and using the saturation operation to clamp the result to the range []0,1 .
 For anisotropic microfacet distributions, we can use a 3D texture map whose
p coordinate corresponds to the quantity () 2⋅T P , where P is the projection of the
halfway vector H onto the tangent plane. In tangent space, Equation (7.73)
becomes

2 2

, ,0x y

x y

H H
H H

=
+

P , (7.88)

and thus

 ()
2

2
2 2

x

x y

H
H H

⋅ =
+

T P . (7.89)

The 3D texture map contains the product () (), ,D πmV L V L , where (),Dm V L
is the anisotropic distribution function given by Equation (7.72). A fragment
shader almost identical to that shown in Listing 7.3 can be used to implement
anisotropic microfacet shading. The only changes are that a 3D texture map is
used instead of a 2D texture map, and the value given by Equation (7.89) is add-
ed for the third texture coordinate.

204 7. Lighting and Shading

Listing 7.3. This fragment shader performs the calculations necessary for isotropic microfacet
shading. The uniform parameter named diffuse contains the product k, the uniform
parameter named specular contains the product ()1 k− , and the uniform parameter named
range contains the scale and bias used to map the values of ⋅N H to the range []0,1 . The 2D
texture map containing the product () (), ,mD πV L V L is bound to the sampler named
microfacetTexture.

in vec3 view; // Tangent-space view direction.

in vec3 light; // Tangent-space light direction.

uniform vec3 diffuse; // Diffuse material color.

uniform vec3 specular; // Specular material color.

uniform vec2 range; // Scale and bias for look-up texture.

uniform sampler2D microfacetTexture; // The look-up texture sampler.

void main()

{

 vec2 txtr;

 // Normalize V and L.

 vec3 vdir = normalize(view);

 vec3 ldir = normalize(light);

 // Calculate H.

 vec3 hdir = normalize(vdir + ldir);

 // Scale and bias N*H.

 txtr.x = hdir.z * range.x + range.y;

 // Calculate L*H.

 txtr.y = dot(ldir, hdir);

 // Look up product F(V,L)D(V,L)/pi and divide by N*V.

 vec3 color = texture2D(microfacetTexture, txtr).xyz / vdir.z;

 // Calculate geometrical attenuation (may be omitted).

 color *= saturate(min(vdir.z, ldir.z) * 2.0 * hdir.z / txtr.y);

 // Multiply specular by (1-k)C and add kCD(N*L).

 gl_FragColor.xyz = color * specular + diffuse * ldir.z;

}

Chapter 7 Summary 205

Chapter 7 Summary

Point Light Source Attenuation

The intensity  of a point light source at a distance d from its position is given by

 02

1
c l qk k d k d

=
+ +

  ,

where 0 is the color of the light, and the constants ck , lk , and qk control the at-
tenuation.

Spot Light Source Attenuation

The intensity  of a spot light source at a point Q lying at a distance d from the
light’s position is given by

 { }
02

max ,0 p

c l qk k d k d
− ⋅

=
+ +

R L
  ,

where 0 is the color of the light; ck , lk , and qk are the attenuation constants; R is
the direction in which the spot light is pointing; L is the unit vector pointing from
Q to the light position; and the exponent p controls the rate at which the intensity
falls off as the angle between R and −L increases.

Ambient and Diffuse Lighting

The ambient and diffuse contribution to the illumination color calculated at a
point Q on a surface is given by the expression

 { }diffuse
1

max ,0
n

i i
i=

= + ⋅ N L    ,

where  is the surface’s diffuse reflection color, N is the normal vector to the
surface, iL is the unit vector pointing from Q toward the i-th light, i is the inten-
sity of the i-th light at the point Q, and  represents the ambient light color.

Specular Lighting

The specular contribution to the illumination color calculated at a point Q on a
surface is given by the expression

206 7. Lighting and Shading

 { } ()specular
1

max ,0 0
n

m
i i i

i=
= ⋅ ⋅ > N H N L   ,

where  is the surface’s specular reflection color; iH is the unit halfway vector at
the point Q, which lies halfway between the direction to light iL and the direction
to the viewer; and m controls the sharpness of the specularity. The expression
()0i⋅ >N L evaluates to 1 or 0, depending on whether the surface is facing the
light.

Standard Shading Equation

The reflected color  calculated at a point Q on a surface illuminated by n lights
is given by

 () () ()
1

0
n

m
i i i i

i=

 = + + ⋅ + ⋅ ⋅ >  N L N H N L      ,

where the dot products i⋅N L and i⋅N H are clamped to zero, and the quantities
involved are defined as follows.

 = diffuse reflection color
 = specular reflection color
m = specular exponent
 = ambient light color
 = emission color
 = texture map color
 = gloss map color
 = emission map color

i = color of i-th light at Q
iL = direction vector to i-th light
iH = halfway vector for i-th light

N = normal vector

Bump Mapping

The tangent T and bitangent B for a triangle whose vertices lie at the points 0P ,
1P , and 2P are calculated using the formula

() () ()
() () ()

2 1 1 1 1

2 1 2 2 21 2 2 1

1x y z x y z

x y z x y z

T T T t t
B B B s ss t s t

−     =     −−     

Q Q Q

Q Q Q
,

Chapter 7 Summary 207

where 1 1 0= −Q P P , 2 2 0= −Q P P , and

1 1 1 0 1 0

2 2 2 0 2 0

, ,
, ,

s t s s t t
s t s s t t

= − −
= − − .

The direction-to-light vector L and halfway vector H are transformed from object
space to tangent space using the matrix

x y z

x y z

x y z

T T T
B B B
N N N

′ ′ ′ 
 ′ ′ ′ 
  

,

where ′T and ′B are orthogonal to N and each other.

Bidirectional Reflectance Distribution Functions

The radiance R of the light reflected in the direction V from a surface illuminat-
ed by n lights is given by

 () () ()
1

,
n

R i i i
i=

= ⋅V V L N L   ,

where i is the radiance of the i-th light source. The BRDF  can be divided into
diffuse and specular components by writing

 () () (), 1 ,sk k= + −V L V L   ,

where k is the fraction of light that is reflected diffusely.

Cook-Torrance Illumination

The specular component of the BRDF used in the Cook-Torrance illumination
model is given by

 () () () ()
()()

, ,, ,s
D G
π

=
⋅ ⋅

V L V L
V L V L

N V N L
  ,

where  is the Fresnel factor, D is the microfacet distribution function, and G is
the geometrical attenuation factor.

208 7. Lighting and Shading

Fresnel Factor

The Fresnel factor for a single color is given by

 () ()
()

()()[]
()()[]

22

2 2

11, 1
2 1λ

ggF
g g

⋅ + ⋅ −− ⋅  = + + ⋅ ⋅ − ⋅ + 

L H L HL H
V L

L H L H L H
,

where g is defined by

 ()2 21λg η= − + ⋅L H .

The index of refraction λη can be calculated using the equation

 1
1

λ
λ

λ

Sη
S

+=
−

,

where  is the specular reflection color at normal incidence.

Microfacet Distribution Functions

The microfacet distribution function mD for isotropic surfaces is given by

 ()
()

()
()

2

2 4 2 2

11, exp
4mD

m m
⋅ − =  ⋅ ⋅ 

N H
V L

N H N H
,

where m is the root mean square slope of the microfacets. For anisotropic surfac-
es, the microfacet distribution function becomes

 ()
()

() () ()
()

2 2 2

4 2 2 2

1 11, exp
4 x y x y

D
m m m m

⋅ − ⋅ ⋅ −  = +  ⋅ ⋅  
m

T P T P N H
V L

N H N H
,

where xm and ym represent the root mean square slopes parallel and perpendicu-
lar to the tangent direction T. The vector P is the normalized projection of the
halfway vector H onto the tangent plane.

Geometrical Attenuation Factor

The geometrical attenuation factor is given by the formula

 ()() ()(){ }2 2(,) min 1, ,G ⋅ ⋅ ⋅ ⋅
=

⋅ ⋅
N H N V N H N L

V L
L H L H

and accounts for the incident or reflected light for a microfacet that is blocked by
adjacent microfacets.

Exercises for Chapter 7 209

Exercises for Chapter 7

1. A point light source has attenuation constants 1ck = , 0lk = , and 1
2qk = . At

what distance from the light source is the radiant intensity one-fourth that of
the intensity at a distance of one meter?

2. A spot light source positioned 10 meters above the origin at the point
0,0,10=P and radiating energy in the direction 0,0, 1= −R is configured

so that no distance attenuation takes place by setting 1ck = and 0l qk k= = .
If the color of the light is white (()0 1,1,1=) and the spot exponent is 8, then
what is the radius of the circle lying in the x-y plane where the intensity of
the light is 50 percent gray (()1 1 1

2 2 2, ,=)?

3. Describe how it is possible for ⋅N H to be a positive number when ⋅N L is a
negative number, thus necessitating the ()0⋅ >N L term in the illumination
formula.

4. Let L be the normalized direction to the light source and V be the normal-
ized direction to the viewer at a surface point where the unit normal vector
is N. Show that

 () ()
()

22

2 1

m
m ⋅ + ⋅ ⋅ =  ⋅ + 

N L N V
N H

L V
,

 where H is the halfway vector defined by Equation (7.9), and m is an arbi-
trary specular exponent.

5. Write a program that calculates vertex normals and vertex tangents for an
arbitrary triangle mesh. Assume that the triangle mesh is specified such that
each of n triangles indexes three entries in an array of m vertices. Each entry
in the vertex array contains the position of the vertex and two-dimensional
texture-mapping coordinates.

6. Modify Listing 7.3 so that it performs bump mapping as well as isotropic
microfacet shading.

7. Implement a simple ray tracer that calculates diffuse and specular reflections
using Equations (7.6) and (7.8). The ray tracer should be able to model
spheres and should support directional, point, and spot light sources.

8. Extend the ray tracer from Exercise 7 to implement Cook-Torrance micro-
facet shading.

This page intentionally left blank

 211

Chapter 8

Visibility Determination

When it comes to the performance of a real-time 3D engine, the single most im-
portant component of the rendering architecture is visibility determination. Given
a particular camera position and orientation, every engine must be able to effi-
ciently determine which parts of the world are potentially visible and therefore
should be rendered. This problem is usually attacked from the opposite perspec-
tive—the engine determines which parts of the world are definitely not visible
and renders whatever is left over.
 Most engines perform visibility determination at multiple levels. The general
goal is to determine what world geometry cannot possibly intersect the view frus-
tum. At the smallest scale, 3D hardware performs backface culling to eliminate
individual triangles that face away from the camera. At the level above that,
bounding volume tests are usually performed to determine whether an object lies
completely outside the view frustum. Moderate-size groups of geometry can be
culled from the visible set by organizing areas of the world into tree structures
such as binary space partitioning (BSP) trees or octrees. At the largest scale, en-
tire regions of world geometry can be eliminated by using a technique known as
a portal system.

8.1 Bounding Volume Construction

Bounding volumes are constructed so that they enclose all the vertices belonging
to a triangle mesh, thereby ensuring that every triangle in the mesh is also con-
tained in the bounding volume. The bounding volume should be made as small as
possible so that it falls completely outside the view frustum as often as possible,
thus enabling the object it contains to be culled from the visible set of geometry
as often as possible.
 Figure 8.1(a) shows a box bounding a set of points that represent the vertices
of a triangle mesh. The box is aligned to the coordinate axes, but the vertices are

212 8. Visibility Determination

x

y

x

y

(a) (b)

Figure 8.1. A bounding volume aligned to the coordinate axes is usually a poor choice
for most vertex distributions.

distributed in such a way that the box enclosing them contains a lot of empty
space. As Figure 8.1(b) demonstrates, choosing a bounding box that is aligned to
the natural axes of the data set can greatly reduce the size of the box. We present
a method for determining the natural alignment in the next section.

8.1.1 Principal Component Analysis

We can reduce the size of each of our bounding volumes by determining a coor-
dinate system that is naturally aligned to the set of vertices belonging to each tri-
angle mesh. We can calculate these coordinate axes by using a statistical method
called principal component analysis. Principal component analysis allows us to
find a coordinate space in which a set of data composed of multiple variables,
such as the x, y, and z coordinates stored in an array of vertex positions, can be
separated into uncorrelated components. The primary principal component of the
data is represented by the direction in which the data varies the most.
 To determine the natural coordinate system for an arbitrary set of N vertices

1 2, , , NP P P , where , ,i i i ix y z=P , we first calculate the mean (average) position
m using the formula

1

1 N

i
iN =

= m P . (8.1)

We then construct a 3 3× matrix C called the covariance matrix as follows.

8.1 Bounding Volume Construction 213

 ()() T

1

1 N

i i
iN =

= − −C P m P m (8.2)

The covariance matrix is a symmetric matrix made up of the following six unique
entries.

() ()()

() ()()

() ()()

2
11 12 21

1 1

2
22 13 31

1 1

2
33 23 32

1 1

1 1

1 1

1 1

N N

i x i x i y
i i
N N

i y i x i z
i i
N N

i z i y i z
i i

C x m C C x m y m
N N

C y m C C x m z m
N N

C z m C C y m z m
N N

= =

= =

= =

= − = = − −

= − = = − −

= − = = − −

 

 

  (8.3)

The entries of the covariance matrix represent the correlation between each pair
of the x, y, and z coordinates. An entry of zero indicates no correlation between
the two coordinates used to calculate that entry. If C is a diagonal matrix, then all
three coordinates are completely uncorrelated, meaning that the points are dis-
tributed evenly about each axis.
 We want to find a basis to which we can transform our set of vertices so that
the covariance matrix is diagonal. If we apply a transformation matrix A to each
of the points { }iP , then the covariance matrix ′C of the transformed set of points
is given by

()()

()()

T

1

T T

1
T

1

1

.

N

i i
i
N

i i
i

N

N

=

=

′ = − −

= − −

=





C AP Am AP Am

A P m P m A

ACA (8.4)

Thus, we require an orthogonal transformation matrix A whose transpose diago-
nalizes the matrix C. Since C is a real symmetric matrix, we know by Theorem
3.26 that its eigenvectors are orthogonal. The matrix whose rows consist of the
eigenvectors of C meets our requirements and maps our vertices into a space
where their coordinates are uncorrelated.
 We have now turned the problem of finding the natural axes of a set of points
into that of calculating the eigenvectors of the covariance matrix. One possible
way to do this is to first calculate the eigenvalues given by the roots of the char-

214 8. Visibility Determination

acteristic polynomial, a cubic in the case of the 3 3× covariance matrix. Fortu-
nately, since the covariance matrix is symmetric, it has only real eigenvalues (see
Theorem 3.25), and we can therefore use the method presented in Section 6.1.2
to explicitly calculate all of them. Finding the corresponding eigenvectors is then
achieved by solving three homogeneous linear systems, as in the following ex-
ample. Alternatively, a numerical method may be used to calculate the eigenval-
ues and eigenvectors, as discussed in Section 16.3.

Example 8.1. Determine the natural axes for the following set of points.

1

2

3

4

1, 2,1
1,0,2
2, 1,3
2, 1,2

= − −
=
= −
= −

P

P

P

P

Solution. We first calculate the average position m:

4

1

1 1, 1,2
4 i

i=
= = −m P . (8.5)

The covariance matrix C is then given by

3 31
2 2 4
1 1 1
2 2 4
3 1 1
4 4 2

 
 =  
  

C . (8.6)

The eigenvalues of the covariance matrix are the roots of the characteristic
polynomial:

()

3 31
2 2 4

1 1 1
2 2 4
3 1 1
4 4 2

3 25 7 1
2 8 16

det

.

λ
λ λ

λ

λ λ λ

−
− = −

−

= − + − +

C I

 (8.7)

8.1 Bounding Volume Construction 215

Explicitly solving for the roots of the characteristic polynomial using the method
presented in Section 6.1.2 gives us the following eigenvalues.

1

2

3

2.097
0.3055
0.09756

λ
λ
λ

=
=
= (8.8)

The eigenvectors, which we call R, S, and T here, are found by solving the linear
systems ()i iλ− =C I V 0. Omitting the details of these calculations, the unit-length
eigenvectors of the matrix C are

0.833 0.257 0.489
0.330 0.941 0.0675
0.443 0.218 0.870

− −     
     = − = = −     
− − −          

R S T , (8.9)

and these represent the natural axes of the set of vertices iP . 

 In the remainder of this chapter, we use the letters R, S, and T to represent
the natural axes of a set of vertices. The direction R always represents the princi-
pal axis, which corresponds to the largest eigenvalue of the covariance matrix.
The directions S and T represent the axes corresponding to the second largest and
the smallest eigenvalues, respectively. That is, if 1λ , 2λ , and 3λ are the eigenvalues
corresponding to the vectors R, S, and T, respectively, then 1 2 3λ λ λ≥ ≥ .

8.1.2 Bounding Box Construction

Given a set of vertex positions 1 2, , , NP P P for a triangle mesh, we can now cal-
culate the directions R, S, and T corresponding to the natural axes of the object.
To construct a bounding box, we need to determine the minimum and maximum
extents of the vertex set along these three directions. These extents immediately
produce the six planes of the bounding box; other types of bounding volumes
require a little more computation.
 To find the extents, we simply compute the dot product of each vertex posi-
tion iP with the unit length vectors R, S, and T, and take the minimum and max-
imum values. The six planes of the bounding box are then given by

216 8. Visibility Determination

{ } { }

{ } { }

{ } { }

1 1

1 1

1 1

, min ,max

, min ,max

, min ,max .

i i
i N i N

i i
i N i N

i i
i N i N

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

− ⋅ − ⋅

− ⋅ − ⋅

− ⋅ − ⋅

R P R R P R

S P S S P S

T P T T P T (8.10)

Example 8.2. Calculate the six planes of the naturally aligned bounding box
for the set of points given in Example 8.1.

Solution. The natural axes for this set of points are given by Equation (8.9). The
dot products of each of the four points with the directions R, S, and T are listed
below.

1 1 1

2 2 2

3 3 3

4 4 4

1.05 1.84 1.22
1.72 0.693 1.25
2.67 2.11 1.56
2.22 1.89 0.695

⋅ = ⋅ = − ⋅ = −
⋅ = − ⋅ = − ⋅ = −
⋅ = − ⋅ = − ⋅ = −
⋅ = − ⋅ = − ⋅ = −

P R P S P T

P R P S P T

P R P S P T

P R P S P T

 (8.11)

Using the minimum and maximum values of i ⋅P R, the two planes perpendicular
to the direction R are given by

 ,2.67 ,1.05−R R . (8.12)

Similarly, the planes perpendicular to the S and T directions are given by

,2.11 , 0.693
,1.56 , 0.695

− −
− −

S S

T T .  (8.13)

 The dimensions of the bounding box are given by the differences between
the minimum and maximum dot products in each of the directions R, S, and T.
The center Q of the bounding box is the point at which the three planes lying
halfway between each pair of opposing faces intersect. We assign to the scalars
a, b, and c the average extent in the R, S, and T directions, respectively, as
follows.

8.1 Bounding Volume Construction 217

{ } { }

{ } { }

{ } { }

1 1

1 1

1 1

min max

2
min max

2
min max

2

i i
i N i N

i i
i N i N

i i
i N i N

a

b

c

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⋅ + ⋅
=

⋅ + ⋅
=

⋅ + ⋅
=

P R P R

P S P S

P T P T
 (8.14)

The three planes that divide the box in half are given by , a−R , , b−S , and
, c−T . Using Equation (5.21) to calculate the point of intersection provides us

with the following expression for the center Q.

 a b c= + +Q R S T (8.15)

8.1.3 Bounding Sphere Construction

Bounding spheres are commonly used in tests for object visibility due to the
speed with which such a test can be performed. As with all bounding volumes,
we should construct bounding spheres that are as tight as possible so as to mini-
mize the occurrence of its intersection with the view frustum. Achieving an abso-
lutely optimal bounding sphere in all cases turns out to be a hard problem that we
do not discuss here, but we are able to construct bounding spheres that are ac-
ceptably efficient without requiring an excessively complex algorithm.
 We begin constructing a bounding sphere for a set of points 1 2, , , NP P P by
first calculating the principal axis R and locating the points kP and lP represent-
ing the minimum and maximum extents in that direction (i.e., we locate the
points having the least and greatest dot product with R). We then construct a
sphere whose center Q and radius r are given by

2

k l

kr

+=

= −

P P
Q

P Q . (8.16)

That is, the center of the sphere lies halfway between the points producing the
minimum and maximum extents in the R direction, and the radius is the distance
from the center to either of those points.
 Although it is a good approximation to the final bounding sphere, the sphere
given by Equation (8.16) may not enclose all the points 1 2, , , NP P P . We must
therefore test each of the points { }iP to make sure they fall inside the sphere.

218 8. Visibility Determination

G

Q
r

′Q

iP
r′

Figure 8.2. The initial bounding sphere determined by the extents of the set of points in
the direction of the principal axis is expanded to include any points in the set that lie out-
side of the sphere.

Whenever a point is encountered that lies outside the sphere, we expand the
sphere by adjusting the center Q and radius r to enclose the previous sphere and
the exterior point, as shown in Figure 8.2. A point iP lies outside the sphere if

 2 2
i r− >P Q . (8.17)

We expand the sphere by placing the new center ′Q on the line connecting the
previous center Q and the exterior point iP . The new sphere is then tangent to the
previous sphere at a point G given by

 i

i
r −= −

−
P Q

G Q
P Q

, (8.18)

which also lies on the line containing Q and iP . The new center ′Q is placed
halfway between the points G and iP , and the new radius r′ is the distance from
the new center to either of these points:

2

i

ir

+′ =

′ ′= −

G P
Q

P Q . (8.19)

8.1.4 Bounding Ellipsoid Construction

An ellipsoidal bounding volume may be appropriate for a triangle mesh having
an elongated shape. To determine a good bounding ellipsoid for a set of vertices

1 2, , , NP P P , we need to calculate the lengths of the three semiaxes of the ellip-

8.1 Bounding Volume Construction 219

soid aligned to the natural axes R, S, and T. We can transform the problem into
that of finding a bounding sphere by scaling the vertex positions in these direc-
tions so that their bounding box becomes a cube. Once the bounding sphere of
the scaled set is known, we scale its radius by the reciprocal amount in each di-
rection to derive the semiaxis lengths.
 To scale the vertex positions so that they are bounded by a cube, we need to
know the distance between the planes representing the minimum and maximum
extents in each natural axis direction. These distances are equal to the dimensions
of the standard bounding box, which are given by the differences between the
minimum and maximum dot products of the points iP with the vectors R, S, and
T. Calling these distances a, b, and c, respectively, we have

{ } { }

{ } { }

{ } { }

11

11

11

max min

max min

max min .

i i
i Ni N

i i
i Ni N

i i
i Ni N

a

b

c

≤ ≤≤ ≤

≤ ≤≤ ≤

≤ ≤≤ ≤

= ⋅ − ⋅

= ⋅ − ⋅

= ⋅ − ⋅

P R P R

P S P S

P T P T (8.20)

To transform the vertex set into one bounded by a cube, we need to scale their
positions by 1 a in the R direction, by 1 b in the S direction, and by 1 c in the T
direction. As stated in Equation (4.11), the matrix M that performs this scale is
given by

 [] [] T

1 0 0
0 1 0
0 0 1

a
b

c

 
 =  
  

M R S T R S T , (8.21)

where we have replaced the inverse operation for the rightmost matrix by a
transpose operation since the vectors R, S, and T are orthonormal.
 Once each of the points { }iP has been transformed by the matrix M, we cal-
culate the bounding sphere for the set of points 1 2, , , NMP MP MP . Once the
center Q of this sphere is known, we can calculate the center of the bounding
ellipsoid of the original set of vertices by transforming Q back into the unscaled
coordinate space. The ellipsoid center is simply given by 1−M Q, where the in-
verse of M is

 [] []1 T

0 0
0 0
0 0

a
b

c

−
 
 =  
  

M R S T R S T . (8.22)

220 8. Visibility Determination

The lengths of the semiaxes of the bounding ellipsoid are calculated by scaling
the radius r of the bounding sphere calculated for the points { }iMP . The semiaxis
lengths corresponding to the directions R, S, and T are given by ar, br, and cr,
respectively.

8.1.5 Bounding Cylinder Construction

A cylindrical bounding volume is represented by its radius and the two points
corresponding to the centers of its endcaps. The endcaps of a cylinder bounding
the set of points 1 2, , , NP P P coincide with the planes of the bounding box that
are perpendicular to the principal axis R. Most of the calculations involved in
determining the bounding cylinder for a triangle mesh lie in finding the circle
that bounds the projection of the points iP onto the plane containing the natural
axes S and T.
 We find the bounding circle in a manner similar to the way we calculate
bounding spheres, except that the component of each point iP parallel to the R
direction is ignored. Instead of working directly with the points { }iP , we remove
the projection of each iP onto R and work with the points { }iH given by

 ()i i i= − ⋅H P P R R. (8.23)

We first locate the points kH and lH that have the least and greatest dot products
with the vector S. (Recall that the axis S corresponds to the second largest eigen-
value of the covariance matrix.) The initial center Q and radius r of the bounding
circle are given by

2

k l

kr

+=

= −

H H
Q

H Q . (8.24)

We then proceed exactly as we would when calculating a bounding sphere. We
check each point to make sure it falls inside the bounding circle. When a point iH
for which

 2 2
i r− >H Q (8.25)

is encountered, we expand the bounding circle so that it has a new center ′Q and
new radius r′ given by

8.2 Bounding Volume Tests 221

2

i

ir

+′ =

′ ′= −

G H
Q

H Q , (8.26)

where

 i

i
r −= −

−
H Q

G Q
H Q

. (8.27)

 The radius of the bounding cylinder is the same as the radius of the circle
bounding the set of points { }iH . The center Q of the bounding circle lies in the
plane perpendicular to the direction R but passing through the origin. The centers
of the cylinder’s endcaps are found by projecting Q onto the bounding box
planes corresponding to the least and greatest dot products of the points { }iP with
the direction R. Calling the endpoints 1Q and 2Q , we have

{ }

{ }
1

1

2
1

min

max

i
i N

i
i N

≤ ≤

≤ ≤

= + ⋅

= + ⋅

Q Q P R R

Q Q P R R. (8.28)

8.2 Bounding Volume Tests

Now that we have seen how to construct a variety of bounding volumes, we turn
our attention to the methods used to determine whether each type is visible. All
the techniques presented in this section reduce the problem of intersecting a
bounding volume with the view frustum to that of intersecting a point or a line
segment with a properly modified view frustum. This is accomplished by moving
the planes of the view frustum outward by appropriate amounts, which are de-
termined differently for each type of bounding volume.

8.2.1 Bounding Sphere Test

A sphere of radius r intersects the view frustum if its center lies inside the view
frustum or lies within a distance r of any of the six sides of the view frustum. The
gray region shown in Figure 8.3(a) corresponds to the volume in which the
sphere’s center must lie whenever it is visible. The boundary of this region,
formed by rolling the sphere around the outside edges of the view frustum, is
parallel to one of the frustum planes everywhere except at the corners, where it is
rounded. As Figure 8.3(b) shows, we can approximate the exact volume of visi-
bility by moving each of the six frustum planes outward by a distance r.

222 8. Visibility Determination

(a) (b)

r

r

Figure 8.3. (a) The yellow region corresponds to the volume, in addition to the view frus-
tum itself, in which the center of a sphere of radius r must lie whenever it is visible. (b)
We can approximate the exact volume of visibility by moving each of the six frustum
planes outward by a distance r.

 Given a sphere of radius r whose center resides at the point Q in camera
space, we compute the 4D dot products of the homogeneous extension of Q with
the six frustum planes listed in Table 5.1. Since the frustum plane normals point
inward, a negative dot product indicates that Q lies outside the visible volume of
space. If any one of the dot products is less than or equal to r− , then the sphere
does not intersect the view frustum at all, and the object bounded by it should be
culled from the visible set of geometry. Otherwise, some part of the sphere prob-
ably lies inside all six frustum planes, the exception being the case shown in Fig-
ure 8.4. Near the edges of the view frustum, some spheres that are not visible
may not be culled because they do not fall far enough outside any single frustum
plane. This infrequent occurrence is normally tolerated to preserve the simplicity
of the visibility test. We examine a small enhancement that reduces this effect in
Section 8.4.2.

8.2.2 Bounding Ellipsoid Test

When testing the visibility of a sphere, we move each of the six frustum planes
outward by the radius of the sphere and test whether the sphere’s center lies on
the positive side of these modified planes. A similar method can be used to test
the visibility of an ellipsoid, but since an ellipsoid does not possess the isotropic
symmetry that a sphere does, the effective radius of the ellipsoid is different for
each frustum plane.

8.2 Bounding Volume Tests 223

Figure 8.4. Near the edges of the view frustum, some spheres that are not visible are not
culled because they do not fall far enough outside any single frustum plane.

 Suppose that an object is bounded by an ellipsoid whose semiaxes are given
by the mutually perpendicular vectors R, S, and T, as shown in Figure 8.5, where
R, S, and T are parallel to the principal axes of the bounded object but have
magnitudes equal to the semiaxis lengths of the ellipsoid. A point P on the sur-
face of the ellipsoid can be expressed in terms of the three vectors R, S, and T as
follows.

 cos sin sin sin cosθ φ θ φ φ= + +P R S T (8.29)

This expression represents a spherical coordinate system aligned to the axes of
the ellipsoid. The angle φ represents the angle that the point P makes with the
vector T. The angle θ represents the angle that the projection of P onto the plane
containing the vectors R and S makes with the vector R. Over the entire surface
of the ellipsoid, φ ranges from 0 to π , and θ ranges from 0 to 2π.
 Given a unit direction vector N, we would like to find the point P on the sur-
face of the ellipsoid whose projection onto N has the greatest magnitude. This
would give us the effective radius effr of the ellipsoid with respect to a plane
whose normal vector is N. Since N has unit length, the magnitude of the projec-
tion of P onto N is simply given by ⋅P N. We wish to find the angles φ and θ that
maximize this quantity, so we set partial derivatives to zero as follows.

 () () () ()cos cos sin cos sin 0θ φ θ φ φ
φ
∂ ⋅ = ⋅ + ⋅ − ⋅ =

∂
P N R N S N T N (8.30)

224 8. Visibility Determination

N

P

R
S

effr

Figure 8.5. A bounding ellipsoid whose semiaxes are given by the mutually perpendicu-
lar vectors R, S, and T (where T points out of the page). The effective radius of the ellip-
soid with respect to a plane is equal to the maximum distance from the ellipsoid’s center
to any point on the surface projected onto the plane’s normal.

 () () ()sin sin cos sin 0θ φ θ φ
θ
∂ ⋅ = − ⋅ + ⋅ =

∂
P N R N S N (8.31)

 In our derivation of an expression for the quantity ⋅P N, we make use of the
trigonometric identity

 2 2tan 1 secα α+ = , (8.32)

which can be transformed into the identities

2

2

tansin
tan 1

1cos
tan 1

αα
α

α
α

=
+

=
+

. (8.33)

Equation (8.31) can be rewritten as

 () ()cos sinθ θ⋅ = ⋅S N R N , (8.34)

allowing us to express tanθ as

 tanθ ⋅=
⋅

S N

R N
. (8.35)

Equation (8.30) can be rewritten as

8.2 Bounding Volume Tests 225

 () () ()sin cos cos sin cosφ θ φ θ φ⋅ = ⋅ + ⋅T N R N S N , (8.36)

allowing us to express tanφ as

()

2

2

2

2

2

tan cos sin

1 tan
tan 1

1 1 tan
tan 1

tan 1

1,

φ θ θ

θ
θ

θ
θ

θ

⋅ ⋅= +
⋅ ⋅

⋅ ⋅ = + ⋅ ⋅ +
⋅= +
⋅ +
⋅= +
⋅

⋅ ⋅ = + ⋅ ⋅ 

R N S N

T N T N
R N S N

T N T N

R N

T N

R N

T N

R N S N

T N R N
 (8.37)

where Equation (8.35) has been used in two steps. Using the identities given by
Equation (8.33), the value of ⋅P N can now be written as

() () ()

()[]
2 2

cos sin sin sin cos
1 tan tan

tan 1 tan 1

θ φ θ φ φ
φ θ

φ θ

⋅ = ⋅ + ⋅ + ⋅

 = ⋅ + ⋅ + ⋅ 
 + +

P N R N S N T N

R N S N T N . (8.38)

Substituting expressions from Equations (8.35) and (8.37) for tanθ and tanφ
gives us

()

() () ()

() () ()
() () ()

2

2 2

2 2 2

2 2

2 2 2

2 2 2

1 1

1 1

,

⋅⋅  ⋅ + + ⋅ ⋅ ⋅ ⋅ =
 ⋅ ⋅    + +    ⋅ ⋅    

⋅ + ⋅ + ⋅
=

 ⋅ ⋅   ⋅ + +    ⋅ ⋅    
⋅ + ⋅ + ⋅

=
⋅ + ⋅ + ⋅

S NR N
R N T N

T N R N
P N

R N S N
T N R N

R N S N T N

R N S N
T N

T N R N

R N S N T N

R N S N T N
 (8.39)

226 8. Visibility Determination

which yields the relatively simple expression

 () () ()2 2 2
effr = ⋅ = ⋅ + ⋅ + ⋅P N R N S N T N . (8.40)

 Equation (8.40) provides the effective radius of an arbitrary ellipsoid with
respect to a plane having unit normal direction N. Since the near and far planes
are parallel, the ellipsoid’s effective radius for those two planes is the same.
Thus, to test whether an ellipsoid falls outside the view frustum, we need to cal-
culate at most five effective radii. As with the sphere test, we compute the four-
dimensional dot products of the ellipsoid’s center with each of the frustum plane
vectors. If any single dot product is less than or equal to effr− , then the ellipsoid is
not visible. Otherwise, the object bounded by the ellipsoid should be drawn.

8.2.3 Bounding Cylinder Test

We reduced the problem of intersecting a sphere or an ellipsoid with the view
frustum to that of testing whether a point fell on the positive side of frustum
planes that were offset by the bounding volume’s effective radius. To intersect a
cylinder with the view frustum, we instead reduce the problem to determining
whether a line segment is visible in a properly expanded frustum.
 As with the ellipsoid test, we must determine the effective radius of a bound-
ing cylinder with respect to each of the view frustum planes. The effective radius
depends on the cylinder’s orientation and ranges from zero (when the cylinder is
perpendicular to a plane) to the actual radius (when the cylinder is parallel to a
plane). Suppose that we are given a cylinder of radius r whose endpoints lie at 1Q
and 2Q . We define the vector A to be the unit vector parallel to the axis of the
cylinder:

 2 1

2 1

−=
−

Q Q
A

Q Q
. (8.41)

As shown in Figure 8.6, the effective radius effr of the cylinder with respect to a
plane having unit normal direction N is given by

 eff sinr r α= , (8.42)

where α is the angle formed between the vectors A and N. This can also be writ-
ten as

 ()

2
eff

2

1 cos

1

r r α

r

= −

= − ⋅A N . (8.43)

8.2 Bounding Volume Tests 227

N
α

1Q

2Q

A

r
effr

Figure 8.6. The effective radius of a bounding cylinder.

 We perform the visibility test by visiting each of the six view frustum planes,
beginning with the near and far planes since they are parallel and thus share the
same effective radius. For each frustum plane L, we first calculate the 4D dot
products 1⋅L Q and 2⋅L Q . If both dot products are less than or equal to the value

effr− corresponding to the plane L, then we immediately know that the cylinder is
not visible, and the test exits. If both dot products are greater than or equal to

effr− , then we cannot draw any conclusions and simply proceed to the next plane.
 In the remaining case that one of the dot products is less than effr− , and the
other dot product is greater than effr− , we calculate the point 3Q such that

 3 effr⋅ = −L Q (8.44)

and replace the exterior endpoint with it. This effectively chops off the part of the
cylinder that is now known to lie outside the view frustum. To find the point 3Q ,
we use the parametric line equation

 () ()3 1 2 1t t= + −Q Q Q Q , (8.45)

where the range 0 1t≤ ≤ represents the axis of the cylinder. Substituting the right
side of this equation for 3Q in Equation (8.44) allows us to solve for the value
of t:

()

eff 1

1 2

rt + ⋅=
⋅ −

L Q

L Q Q
. (8.46)

(Note that the difference 1 2−Q Q has a w coordinate of 0.) Plugging this back
into Equation (8.45) gives us our new endpoint 3Q . After replacing the exterior
endpoint with it, we continue to the next plane.

228 8. Visibility Determination

 If we visit all six planes of the view frustum and never encounter the case
that both endpoints produce a dot product less than or equal to effr− , then the cyl-
inder is probably at least partially visible. Of course, this means that we do not
have to replace any endpoints for the last plane that we visit. As soon as we know
that at least one endpoint iQ satisfies effi r⋅ > −L Q for the final plane, we know
that part of the cylinder intersects the view frustum.

8.2.4 Bounding Box Test

When determining whether a box intersects the view frustum, we have a choice
between reducing the problem to that of testing a point or to that of testing a line
segment. If the bounding box extents in the primary axis direction R are signifi-
cantly greater than those in the S and T directions, then we may choose to test a
line segment. For bounding boxes whose dimensions are roughly equal, we favor
the point test.
 We assume in this section that the magnitudes of the vectors R, S, and T rep-
resenting the principal axes of the object bounded by the box are equal to the di-
mensions of the box itself. To reduce the problem of intersecting a box with the
view frustum to that of testing whether its center lies inside the expanded frustum
planes, we need a way to determine the box’s effective radius. As shown in Fig-
ure 8.7, we can calculate the effective radius effr of a box with respect to a plane
having unit normal direction N using the formula

 ()1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N . (8.47)

N 1
2 ⋅R N

1
2 ⋅S N1

2 S

1
2 R

Q

Figure 8.7. Calculating the effective radius of a box.

8.2 Bounding Volume Tests 229

Once the effective radius is known, we proceed in exactly the same manner as we
would to test an ellipsoid. For each frustum plane L, we calculate the 4D dot
product between the plane and the center Q of the bounding box. If for any plane

effr⋅ ≤ −L Q , then the box is not visible.
 In the case that the length of R is much greater than the lengths of S and T, a
box may not be rejected in many situations when it lies far outside the view frus-
tum. An instance of this case is demonstrated in Figure 8.8. To circumvent this
problem, we can reduce the box intersection test to a line segment intersection, as
is done for cylinders.
 In terms of the bounding box center Q and its primary axis R, we can express
the endpoints 1Q and 2Q of the line segment representing the box as

1
1 2

1
2 2

= +
= −

Q Q R

Q Q R. (8.48)

The effective radius effr with respect to a plane having unit normal direction N is
given by

 ()1
eff 2r = ⋅ + ⋅S N T N , (8.49)

R

S

Figure 8.8. This example demonstrates that using the point test for a box having one di-
mension much larger than the other two can result in the failure to reject a box that lies a
significant distance outside the view frustum.

230 8. Visibility Determination

where the ⋅R N term appearing in Equation (8.47) is now absent since it is rep-
resented by the line segment connecting 1Q and 2Q .
 We now proceed in exactly the same manner as we would to test a cylinder.
For each frustum plane L, we first calculate the 4D dot products 1⋅L Q and

2⋅L Q . If both dot products are less than or equal to the value effr− corresponding
to the plane L, then we immediately know that the box is not visible, and the test
exits. If both dot products are greater than or equal to effr− , then we cannot draw
any conclusions and simply proceed to the next plane. When one of the dot prod-
ucts is less than effr− and the other dot product is greater than effr− , we calculate
the point 3Q such that 3 effr⋅ = −L Q using Equations (8.45) and (8.46), and re-
place the exterior endpoint with it. If we are able to visit all six frustum planes
without encountering the case that both endpoints produce a dot product less than
or equal to effr− , then the box is probably at least partially visible.

8.3 Spatial Partitioning

It is possible to increase the efficiency for which the visibility of a large number
of objects is determined by organizing them into a structure whose properties
allow large regions of space to be culled from the visible set of geometry using
very simple tests. This practice is called spatial partitioning and comes in two
popular varieties that we discuss in this section: octrees and binary space parti-
tioning trees. Both methods are usually applied only to static world geometry
since computation of the data structures involved is generally too expensive to
perform at runtime.

8.3.1 Octrees

Suppose that all the geometry belonging to an entire world or to a particular re-
gion of a world is contained within a rectangular box B. An octree is a structure
that partitions this box into eight smaller, equal-size rectangular boxes called oc-
tants. These smaller boxes are further subdivided into eight even smaller octants,
and the process continues to some maximum number of iterations called the
depth of the octree. Each octant is linked to the box from which it was parti-
tioned, and each object in the world is linked to the smallest octant that complete-
ly contains it (which may be the original box B).
 Figure 8.9(a) illustrates the two-dimensional analog of an octree, called a
quadtree, constructed for an area containing a single object. Figure 8.9(b) shows
how the corresponding data structure is organized. Each node in a quadtree struc-
ture has at most four subnodes—octrees can have up to eight. As this example

8.3 Spatial Partitioning 231

K

K

A
A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Root(a) (b)

Figure 8.9. (a) A quadtree constructed for an area containing a single object. (b) The data
structure representation of the quadtree.

demonstrates, if no world geometry intersects a quadrant (or an octant in an oc-
tree), then that quadrant is not subdivided. Furthermore, any quadrant that does
not completely contain any objects is deleted from the tree. We always assume
that any missing quadrants are empty.
 Organizing geometry into a tree structure has the benefit that whenever we
can determine that a node of the tree is not visible, then we immediately know
that every subnode of that node is also not visible and can simultaneously be
culled. (Chapter 12 discusses how a similar property of tree structures benefits
collision detection.) Visibility determination for the octree begins by testing the
box surrounding the root node for intersection with the view frustum. If the cam-
era is known to always lie within the boundary of the octree, then it can be as-
sumed that the root node is always visible. When any node’s bounding box is
determined to be visible, we consider each object linked to that node by testing
its bounding volume for visibility. We then perform the same test for any existing
subnodes of the visible node. When a node’s bounding box fails the visibility
test, we ignore all objects linked to that node and any subnodes belonging to that
node.
 We can use the fact that the bounding boxes at each level of an octree all
have the same orientation to our advantage. For any given camera position and
orientation, we transform the axes of the octree into camera space and calculate
the five effective radii (one for the near and far planes and four corresponding to

232 8. Visibility Determination

the side planes) of the box B bounding the entire structure. If effr is the effective
radius of the box B with respect to a particular view frustum plane, then the ef-
fective radius of any box residing one level deeper within the tree is simply

eff 2r . This saves us from having to use Equation (8.47) to calculate effective ra-
dii for every octant at every level—calculating it once at the beginning is
sufficient.

8.3.2 Binary Space Partitioning Trees

A Binary Space Partitioning (BSP) tree is a structure that divides space into two
regions at each level. Unlike the planes that partition octrees, the planes partition-
ing a BSP tree can be arbitrarily oriented. A BSP tree is constructed for a set of
objects by choosing a partitioning plane, sometimes called a splitting plane, and
sorting the geometry into two groups: objects lying on the positive side of the
plane (also called the positive halfspace) and objects lying on the negative side of
the plane (the negative halfspace).
 Traditionally, the partitioning planes of a BSP tree have been aligned to the
polygons that make up the world geometry. Figure 8.10 illustrates a two-
dimensional example of a region containing several polygons that determine the
structure of the BSP tree. One polygon is chosen to represent the splitting plane
at each level, and the remaining polygons are sorted into positive and negative
groups. Any polygons intersecting the plane are split into two polygons that lie in
the positive and negative halfspaces. The positive and negative groups are then
partitioned, and the process continues for each halfspace until no polygons
remain.

(a) (b)

A

A

B
B

C

C
D

D

+

+

−

Figure 8.10. (a) A traditional BSP tree and (b) the associated data structure.

8.3 Spatial Partitioning 233

 The large number of polygons and curved surfaces used in modern 3D en-
gines makes the traditional BSP tree impractical. In a somewhat modified ap-
proach, we create one splitting for each object instead of each polygon. As shown
in Figure 8.11, the splitting plane for an object is aligned so that it is perpendicu-
lar to the object’s principal axis T corresponding to the smallest dimension of its
bounding box. This minimizes the distance that the object extends away from the
splitting plane. After a splitting plane has been chosen for an object, the other
objects are sorted into those that lie completely within the positive halfspace and
those that lie completely within the negative halfspace. Any objects that straddle
the splitting plane are added to both the positive and negative groups. The half-
spaces are recursively partitioned until no objects remain.
 For each splitting plane of a BSP tree, we need to determine the visibility of
each halfspace and the visibility of the object associated with the plane. This re-
quires that we have a way to determine whether a plane K intersects the view
frustum. The simplest approach would be to test the eight vertices of the view
frustum in world space against the plane K by calculating the 4D dot products
and comparing them to zero. If all eight dot products have the same sign (mean-
ing that all eight points lie on the same side of the plane), then the plane does not
intersect the view frustum. Fortunately, we can find a better method by trans-
forming the plane K into homogeneous clip space and utilizing the cubic sym-
metry of the view frustum in that space (see Section 5.5.1).
 A plane K can be transformed from world space to homogeneous clip space
using the formula

 () 1 T−′ =   K PM K, (8.50)

R
T

Figure 8.11. An object’s splitting plane is aligned so that it is perpendicular to the ob-
ject’s principal axis T corresponding to the smallest dimension of its bounding box.

234 8. Visibility Determination

where P is the projection matrix and M is the transformation from world space to
camera space. The components of each vertex of the view frustum in clip space
are 1± . The vertex producing the greatest dot product with the plane ′K is the one
having component signs that match the signs of the x, y, and z components of ′K .
The vertex producing the least dot product with ′K is the one having component
signs opposite those of the components of ′K . The greatest dot product maxd and
the least dot product mind are thus given by

max

min

x y z w

x y z w

d K K K K
d K K K K

′ ′ ′ ′= + + +
′ ′ ′ ′= − − − + . (8.51)

 As shown in Figure 8.12, if max 0d ≤ , then the view frustum lies entirely on
the negative side of the plane K. This means that nothing on the positive side of
the plane is visible. Similarly, if min 0d ≥ , then the view frustum lies entirely on
the positive side of the plane K, and thus nothing on the negative side of the
plane is visible. If neither of the conditions max 0d ≤ or min 0d ≥ is satisfied, then
the plane K intersects the view frustum, and we cannot cull either halfspace.

mind

maxd

K

Figure 8.12. Let maxd and mind be the greatest dot product and least dot product of any
frustum vertex with the plane K. If max 0d ≤ or min 0d ≥ , then the view frustum lies com-
pletely on one side of K, so the other side is not visible.

8.4 Portal Systems 235

8.4 Portal Systems

A portal system is an extremely powerful technique that can be used to quickly
eliminate massive regions of world geometry from the visible set. The general
idea is surprisingly simple—the world is divided into many disjoint zones that are
connected by portals. A portal is represented by a convex polygon through which
one region can be seen from another. The advantage of a portal system is that any
region of space that cannot be seen through a series of portals is never even con-
sidered for rendering. When determining what parts of a world are visible, using
a portal system allows us to touch only a small fraction of the entire data set be-
cause any geometry that lies on the opposite side of an invisible portal is ignored.
 Figure 8.13 illustrates how visibility determination is carried out for a portal
system. We first locate the zone in which the camera resides—this zone is always
considered visible. We then examine each of the portals leading out of the zone
containing the camera. For each portal that intersects the view frustum, we con-
sider the zone to which it connects visible. Each portal leading out of the con-
necting zone, excluding any leading back to the first zone, is then tested for visi-
bility, but this time against a view frustum that has been reduced in size by the
boundary of the portal through which we are looking. This technique is applied
recursively until no new portals are visible.

Figure 8.13. Only regions of space that can be seen through a series of portals are con-
sidered visible.

236 8. Visibility Determination

 The zones connected by portals may be further organized into tree structures,
and the objects residing in these regions may still have bounding volumes. The
visibility of large regions determined by the portal system is a large-scale culling
process that should be supplemented by smaller-scale visibility determination in
each zone.

8.4.1 Portal Clipping

Whenever the camera looks through a portal connecting to another zone, we
know that the volume of visibility in that zone is smaller than the whole view
frustum. Thus, we can reject a larger number of objects during smaller-scale visi-
bility testing by using a smaller view frustum. The near and far planes remain the
same, but the side planes of the new view frustum are replaced by a set of planes
that represents the intersection of the original view frustum and the sides of any
polygonal portals through which we are looking.
 As a convention, the plane containing a portal must have a normal direction
that points toward the camera, and the vertices of the portal must be wound coun-
terclockwise, as shown in Figure 8.14. Consequently, portals are one-way in the
sense that if a portal leads from zone X to zone Y, then the same portal does not
lead backward from zone Y to zone X. When the camera lies on the negative side
of a plane containing a portal, that portal is never considered visible. Two-way
visibility between two zones requires that each zone have a portal leading to the
other.
 Whenever we consider a portal leading out of a zone, we are interested only
in the visible area of that portal. The visible area of a portal is equal to the area
that intersects the current view frustum, which may be the original view frustum
or a reduced view frustum. To determine what area of a portal is visible, we clip

Figure 8.14. The vertices of a portal are wound counterclockwise about the normal of the
plane containing them. Here, the normal points out of the page.

8.4 Portal Systems 237

its polygon against the planes bounding the current view frustum. Clipping a pol-
ygon against a plane removes the portion of the polygon lying on the negative
side of the plane, resulting in a new polygon whose interior lies completely on
the positive side of the plane. Clipping a polygon against every plane of the cur-
rent view frustum effectively chops off any part lying outside the volume of
space that is visible to the camera.
 Suppose we need to clip a portal whose vertices lie at the points 1 2, , , nV V V
and connect to form a convex polygon. When we clip this polygon against a
plane L, we produce a new convex polygon having at most 1n + vertices. We
begin the clipping process by classifying all of the vertices into three categories:
those lying on the positive side of L, those lying on the negative side of L, and
those considered to be lying in the plane L itself. A vertex iV is classified as ly-
ing in the plane if its dot product with L satisfies

 0iε− < ⋅ ≤L V (8.52)

for some small constant ε (typically, 0.001ε ≈). This prevents problems associat-
ed with round-off error that would otherwise wreak havoc on our visibility tests
by destroying the convexity of the view frustum. If no vertices lie on the positive
side of the plane L, then the portal is not visible, and we do not render anything
in the zone to which it connects. If no vertices lie on the negative side of the
plane L, then no clipping is necessary. Otherwise, we visit every pair of neigh-
boring vertices, looking for edges having one positive vertex and one negative
vertex. As shown in Figure 8.15, new vertices are added to the polygon where
edges intersect the clipping plane, and vertices lying on the negative side of the
plane are removed. Vertices lying on the positive side of the clipping plane or
lying in the clipping plane itself are not affected.
 Suppose that the vertex iV lies on the positive side of the clipping plane L,
and that the vertex 1i+V lies on the negative side of L, or equivalently,

 1

0i

i ε+

⋅ >
⋅ ≤ −

L V

L V . (8.53)

A point W lying on the line segment connecting iV and 1i+V can be expressed as

 () ()1i i it t += + −W V V V , (8.54)

where the parameter t satisfies 0 1t≤ ≤ . Solving for the value of t that yields
() 0t⋅ =L W , we have

238 8. Visibility Determination

L

Figure 8.15. When a portal is clipped against a plane, new vertices are added where edg-
es intersect the plane, and vertices lying on the negative side of the plane are removed.
Vertices lying on the positive side of the clipping plane or lying in the clipping plane
itself are not affected.

()1

i

i i
t

+

⋅=
⋅ −

L V

L V V
. (8.55)

(Note that the difference 1i i+−V V has a w coordinate of 0.) Substituting this val-
ue back into Equation (8.54) gives us our new vertex W.

8.4.2 Reduced View Frustums

Given a clipped portal, we wish to calculate the planes surrounding the volume of
space visible through that portal. This enables us to perform visibility determina-
tion against a view frustum that is smaller than the original view frustum, result-
ing in a greater number of objects being culled. Fortunately, the camera-space
plane corresponding to an edge of a portal is simple to calculate. The plane iL
passing through the origin and the two portal vertices iV and 1i+V is given by

 1

1
,0i i

i
i i

+

+

×=
×

V V
L

V V
. (8.56)

For a portal having n vertices, we use Equation (8.56) to calculate the n side
planes of our reduced view frustum. (For the plane nL , we wrap around by set-
ting 1 0n+ =V V .) If the distance between any two portal vertices iV and 1i+V is very

8.4 Portal Systems 239

small, then round-off errors can cause convexity problems, so we discard any
plane iL for which

 2
1i i ε+ − <V V , (8.57)

where ε is a small constant that can be adjusted to produce acceptable results.
 The side planes of a reduced view frustum can meet at highly acute angles.
As shown in Figure 8.16, this can impact the effectiveness of bounding volume
visibility tests because objects lying far from the view frustum still may not lie on
the negative side of any single frustum plane. We can eliminate this problem by
detecting cases in which adjacent frustum planes meet at a small angle and add-
ing an extra plane to the view frustum whenever such cases occurs.
 Figure 8.16 shows a new plane having normal direction 3N added to the view
frustum between two adjacent planes having normal vectors 1N and 2N . The vec-
tor 3N is constructed by first calculating the average (unnormalized) direction
between 1N and 2N , which is simply given by the sum 1 2+N N . We then subtract
the projection of this average onto the direction 1 2×N N to ensure that the new
plane contains the line at which the two original planes intersect. This gives us
the following expression for 3N .

 ()
()

1 2

1 2

3

= +
= ×

− ⋅
=

− ⋅

A N N

B N N

A A B B
N

A A B B
 (8.58)

1N
2N

3N

Figure 8.16. Side planes of the reduced view frustum that meet at an acute angle can
impact the effectiveness of bounding volume visibility tests. The bounding sphere shown
here does not fail the visibility test even though it lies far outside the view frustum.

240 8. Visibility Determination

Since it passes through the origin in camera space, the new plane has a w coordi-
nate of 0.
 The situation demonstrated in Figure 8.16 can be avoided by constructing an
extra plane whenever two adjacent frustum planes having normals 1N and 2N sat-
isfy the condition 1 2 α⋅ <N N , where α represents an acuteness threshold. The
extra planes do not actually contribute to the shape of the view frustum since they
are coincident with the lines at which previously existing planes intersect. They
should be used only for visibility testing within a single zone and should not par-
ticipate in the clipping of any portals leading to other zones.

Chapter 8 Summary

Principal Components

The principal axes R, S, and T of a set of N vertices 1 2, , , NP P P are given by the
eigenvectors of the covariance matrix C defined by

 ()() T

1

1 N

i i
iN =

= − −C P m P m ,

where the mean position m is given by

1

1 N

i
iN =

= m P .

If 1λ , 2λ , and 3λ are the eigenvalues corresponding to the vectors R, S, and T, re-
spectively, then 1 2 3λ λ λ≥ ≥ .

Bounding Boxes

The two planes perpendicular to the principal axis A that bound the set of verti-
ces 1 2, , , NP P P are given by

 { } { }
1 1

, min ,maxi i
i N i N≤ ≤ ≤ ≤

− ⋅ − ⋅A P A A P A .

The center Q of a bounding box is given by

 1 1 2 2 3 3k k k= + +Q A A A ,

where

{ } { }

1 1
min max

2
i j i j

i N i N
jk ≤ ≤ ≤ ≤

⋅ + ⋅
=

P A P A
,

Chapter 8 Summary 241

and 1A , 2A , and 3A are the unit-length principal axes.

The effective radius effr with respect to a plane having normal direction N of a
bounding box whose dimensions and orientation are described by the vectors R,
S, and T is given by

 1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N .

Bounding Spheres

A bounding sphere for the set of vertices 1 2, , , NP P P is constructed by locating
the points kP and lP that produce the least and greatest dot products with the pri-
mary axis R and setting the initial center Q and radius r to

2

k l

kr

+=

= −

P P
Q

P Q .

For any point iP satisfying 2 2
i r− >P Q , we replace the center and radius with

the values

2

i

ir

+′ =

′ ′= −

G P
Q

P Q ,

where G is defined as

 i

i
r −= −

−
P Q

G Q
P Q

.

A bounding sphere having center Q and radius r is not visible if for any view
frustum plane L we have r⋅ ≤ −L Q .

Bounding Ellipsoids

A bounding ellipsoid for the set of vertices 1 2, , , NP P P is constructed by trans-
forming into a space in which the box bounding the set is a cube, constructing a
bounding sphere in that space, and then performing the reverse transformation to
scale the sphere to the original dimensions of the bounding box.

242 8. Visibility Determination

The effective radius effr with respect to a plane having normal direction N of a
bounding ellipsoid whose semiaxis lengths and orientations are described by the
vectors R, S, and T is given by

 () () ()2 2 2
effr = ⋅ + ⋅ + ⋅R N S N T N .

A bounding ellipsoid having center Q is not visible if for any view frustum plane
L we have effr⋅ ≤ −L Q .

Bounding Cylinders

A bounding cylinder for the set of vertices 1 2, , , NP P P is constructed by first
calculating the points { }iH using the formula

 ()i i i= − ⋅H P P R R,

where R is the unit vector parallel to the primary axis. After finding a bounding
circle for the points { }iH having center Q and radius r, the endpoints 1Q and 2Q
of the bounding cylinder are given by

{ }

{ }
1

1

2
1

min

max

i
i N

i
i N

≤ ≤

≤ ≤

= + ⋅

= + ⋅

Q Q P R R

Q Q P R R.

The effective radius effr with respect to a plane having normal direction N of a
bounding cylinder is given by

 () 2
eff 1r r= − ⋅A N ,

where A is the unit vector parallel to the axis of the cylinder given by

 2 1

2 1

−=
−

Q Q
A

Q Q
.

A bounding cylinder is not visible if the line segment connecting the endpoints
1Q and 2Q is completely clipped away by the view frustum planes.

Binary Space Partitioning (BSP) Trees

We can determine whether a world-space plane K intersects the view frustum by
transforming the plane into homogeneous clip space using the formula

Chapter 8 Summary 243

 () 1 T−′ =   K PM K,

where P is the projection matrix and M is the transformation from world space to
camera space. The greatest dot product maxd and least dot product mind of any
frustum vertex with the plane ′K are given by

max

min

x y z w

x y z w

d K K K K
d K K K K

′ ′ ′ ′= + + +
′ ′ ′ ′= − − − + .

If max 0d ≤ or min 0d ≥ , then the view frustum lies completely on one side of K, so
the other side is not visible.

Portal Systems

When clipping a portal having vertices 1 2, , , nV V V against a plane L, we add a
new vertex between any two adjacent vertices iV and 1i+V lying on opposite sides
of L. The new vertex W is given by

 ()1i i it += + −W V V V ,

where the parameter t is given by

()1

i

i i
t

+

⋅=
⋅ −

L V

L V V
.

The plane iL passing through the origin and the two portal vertices iV and 1i+V is
given by

 1

1
,0i i

i
i i

+

+

×=
×

V V
L

V V
.

An extra plane may be added to the view frustum to improve bounding volume
visibility determination when planes having normal directions 1N and 2N meet at
an acute angle. The new plane passes through the origin and has the normal di-
rection 3N given by

 ()
()

1 2

1 2

3

= +
= ×

− ⋅
=

− ⋅

A N N

B N N

A A B B
N

A A B B
.

244 8. Visibility Determination

Exercises for Chapter 8

1. Given two spheres 1S and 2S centered at the points 1Q and 2Q , and having
radii 1r and 2r , respectively, determine the center Q and radius r of the small-
est single sphere that encloses both 1S and 2S . Account for the cases that the
two spheres are disjoint, that the two spheres intersect, and that one of the
spheres encloses the other.

2. Determine formulas for the center Q and radius r of the optimal bounding
sphere for a cone whose radius (at the base) is s, whose height is h, and
whose base is centered on the origin of the x-y plane as shown in Figure
8.17. Consider the two cases that s h< and s h≥ .

h

s

z

x y

Figure 8.17. The cone used in Exercise 2.

3. Determine the effective radius effr of a box whose edges are described by the
vectors 2,0,1=R , 1,0, 2= −S , and 0,1,0=T with respect to a plane hav-
ing unit normal direction 3 3 3

3 3 3, ,= −N .

4. Write programs that construct a bounding box, a bounding sphere, a bound-
ing ellipsoid, and a bounding cylinder given an array of n vertex positions.

5. Implement a portal system that can clip the view frustum to an arbitrary
convex polygon and perform visibility tests against the reduced frustum.

 245

Chapter 9

Polygonal Techniques

This chapter discusses several techniques that involve the manipulation of polyg-
onal models. A 3D graphics engine often needs to create polygonal models in
real-time in addition to working with models that have been preprocessed in
some way. We begin this chapter with techniques pertaining to decal construction
and billboarding, operations usually performed on the fly. Subsequent sections
discuss preprocessing methods such as polygon reduction and triangulation,
which are normally performed by a tool that generates structures used for render-
ing at a later time.

9.1 Depth Value Offset

Many games need to render special effects such as scorch marks on a wall or
footprints on the ground that are not an original part of a scene, but are created
during gameplay. (A method for creating these is discussed in Section 9.2.) The-
se types of decorative additions are usually decaled onto an existing surface and
thus consist of polygons that are coplanar with other polygons in a scene. The
problem is that pixels rendered as part of one polygon rarely have exactly the
same interpolated depth value as pixels rendered as part of a coplanar polygon.
The result is an undesired pattern in which parts of the original surface show
through the decaled polygons.
 The goal is to find a way to offset a polygon’s depth in a scene without
changing its projected screen coordinates or altering its texture-mapping perspec-
tive. Most 3D graphics systems contain some kind of polygon offset function to
help achieve this goal. However, these solutions generally lack fine control and
usually incur a per-vertex performance cost. In this section, we present an alter-
native method that modifies the projection matrix to achieve the depth offset
effect.

246 9. Polygonal Techniques

9.1.1 Projection Matrix Modification

Let us first examine the effect of the standard OpenGL perspective projection
matrix on an eye space point (), , ,1x y zP P P=P . To simplify the matrix given in
Equation (5.52) a bit, we assume that the view frustum is centered about the z
axis so that the left and right planes intersect the near plane at x n e= ± , and the
top and bottom planes intersect the near plane at y an e= ± , where e is the focal
length and a is the aspect ratio. Calling the distance to the near clipping plane n
and the distance to the far clipping plane f, we have

()

0 0 0
0 0 0

2 20 0
1

0 0 1 0

x
x

y
y

zz

z

e eP
P

e a e a P
P

f n fn f n fnPP
f n f n f n f n

P

   
    
    
  =+ +   − − − −    − − − −        − −   

. (9.1)

To finish the projection, we need to divide this result by its w coordinate, which
has the value zP− . The resulting point ′P is given by

 ()

()
2

x

z

y

z

z

eP
P

e a P
P

f n fn
f n P f n

 − 
 
 ′ = − 
 

+ + − − 

P . (9.2)

 It is clear from Equation (9.2) that preserving the value of zP− for the w co-
ordinate will guarantee the preservation of the projected x and y coordinates as
well. From this point forward, we shall concern ourselves only with the lower-
right 2 2× portion of the projection matrix, since this is the only part that affects
the z and w coordinates.
 The projected z coordinate may be altered without disturbing the w coordi-
nate by introducing a factor of 1 ε+ , for some small ε , as follows.

() ()2 21 1

1
1 0

zz

z

f n fn f n fnε ε PP
f n f n f n f n

P

+ +   − + − − + −    − − − −=        − −   

 (9.3)

9.1 Depth Value Offset 247

After dividing by w, we arrive at the following value for the projected z
coordinate.

()
()

()

21

2

z
z

z

f n fnP ε
f n P f n

f n fn f nε
f n P f n f n

+′ = + +
− −

+ += + +
− − −

 (9.4)

Comparing this to the z coordinate in Equation (9.2), we see that we have found a
way to offset projected depth values by a constant f n

f nε +
− .

9.1.2 Offset Value Selection

Due to the nonlinear nature of the z-buffer, the constant offset given in Equation
(9.4) corresponds to a larger difference far from the camera than it does near the
camera. Although this constant offset may work well for some applications, there
is no single solution that works for every application at all depths. The best we
can do is choose an appropriate ε , given a camera-space offset δ and a depth val-
ue zP , that collectively represents the object that we are offsetting. To determine a
formula for ε , we examine the result of applying the standard projection matrix
from Equation (9.1) to a point whose z coordinate has been offset by some small
δ as follows.

()

()

22

1
1 0

zz

z

f n fnf n fn P δP δ
f n f nf n f n

P δ

++    − + −− − +     − −− − =       − + −     

 (9.5)

Dividing by w, we have the following value for the projected z coordinate.

()()

()

2

2 2 1 1

z
z

z z z

f n fnP
f n P δ f n
f n fn fn
f n P f n f n P δ P

+′ = +
− + −
+  = + + − − − − + 

 (9.6)

Equating this result to Equation (9.4) and simplifying a bit, we end up with

()

2
z z

fn δε
f n P P δ

 = −  + + 
. (9.7)

248 9. Polygonal Techniques

 A good value of δ for a particular application can be found with a little ex-
perimentation. It should be kept in mind that δ is a camera-space offset, and thus
becomes less effective as zP gets larger. For an m-bit integer depth buffer, we
want to make sure that

 2
2 1m

f nε
f n

− ≥  − + 
 (9.8)

since smaller values of ε will not yield an offset significant enough to alter the
integer depth value. Substituting the right side of Equation (9.7) for ε and solving
for δ gives us

2

1
z

z

kPδ
kP

≥
−

 (9.9)

or

2

1
z

z

kPδ
kP

−≤
+

, (9.10)

where the constant k is given by

 ()2 1m

f nk
fn

−=
−

. (9.11)

Equation (9.9) gives us the minimum effective value for δ when offsetting a pol-
ygon toward the camera (the usual case), and Equation (9.10) gives us the maxi-
mum effective value for δ when offsetting a polygon away from the camera.

9.1.3 Implementation

Listing 9.1 demonstrates how the projection matrix shown in Equation (9.3) may
be implemented under OpenGL. The LoadOffsetMatrix() function takes the
same six values that are passed to the OpenGL function glFrustum(). It also
takes the values for δ and zP that are used to calculate ε .

9.2 Decal Application 249

Listing 9.1. This code modifies the OpenGL projection matrix so that it offsets depth values by
the constant ε given by Equation (9.7).

void LoadOffsetMatrix(float l, float r, float b, float t,

 float n, float f, float delta, float pz)

{

 float matrix[16];

 // Set up standard perspective projection.

 glMatrixMode(GL_PROJECTION);

 glFrustum(l, r, b, t, n, f);

 // Retrieve the projection matrix.

 glGetFloatv(GL_PROJECTION_MATRIX, matrix);

 // Calculate epsilon with Equation (9.7).

 float epsilon = –2.0F * f * n * delta / ((f + n) * pz * (pz + delta));

 // Modify entry (3,3) of the projection matrix.

 matrix[10] *= 1.0F + epsilon;

 // Send the projection matrix back to OpenGL.

 glLoadMatrix(matrix);

}

9.2 Decal Application

Effects such as scorch marks on walls or footprints on the ground are commonly
implemented by creating a new object, called a decal, that coincides with an ex-
isting surface and rendering it using a depth offset technique such as that dis-
cussed in Section 9.1. Applying a decal to the interior of a planar surface is sim-
ple, but difficulties arise when applying decals to the more complex surfaces
used in today’s games to represent curved objects and terrain patches. In this sec-
tion, we present a general method for applying a decal to an arbitrarily shaped
surface and concurrently clipping the decal to the surface’s boundary. An exam-
ple of the technique we present is shown in Figure 9.1.

250 9. Polygonal Techniques

Figure 9.1. A blast mark decal applied to a curved surface. (Image from the C4 Engine,
courtesy of Terathon Software LLC.)

9.2.1 Decal Mesh Construction

We begin with a point P that lies on an existing surface and a unit normal direc-
tion N that is perpendicular to the surface at that point. The point P represents the
center of the decal and may be the point at which a projectile has hit the surface
or the point where a character’s foot has stepped upon the ground. A unit tangent
direction T must also be chosen to determine the orientation of the decal. This
configuration is illustrated in Figure 9.2.
 Given the point P and the directions N and T, we have an oriented plane that
is tangent to the surface geometry at P. We can carve a rectangle out of this plane
that represents the area of our decal by constructing four boundary planes that are
parallel to the normal direction N. Let w and h be the width and height of the de-
cal. Then the 4D vectors corresponding to the four border planes are given by

9.2 Decal Application 251

N

T
P

B

d

d

Figure 9.2. The configuration of a decal.

,
2

,
2

,
2

,
2

wleft

wright

hbottom

htop

 = − ⋅ 
 
 = − + ⋅ 
 
 = − ⋅ 
 
 = − + ⋅ 
 

T T P

T T P

B B P

B B P , (9.12)

where = ×B N T. We generate a triangle mesh for the decal object by clipping
nearby surfaces to the four boundary planes. We also want to clip to front and
back planes to avoid bleeding through to parts of the same surface mesh that may
be inside the boundary planes but far in front of or behind the point P. The 4D
vectors corresponding to the front and back planes are given by

()
()

,
, ,

front d
back d

= − + ⋅
= − ⋅

N N P

N N P (9.13)

where d is the maximum distance that any vertex in the decal may be from the
tangent plane passing through the point P.
 The mesh construction algorithm proceeds as follows. First, we identify
which surfaces in the world could potentially be affected by the decal. This may

252 9. Polygonal Techniques

be determined by locating each surface whose bounding volume reaches within a
certain distance of the point P. For each potentially affected surface, we individ-
ually examine every triangle in the surface’s mesh. Let M denote the unit normal
direction corresponding to the plane of a triangle in the mesh. We throw out any
triangles for which ε⋅ <N M for some fixed positive value ε since these triangles
are facing away from the decal’s normal direction N. The remaining triangles are
clipped to the planes given by Equations (9.12) and (9.13) and stored in a new
triangle mesh.
 When a triangle overlaps any of the planes and needs to be clipped, we inter-
polate the normal vectors as well as the vertex positions so that we can later ap-
ply coloring to the clipped vertices that reflects the angle between each vertex’s
normal direction and the decal’s normal direction. This has the effect of smoothly
fading the decal texture in relation to each triangle’s orientation relative to the
plane of the decal. We assign an alpha value to each vertex using the equation

1

ε
alpha

ε

⋅ −
=

−

N R
R , (9.14)

where R is the (possibly unnormalized due to interpolation) normal vector corre-
sponding to the vertex. This maps the dot product range [],1ε to the alpha value
range []0,1 .
 Texture mapping coordinates are applied to the resulting triangle mesh by
measuring the distance from each vertex to the planes passing through the point
P and having normal directions T and B. Let Q be the position of a vertex in the
decal’s triangle mesh. Then the texture coordinates s and t are given by

()

()

1
2
1
2

s
w

t
h

⋅ −
= +

⋅ −
= +

T Q P

B Q P . (9.15)

9.2.2 Polygon Clipping

Each triangle belonging to a surface that could potentially be affected by the de-
cal is treated as a convex polygon and clipped to each of the six boundary planes,
one at a time. Clipping a convex polygon having n vertices to a plane results in a
new convex polygon having at most 1n + vertices. Thus, polygons that have been
clipped against all six planes may possess as many as nine vertices. Once the

9.2 Decal Application 253

clipping process is complete, each polygon is treated as a triangle fan and added
to the decal’s triangle mesh.
 To clip a convex polygon against an arbitrary plane, we first classify all the
vertices belonging to the polygon into two categories: those lying on the negative
side of the plane and those lying on the positive side of the plane or in the plane
itself. (This differs from the method used to clip portals in Section 8.4.1 in that
we do not have a separate classification for vertices lying in the plane.) If all the
polygon’s vertices lie on the negative side of the plane, then the polygon is dis-
carded. Otherwise, we visit every pair of neighboring vertices in the polygon
looking for edges that intersect the clipping plane. As shown in Figure 9.3, new
vertices are added to the polygon where such intersections occur, and vertices
lying on the negative side of the plane are removed.
 Suppose that the vertex 1V lies on the positive side of the clipping plane K
and that the vertex 2V lies on the negative side of K. A point W lying on the line
segment connecting 1V and 2V can be expressed as

 () ()1 2 1t t= + −W V V V , (9.16)

1V

2V

W

K

Figure 9.3. When a polygon is clipped against a plane, new vertices are added where
edges intersect the plane, and vertices lying on the negative side of the plane are re-
moved.

254 9. Polygonal Techniques

where the parameter t satisfies 0 1t≤ ≤ . The value of t for which () 0t⋅ =K W is
given by

()

1

1 2
t ⋅=

⋅ −
K V

K V V
. (9.17)

(Note that the difference 1 2−V V has a w coordinate of 0.) Substituting this value
of t back into Equation (9.16) gives us our new vertex W.

9.3 Billboarding

Many special effects are implemented by applying a two-dimensional texture
map to a flat polygon that is always oriented to face the camera. This technique is
called billboarding and is an effective way to create the illusion that a flat object
has volume. This section examines methods for calculating the vertices of bill-
board polygons in different situations.

9.3.1 Unconstrained Quads

An unconstrained quad is a four-sided rectangular polygon that is free to rotate in
any direction. Unconstrained quads are typically used to create special effects
such as particle systems, smoke trails, and lens flare coronas.
 We billboard an unconstrained quad by forcing its vertices to lie in a plane
that is perpendicular to the direction in which the camera is pointing. Let the vec-
tors R and U denote the unit-length world space right direction and up direction
of the current camera view. (These correspond to the camera space x and y axes,
respectively.) The quad that we wish to billboard is defined by the following
quantities.

(a) The world space position P corresponding to the center of the quad.
(b) The width w and height h of the quad. These may be changed over time to

produce the effect of an expanding or shrinking billboard.
(c) The angle θ by which the quad should be rotated relative to the camera’s ori-

entation. This may be changed over time to produce the effect of a spinning
billboard. If θ is constant, then the quad rotates with the camera about the
view direction.

Using these quantities, we define the vectors X and Y as follows.

9.3 Billboarding 255

cos sin
2 2

sin cos
2 2

w wθ θ

h hθ θ

   = +   
   
   = − +   
   

X R U

Y R U (9.18)

The rotation θ is typically quantized to some number of possible angles so that a
lookup table may be used for the sine and cosine functions. Of course, if 0θ = ,
then the expressions for the vectors X and Y reduce to

2

.
2

w

h

=

=

X R

Y U (9.19)

As illustrated in Figure 9.4, the four vertices 1Q , 2Q , 3Q , and 4Q of the quad are
given by

1 2

3 4

= + + = − +
= − − = + −

Q P X Y Q P X Y

Q P X Y Q P X Y. (9.20)

X

Y

U

R
P

θ

1Q

2Q

3Q

4Q

Figure 9.4. Calculating the vertices of an unconstrained billboarded quad.

256 9. Polygonal Techniques

These vertices are arranged in a counterclockwise winding order so that the front
of the quad faces the camera. The corresponding two-dimensional texture map-
ping coordinates are given by

1 1 2 2

3 3 4 4

, 1,1 , 0,1
, 0,0 , 1,0

s t s t
s t s t

= =
= = . (9.21)

 Billboarded quads whose vertices derive from the vectors X and Y given by
Equation (9.18) are always aligned to the plane of the camera. As Figure 9.5
demonstrates, this alignment can differ significantly from the plane perpendicular
to the true direction from the quad’s center to the camera position. When hun-
dreds or thousands of small particles are being rendered, one may wish to use
Equation (9.18) for efficiency, but large quads may look better if oriented to face
the actual camera position instead of the plane of the camera.
 We align a quad so that it faces the camera position by presenting a more
computationally expensive formulation of the vectors X and Y. Let the vector C
denote the world space camera position. Assuming that the center P of the quad
does not lie on the line containing C and running in the direction U, we can
calculate

 .

−=
−
×=
×

= ×

C P
Z

C P

U Z
A

U Z

B Z A (9.22)

Figure 9.5. A billboarded quad that is aligned to the plane of the camera may differ sig-
nificantly from a quad that directly faces the camera position.

9.3 Billboarding 257

The vector Z is the unit vector that points from the quad’s center toward the
camera position. Calculating the cross product with U produces orthogonal vec-
tor A lying in the plane of the billboard. If ×U Z is close to zero, then we can use
the alternate formula

 .

×=
×

= ×

Z R
B

Z R

A B Z (9.23)

The vectors A and B form an orthogonal pair of unit vectors that we can use to
express the vectors X and Y:

cos sin
2 2

sin cos
2 2

w wθ θ

h hθ θ

   = +   
   
   = − +   
   

X A B

Y A B. (9.24)

Using these in Equation (9.20) produces the vertices of the billboarded quad.

9.3.2 Constrained Quads

We now consider how to orient a quad that is constrained to rotate only about the
z axis. An example of how such a quad might be used is to render the fire texture
for a torch. In this case, the fire is always pointing upward, but the plane of the
quad rotates to face the camera. As long as the camera does not view the quad
from sharply above or below, this produces the convincing illusion that the fire
has volume.
 Suppose that the camera resides at the world space point C. For a quad cen-
tered at the point P, we define the vector X as

 , ,0y y x xP C C P= − −X . (9.25)

As shown in Figure 9.6, this vector is constructed by taking the difference be-
tween the camera position and the center of the quad, projecting it onto the x-y
plane, and rotating it 90 degrees counterclockwise about the z axis. If 0=X ,
then the camera is either directly above or directly below the quad. In this case,
the quad is being viewed on edge and therefore should not be rendered. Other-
wise, we calculate the four vertices 1Q , 2Q , 3Q , and 4Q of the quad as follows.

258 9. Polygonal Techniques

X

C

P x

y

2w

x xC P−

y yC P−

Figure 9.6. Calculating the vertices of a billboarded quad that is constrained to rotate
about the z axis.

1 2

3 4

0,0, 0,0,
2 2 2 2

0,0, 0,0,
2 2 2 2

w h w h

w h w h

= + + = − +

= − − = + −

X X
Q P Q P

X X

X X
Q P Q P

X X
 (9.26)

The texture mapping coordinates are the same as those for an unconstrained quad
given by Equation (9.21).

9.3.3 Polyboards

A polyline defined by a series of N points 1 2, , , NP P P can be given some thick-
ness r by constructing a polyboard that traces the polyline in the manner shown
in Figure 9.7. One application of such a polyboard is to render a lightning bolt
whose path is defined by a set of points. Another application is to render a mo-
tion-blurred particle for which a number of intermediate positions have been cal-
culated between its position on the previous frame and its current position.
 For each point iP defining the polyline, we generate two polyboard vertices
lying at a distance r from iP . The direction of the line on which these vertices and
the point iP lie should be orthogonal to both the direction to the camera position
and the tangent direction of the polyline at iP . The unit direction iZ to the camera
is given by

9.3 Billboarding 259

r

1P

2P

3P

4P
Figure 9.7. A polyboard of radius r that traces a polyline.

 i
i

i

−=
−

C P
Z

C P
, (9.27)

where C is the camera position. A unit tangent vector iT may be calculated for
the point iP using the formula

 1 1

1 1

i i
i

i i

+ −

+ −

−=
−

P P
T

P P
, (9.28)

or in the case that iP is an endpoint,

2 1
1

2 1

1

1

N N
N

N N

−

−

−=
−
−=
−

P P
T

P P

P P
T

P P
. (9.29)

The two polyboard vertices iG and iH corresponding to the point iP are then
given by

()
()

i i i i

i i i i

r
r

= + ×
= − ×

G P T Z

H P T Z . (9.30)

260 9. Polygonal Techniques

Figure 9.8. Polyboards are used to render the curved beams of light in this screenshot.
Shorter polyboards are also used to render the particles flying away from the blast point.
(Image from the C4 Engine, courtesy of Terathon Software LLC.)

Each edge of the polyboard constructed using the vertices 1G , 1H , 2G , 2H , ,
NG , NH is perpendicular to the direction to the camera. Figure 9.8 demonstrates

beams of light rendered using this technique.

9.4 Polygon Reduction

When a model consisting of a large number of triangles is rendered far from the
camera, it is likely that many of the triangles make no perceptible contribution to
the resulting image. By reducing the number of rendered triangles as the distance
from the camera to the model increases, we can reduce the amount of computa-
tion needed to process the mesh as well as the amount of data sent to the graphics
hardware.

9.4 Polygon Reduction 261

 A common method used to reduce the number of triangles in a mesh is the
edge collapse technique. This method works by locating edges within a triangle
mesh whose removal would not cause a large change in the shape of the model.
The process of removing an edge is called an edge collapse and is performed by
merging the edge’s two endpoints. As illustrated in Figure 9.9, one endpoint re-
mains stationary, and the other endpoint is moved to the same location as the
first. Thus, there are two ways in which an edge can be collapsed, depending on
which endpoint remains stationary. The two triangles sharing the collapsed edge
are eliminated, and any triangles using the moved vertex are stretched to fill in
the space left behind. Of course, since the two endpoints now occupy the same
location, the one that was moved can simply be eliminated. Thus, a single edge
collapse results in the removal of two triangles, one edge, and one vertex from
the mesh.
 We decide which edges to collapse in a triangle mesh by calculating two
costs for each edge. A cost is assigned to each endpoint of an edge based on how
much the appearance of the triangle mesh would be altered if the edge is col-
lapsed by removing that endpoint. Endpoints having the lowest collapse cost de-
termine which edges are the first to be eliminated. If it is known that an edge
should definitely not be eliminated, then the collapse costs of its endpoints can be
set to some large value to indicate this.
 There are many possible ways to calculate edge collapse costs. The method
presented in this section assigns costs based on a combination of the edge’s
length and the flatness of the triangle mesh on both sides of the edge around the
endpoint being considered for elimination. Suppose that we wish to calculate the
cost of eliminating the vertex 1V in Figure 9.10 by collapsing it into the vertex 2V .

Figure 9.9. An edge collapse merges the two endpoints of the edge and eliminates the
triangles that share the edge.

262 9. Polygonal Techniques

A

B

D

E
1V2V

3V

3V

Figure 9.10. Calculating the collapse cost.

We first calculate the normal vector N for the vertex 1V by averaging the normals
of the surrounding triangles (see Section 7.7.1). We then define the vector D to
be

 ×=
×

N E
D

N E
, (9.31)

where E is the direction pointing from 1V to 2V :

 2 1= −E V V . (9.32)

The direction D is perpendicular to both the normal to the surface at 1V and the
edge that we are considering. It will be used to determine on which side of the
edge a point lies.
 It should be noted that if any of the edges leading away from the vertex 1V
are not shared by two triangles, then 1V should not be eliminated because doing
so would change the shape of the triangle mesh’s boundary. If 1V does lie in the
interior of the mesh, then for each of the two triangles sharing the edge that con-
nects 1V and 2V , we examine the vertex 3V of the triangle that does not lie on the
edge to determine whether the triangle lies on the positive side or negative side of
the edge. If the condition

 ()3 1 0⋅ − ≥D V V (9.33)

9.4 Polygon Reduction 263

is satisfied, then the triangle lies on the positive side of the edge; otherwise, it lies
on the negative side of the plane. We must have one of each, so if both triangles
lie on the positive side or both triangles lie on the negative side, then the edge
should not be collapsed.
 Let posT represent the unit-length normal vector of the triangle lying on the
positive side of the edge, and let negT represent the unit-length normal vector of
the triangle lying on the negative side of the edge. We estimate the flatness of the
triangle mesh on either side of the edge being considered for collapse by compar-
ing the normal vectors posT and negT to those of the other triangles using the vertex

1V . As we examine these triangles, we maintain a value d corresponding to the
smallest dot product found between the normal of any triangle occupying space
on the positive side of the edge and the vector posT and between the normal of any
triangle occupying space on the negative side of the edge and the vector negT . A
value of d near one indicates that the mesh is mostly flat on either side of the
edge, but a small value of d indicates that large angles exist between triangles
sharing the vertex 1V . If d falls below some threshold corresponding to the maxi-
mum surface roughness allowed, then the edge connecting 1V and 2V should not
be collapsed. Otherwise, we assign the cost c to the edge using the formula

 ()1c d= − E . (9.34)

 To clarify the procedure for calculating the value of d, suppose that a triangle
has vertices 1V , A, and B (where neither A nor B is equal to 2V), and has the unit-
length normal vector T. We classify the vertices A and B as lying on the positive
side of the edge, on the negative side of the edge, or on the edge itself by examin-
ing the dot products

()
()

1

1 .
a
b

= ⋅ −
= ⋅ −

D A V

D B V (9.35)

The quantities a and b represent the distances from the plane containing the edge
and having normal vector D to the points A and B. If a ε> or b ε> for some
small distance ε , then we consider the corresponding point to lie on the positive
side of the edge. Similarly, if a ε< − or b ε< − , then we consider the correspond-
ing point to lie on the negative side of the edge. Points lying within the distance ε
of the edge are considered to be lying on the edge itself. If either A or B lies on
the positive side of the edge, then we replace the minimum dot product d with the
dot product pos⋅T T if it is smaller:

 { }posmin ,d d← ⋅T T . (9.36)

264 9. Polygonal Techniques

Figure 9.11. The edge collapse cost calculation allows the collapse of an edge between
two triangles having largely differing orientations as long as the triangle mesh is reasona-
bly flat on both sides of the edge.

If either A or B lies on the negative side of the edge, then we replace d with the
dot product neg⋅T T if it is smaller:

 { }negmin ,d d← ⋅T T . (9.37)

It is possible that both of the operations given by Equations (9.36) and (9.37) are
performed for a single triangle.
 The edge collapse cost calculation presented in this section allows the col-
lapse of an edge such as that shown in Figure 9.11. As long as the triangle mesh
is reasonably flat on both sides of the edge, a collapse may occur along an edge
between two triangles having largely differing orientations.
 Figure 9.12 shows the original triangle mesh for a chunk of terrain and the
same surface after 35 percent of its triangles have been eliminated using the edge
collapse technique. Notice how edges in regions of high triangle concentration
and regions of relative flatness were the first edges chosen to be removed.

9.5 T-Junction Elimination

Suppose that a scene contains two polygons that share a common edge, as shown
in Figure 9.13(a). When two such polygons belong to the same model, the verti-
ces representing the endpoints of the common edge are not ordinarily duplicated
unless some vertex attribute (such as texture coordinates) is different for the two
polygons. Vertices shared by multiple polygons are usually stored once in an ar-
ray and referenced multiple times by the polygons that use them. Graphics hard-
ware is designed so that when adjacent polygons use exactly the same coordi-
nates for the endpoints of shared edges, rasterization produces sets of pixels that

9.5 T-Junction Elimination 265

Figure 9.12. The left image shows a chunk of terrain made up of 938 faces generated
directly from an underlying data field. In the right image, unimportant edges have been
collapsed, reducing the number of faces to 606. (Image from the C4 Engine, courtesy of
Terathon Software LLC.)

are precise complements of each other. Along the shared edge, there is no over-
lap between the pixels belonging to one polygon and those belonging to the oth-
er, and there are no gaps where pixels do not belong to either polygon.
 A problem arises when adjacent polygons belong to different objects. Each
object has its own copy of the endpoint vertices for the shared edge, and these
vertices may differ greatly in each object’s local coordinate space. When the ver-
tices are transformed into world space, floating-point round-off error may pro-
duce slightly different positions for each object. Since the vertex coordinates are
no longer exactly equal, a seam may appear when the polygons are rasterized.
 A larger problem occurs when two polygons have edges that fall within the
same line in space but do not share the same endpoints, as illustrated in Figure
9.13(b). In such a situation, a vertex belonging to one polygon lies within the in-

(a) (b)

Figure 9.13. (a) Two polygons share an edge and both endpoint vertices. (b) Two poly-
gons share an edge but do not share endpoint vertices. The location where a vertex of one
polygon lies on the edge of another polygon is called a T-junction.

266 9. Polygonal Techniques

terior of an edge belonging to the other polygon. Due to the shape that the edges
form, the location at which this occurs is called a T-junction. Because the adja-
cent edges do not share identical endpoints, T-junctions are a major cause of vis-
ible seams in any real-time graphics engine that does not take measures to elimi-
nate them.
 In this section, we describe how to detect possible sources of seams in com-
plex 3D scenes and how to modify static geometry so that visible artifacts are
avoided. The removal of seams is absolutely necessary in order for graphics en-
gines to employ stencil shadow techniques for global illumination (see Section
10.4.1). When T-junctions are eliminated, new vertices are added to existing pol-
ygons. A method for triangulating arbitrary polygons is described in Section 9.6.
 Given an immovable object A in our world, we need to determine whether
there exist any other immovable objects possessing a vertex that lies within an
edge of object A. We consider only those objects whose bounding volumes inter-
sect the bounding volume of object A. Let object X be an object that lies close
enough to object A to possibly have adjacent polygons. We treat both objects as
collections of polygons having the greatest possible number of edges. We per-
form triangulation of these polygons after the T-junction elimination process to
avoid the creation of superfluous triangles.
 Before we locate any T-junctions, we first want to find out if any of object
A’s vertices lie very close to any of object X’s vertices. We must transform the
vertices belonging to both objects into some common coordinate space and
search for vertices separated by a distance less than some small constant ε . Any
vertex AV of object A that is this close to a vertex XV of object X should be
moved so that AV and XV have the exact same coordinates. This procedure is
sometimes called welding.
 Once existing vertices have been welded, we need to search for vertices of
object X that lie within a small distance ε of an edge of object A but do not lie
within the distance ε of any vertex of object A. This tells us where T-junctions
occur. Let 1P and 2P be endpoints of an edge of object A, and let Q be a vertex of
object X. The squared distance 2d between the point Q and the line passing
through 1P and 2P is given by

 () () ()[]
()

2
1 2 12 2

1 2
2 1

d − ⋅ −
= − −

−
Q P P P

Q P
P P

. (9.38)

If 2 2d ε< , then we know that the point Q lies close enough to the line containing
the edge of object A, but we still need to determine whether Q actually lies be-

9.6 Triangulation 267

tween 1P and 2P . We can make this determination by measuring the projected
length t of the line segment connecting 1P to Q onto the edge formed by 1P and

2P . This length is given by

 1 cost α= −Q P , (9.39)

where α is the angle between the line segment and the edge. Using a dot product
to compute the cosine, we have

 () ()1 2 1

2 1
t − ⋅ −

=
−

Q P P P

P P
. (9.40)

If t ε< or 2 1t ε> − −P P , then the point Q does not lie within the interior of the
edge formed by 1P and 2P . Otherwise, we have found a T-junction, and a new
vertex should be added to the polygon of object A between 1P and 2P precisely at
Q’s location.

9.6 Triangulation

Triangulation is the process by which a polygon is divided into triangles that use
the same array of vertices and collectively cover the same area. Polygons must be
triangulated before they can be passed to the graphics hardware. A polygon hav-
ing n vertices is always decomposed into 2n − triangles. Convex polygons are
particularly easy to triangulate—we simply choose one vertex and connect edges
to every other nonadjacent vertex to form a triangle fan like the one shown in
Figure 9.14. Polygons that are not convex or possess three or more collinear ver-
tices cannot generally be triangulated in this way, so we have to employ more
complicated algorithms.

Figure 9.14. A convex polygon can be triangulated by connecting edges from one arbi-
trarily chosen vertex to every other nonadjacent vertex, creating a triangle fan.

268 9. Polygonal Techniques

 A modeling system may produce a list of polygons that might be convex or
concave. After static world geometry has been processed by performing welding
and T-junction elimination, any polygon may also contain several vertices that
are collinear (or at least nearly collinear) with some of its other vertices. This
prevents us from using a simple fanning approach that might ordinarily be used
to triangulate a convex polygon. We are instead forced to treat the polygon as
concave.
 The algorithm that we describe takes as input a list of n vertices wound in a
counterclockwise direction and produces a list of 2n − triangles. At each itera-
tion, we search for a set of three consecutive vertices for which the corresponding
triangle is not degenerate, is not wound in the wrong direction, and does not con-
tain any of the polygon’s remaining vertices. The triangle formed by such a set of
three vertices is called an ear. Once an ear is found, a triangle is emitted, and the
middle vertex is disqualified from successive iterations. The algorithm repeats
until only three vertices remain. This process of reducing the size of the triangu-
lation problem by removing one ear at a time is called ear clipping.
 In order to determine whether a set of three vertices is wound in a counter-
clockwise direction, we must know beforehand the normal direction 0N of the
plane containing the polygon being triangulated. Let 1P , 2P , and 3P represent the
positions of the three vertices. If the cross product () ()2 1 3 1− × −P P P P points in
the same direction as the normal 0N , then the corresponding triangle is wound
counterclockwise. If the cross product is near zero, then the triangle is degener-
ate. Thus, two of our three requirements for a triangle are satisfied only if

 () ()2 1 3 1 0 ε− × − ⋅ >P P P P N (9.41)

for some small value ε (typically, 0.001ε ≈).
 Our third requirement is that the triangle contains no other vertices belonging
to the polygon. We can construct three inward-facing normals 1N , 2N , and 3N
corresponding to the three sides of the triangle, as follows.

()
()
()

1 0 2 1

2 0 3 2

3 0 1 3

= × −
= × −
= × −

N N P P

N N P P

N N P P (9.42)

As shown in Figure 9.15, a point Q lies inside the triangle formed by 1P , 2P , and
3P if and only if ()i i ε⋅ − > −N Q P for { }1,2,3i ∈ .

 Since we have to calculate the normals given by Equation (9.42) for each
triangle, we can save a little computation by replacing the condition given by

9.6 Triangulation 269

ε
1P 2P

3P

1N

2N3N

Q

Figure 9.15. A point Q lies in the interior of a triangle (or nearly on its boundary) if

()i i ε⋅ − > −N Q P for { }1,2,3i ∈ .

Equation (9.41) with the equivalent expression

 ()1 3 1 ε⋅ − >N P P . (9.43)

This determines whether the point 3P lies on the positive side of the edge con-
necting 1P and 2P .
 The implementation shown in Listing 9.2 maintains a working set of four
consecutive vertices and at each iteration determines whether a valid triangle can
be formed using the first three vertices or the last three vertices of that group. If
only one of the sets of three vertices forms a valid triangle, then that triangle is
emitted, and the algorithm continues to its next iteration. If both sets of three ver-
tices can produce valid triangles, then the code selects the triangle having the
larger smallest angle. In the case that neither set of three vertices provides a valid
triangle, the working set of four vertices is advanced until a valid triangle can be
constructed.
 The method presented in Listing 9.2 was chosen so that the output of the al-
gorithm would consist of a series of triangle strips and triangle fans. Such a tri-
angle structure exhibits excellent vertex cache usage on modern graphics proces-
sors. The implementation also includes a safety mechanism. If a polygon is
passed to it that is degenerate, self-intersecting, or otherwise nontriangulatable,
then the algorithm terminates prematurely to avoid becoming stuck in an infinite
loop. This happens when the code cannot locate a set of three consecutive verti-
ces that form a valid triangle.

270 9. Polygonal Techniques

Listing 9.2. The TriangulatePolygon() function takes an arbitrary planar polygon having n
vertices and triangulates it, producing at most 2n − triangles.

Parameters

 vertexCount The number of vertices.

 vertex A pointer to an array of n Point3D structures representing the polygon’s
vertices.

 normal The polygon’s normal direction.

 triangle A pointer to an array of 2n − Triangle structures where the results of the
triangulation are stored.

const float epsilon = 0.001F;

static long GetNextActive(long x, long vertexCount, const bool *active)

{

 for (;;)

 {

 if (++x == vertexCount) x = 0;

 if (active[x]) return (x);

 }

}

static long GetPrevActive(long x, long vertexCount, const bool *active)

{

 for (;;)

 {

 if (--x == -1) x = vertexCount - 1;

 if (active[x]) return (x);

 }

}

long TriangulatePolygon(long vertexCount, const Point3D *vertex,

 const Vector3D& normal, Triangle *triangle)

{

 bool *active = new bool[vertexCount];

 for (long a = 0; a < vertexCount; a++) active[a] = true;

 long triangleCount = 0;

 long start = 0;

 long p1 = 0;

9.6 Triangulation 271

 long p2 = 1;

 long m1 = vertexCount - 1;

 long m2 = vertexCount - 2;

 bool lastPositive = false;

 for (;;)

 {

 if (p2 == m2)

 {

 // Only three vertices remain.

 triangle->index[0] = m1;

 triangle->index[1] = p1;

 triangle->index[2] = p2;

 triangleCount++;

 break;

 }

 const Point3D& vp1 = vertex[p1];

 const Point3D& vp2 = vertex[p2];

 const Point3D& vm1 = vertex[m1];

 const Point3D& vm2 = vertex[m2];

 bool positive = false;

 bool negative = false;

 // Determine whether vp1, vp2, and vm1 form a valid triangle.

 Vector3D n1 = normal % (vm1 - vp2).Normalize();

 if (n1 * (vp1 - vp2) > epsilon)

 {

 positive = true;

 Vector3D n2 = (normal % (vp1 - vm1).Normalize());

 Vector3D n3 = (normal % (vp2 - vp1).Normalize());

 for (long a = 0; a < vertexCount; a++)

 {

 // Look for other vertices inside the triangle.

 if ((active[a]) && (a != p1) && (a != p2) && (a != m1))

 {

 const Vector3D& v = vertex[a];

 if ((n1 * (v - vp2).Normalize() > -epsilon)

 && (n2 * (v - vm1).Normalize() > -epsilon)

272 9. Polygonal Techniques

 && (n3 * (v - vp1).Normalize() > -epsilon))

 {

 positive = false;

 break;

 }

 }

 }

 }

 // Determine whether vm1, vm2, and vp1 form a valid triangle.

 n1 = normal % (vm2 - vp1).Normalize();

 if (n1 * (vm1 - vp1) > epsilon)

 {

 negative = true;

 Vector3D n2 = (normal % (vm1 - vm2).Normalize());

 Vector3D n3 = (normal % (vp1 - vm1).Normalize());

 for (long a = 0; a < vertexCount; a++)

 {

 // Look for other vertices inside the triangle.

 if ((active[a]) && (a != m1) && (a != m2) && (a != p1))

 {

 const Vector3D& v = vertex[a];

 if ((n1 * (v - vp1).Normalize() > -epsilon)

 && (n2 * (v - vm2).Normalize() > -epsilon)

 && (n3 * (v - vm1).Normalize() > -epsilon))

 {

 negative = false;

 break;

 }

 }

 }

 }

 // If both triangles are valid, choose the one having

 // the larger smallest angle.

 if ((positive) && (negative))

 {

 float pd = (vp2 - vm1).Normalize() * (vm2 - vm1).Normalize();

 float md = (vm2 - vp1).Normalize() * (vp2 - vp1).Normalize();

9.6 Triangulation 273

 if (fabs(pd - md) < epsilon)

 {

 if (lastPositive) positive = false;

 else negative = false;

 }

 else

 {

 if (pd < md) negative = false;

 else positive = false;

 }

 }

 if (positive)

 {

 // Output the triangle m1, p1, p2.

 active[p1] = false;

 triangle->index[0] = m1;

 triangle->index[1] = p1;

 triangle->index[2] = p2;

 triangleCount++;

 triangle++;

 p1 = GetNextActive(p1, vertexCount, active);

 p2 = GetNextActive(p2, vertexCount, active);

 lastPositive = true;

 start = -1;

 }

 else if (negative)

 {

 // Output the triangle m2, m1, p1.

 active[m1] = false;

 triangle->index[0] = m2;

 triangle->index[1] = m1;

 triangle->index[2] = p1;

 triangleCount++;

 triangle++;

 m1 = GetPrevActive(m1, vertexCount, active);

 m2 = GetPrevActive(m2, vertexCount, active);

 lastPositive = false;

274 9. Polygonal Techniques

 start = -1;

 }

 else

 {

 // Exit if we've gone all the way around the

 // polygon without finding a valid triangle.

 if (start == -1) start = p2;

 else if (p2 == start) break;

 // Advance working set of vertices.

 m2 = m1;

 m1 = p1;

 p1 = p2;

 p2 = GetNextActive(p2, vertexCount, active);

 }

 }

 delete[] active;

 return (triangleCount);

}

Chapter 9 Summary

Depth Value Offset

To offset the depth of a vertex whose z coordinate is roughly zP by a distance δ,
the ()3,3 entry of the perspective projection matrix should be multiplied by 1 ε+ ,
where

()

2
z z

fn δε
f n P P δ

 = −  + + 
.

Decal Application

A decal of width w and height h centered at the point P, having normal direction
N and tangent direction T, should be clipped to the planes

 , ,
2 2
w wleft right   = − ⋅ = − + ⋅   

   
T T P T T P

Chapter 9 Summary 275

() ()

, ,
2 2
, , ,

h hbottom top

front d back d

   = − ⋅ = − + ⋅   
   

= − + ⋅ = − ⋅

B B P B B P

N N P N N P

where = ×B N T and d is the maximum distance that any vertex in the decal may
be from the tangent plane passing through the point P. The texture coordinates
for a decal vertex Q are given by

()

()

1
2
1
2

s
w

t
h

⋅ −
= +

⋅ −
= +

T Q P

B Q P .

Billboarding

The vertices of an unconstrained billboarded quad of width w, height h, and ori-
entation θ centered at the point P may be calculated using

1 2

3 4

= + + = − +
= − − = + −

Q P X Y Q P X Y

Q P X Y Q P X Y,

where

cos sin
2 2

sin cos
2 2

w wθ θ

h hθ θ

   = +   
   
   = − +   
   

X R U

Y R U,

and the directions R and U are the world space right and up directions of the
camera view. The vertices of a billboarded quad constrained to rotate only about
the z axis are given by

1 2

3 4

0,0, 0,0,
2 2 2 2

0,0, 0,0, ,
2 2 2 2

w h w h

w h w h

= + + = − +

= − − = + −

X X
Q P Q P

X X

X X
Q P Q P

X X

where

276 9. Polygonal Techniques

 , ,0y y x xP C C P= − −X ,

and C is the world space camera position.

T-Junction Elimination

The squared distance 2d between the point Q and the line passing through 1P and
2P is given by

 () () ()[]
()

2
1 2 12 2

1 2
2 1

d − ⋅ −
= − −

−
Q P P P

Q P
P P

.

A point Q satisfying 2 2d ε< lies within the interior of the edge formed by 1P and
2P if 2 1ε t ε< < − −P P , where t is given by

 () ()1 2 1

2 1
t − ⋅ −

=
−

Q P P P

P P
.

Triangulation

A point Q lies inside (or near the boundary of) a triangle defined by the three
vertices 1P , 2P , and 3P belonging to a polygon if and only if ()i i ε⋅ − > −N Q P for

{ }1,2,3i ∈ , where

()
()
()

1 0 2 1

2 0 3 2

3 0 1 3 ,

= × −
= × −
= × −

N N P P

N N P P

N N P P

and 0N is the polygon’s normal direction. The triangle is wound counterclock-
wise and is nondegenerate if

 ()1 3 1 ε⋅ − >N P P .

Exercises for Chapter 9 277

Exercises for Chapter 9

1. Suppose that the distance to the near plane is 1n = , and the distance to the
far plane is 100f = for a particular view frustum. Calculate by what value
the ()3,3 entry of the projection matrix should be multiplied in order to off-
set a model centered at a depth of 20z = − toward the camera by a distance
of 0.2.

2. Calculate the least distance d by which the model in Exercise 1 can be offset
toward the camera if a 16-bit depth buffer is used.

3. Write a program that applies a decal to a surface. Assume that the decal is
described by its center P, a normal direction N, a tangent direction T, its
width w, and its height h. The program should construct a decal object by
clipping an arbitrary triangle mesh to the planes bounding the decal and
should then calculate texture coordinates for each vertex in the decal object.

4. Implement a particle system for which each particle is rendered as a textured
quad centered at the particle’s position. Each particle should be described by
its position P in world space, its radius r, its window-space orientation θ ,
and its velocity V.

This page intentionally left blank

 279

Chapter 10
Shadows

Shadows are an essential component of any rendered scene that attempts to de-
pict a realistic environment because they provide many visual cues about the lo-
cation of objects in 3D space. The methods used to generate shadows in real-time
applications fall into two broad categories. The first category is called shadow
mapping or shadow buffering, and it is an image-based algorithm that uses a
depth image generated from the location of a light source. The second category is
known as stencil shadows (due to its use of the stencil buffer), or sometimes
shadow volumes, and it is a geometric technique that derives volumes of space
for which light is blocked by shadow-casting objects. In this chapter, we provide
an introduction to both types of shadow rendering. There are several variations of
the shadow mapping technique (and this is still an active area of research) for
which we do not go into the details, but we do provide details for the shadow
volumes technique because it is more mature, and there is a generally accepted
best way to implement it.

10.1 Shadow Casting Set

In Chapter 8, we discussed methods for determining whether an object is visible
to the camera, and we presumed that we could ignore any object that didn’t inter-
sect the view frustum when we rendered a scene. However, as soon as we intro-
duce a shadow-casting light source, the set of objects that can be directly seen by
the camera may no longer be the full set of objects that needs to be considered.
There could be objects outside the view frustum, and thus not directly visible,
that cast shadows into the view frustum onto other objects that are visible. Ignor-
ing these objects would cause visible shadows to appear and disappear as the
camera moves and objects enter or exit the view frustum.
 The set of shadow-casting that we need to consider is clearly a superset of
the set of visible objects, and the position of the light source relative to the view
frustum determines which additional objects must participate in shadow genera-

280 10. Shadows

L

Figure 10.1. Any objects that could cast shadows into the view frustum must intersect the
convex hull enclosing the view frustum and the position L of the light source. The blue
lines represent the edges of the view frustum between planes that face toward the light
source and planes that face away from the light source.

tion. In the case that the light source is actually inside the view frustum, we do
not need to consider any more than the visible set of objects because shadows can
only be cast out of the view frustum. For the only other case, that the light source
lies outside the view frustum, we need to be able to identify objects that are posi-
tioned between the light source and the view frustum in such a way that shadows
could fall upon visible objects. This can be achieved by considering the convex
hull enclosing the view frustum and the light source, as shown in Figure 10.1.
For an object to cast any part of its shadow into the view frustum, it must inter-
sect this region of space.
 We construct the convex hull enclosing the view frustum and the light source
by assembling a set of planes for which the intersection of all the positive half-
spaces represents the shadow-casting region. First, we test the light position
against the six planes of the view frustum (see Table 5.1) by taking the dot prod-
uct between the four-dimensional plane vector and the homogeneous light posi-
tion with a w coordinate of one. The planes for which this dot product is positive
form part of the boundary of the convex hull. Then, for each pair of adjacent
frustum planes, if one has a positive dot product and the other does not, then we
calculate a new plane defined by the edge between those two frustum planes and
the position of the light source, making sure that the plane’s normal direction
faces inward.

10.2 Shadow Mapping 281

 In the case that an infinite view frustum is being used, the far plane is ig-
nored, and the edges that would lie between the far plane and any of the four side
planes never participate in the construction of a new plane. The shadow-casting
region is infinitely large in this case, but it is still convex and properly bounded.
 Once the bounding planes of the shadow-casting region have been deter-
mined, we test for object intersection just as we would for the ordinary view frus-
tum. For each plane, we check to see whether the object lies completely on the
negative side of any plane, and if it does, then it is rejected as a potential shadow
castor.

10.2 Shadow Mapping

The technique known as shadow mapping is so named because a scene is ren-
dered from the perspective of a light source to generate a special shadow map
that is subsequently used in the ordinary rendering pass from the camera’s per-
spective. Instead of three-component color, each pixel in the shadow map holds a
single number representing the depth of the associated point in the scene with
respect to the light source, as shown in Figure 10.2. Since it is an image-based
technique, shadow mapping can be used to generate shadows for objects that use
the alpha test to cut holes in their surfaces, as is often done for things like the
leaves on a tree. Using the stencil shadow technique for these kinds of objects is
impractical.

10.2.1 Rendering the Shadow Map

In order to render a shadow map, we first determine the region of space in which
shadow castors may be positioned, as described in the previous section. We then
create a bounding box for that region that is aligned to the light source’s coordi-
nate axes, as shown in Figure 10.3. The z axis points in the opposite direction that
the light is shining, and the x and y axes represent the horizontal and vertical di-
rections in the shadow map. Shadow mapping is most easily implemented for an
infinite light or spot light because each has a specific lighting direction. Shadow
mapping for point lights is more difficult, but recent advancements in graphics
hardware has made this more practical.1
 After the aligned bounding box has been determined, we position the camera
at the light source’s location, point it in the direction of the light, and set up an

1 For instance, complete cube shadow maps can be rendered in a single pass using ge-
ometry shaders, and depth-based cube maps are supported in OpenGL 3.0 and later.

282 10. Shadows

Figure 10.2. The left image shows a scene in which shadows have been generated using the
shadow mapping technique. The right image shows the shadow map in grayscale, where brighter
values represent a greater depth from the perspective of the light source. Where the shadow map
appears to be missing pieces of the terrain, geometry has actually been culled because it lies
outside the shadow casting region illustrated in Figure 10.1. (Image from the C4 Engine, courtesy
of Terathon Software LLC.)

O

z y

0z =

maxz z=

Figure 10.3. A shadow map is rendered in the coordinate system of the light source. The z− axis
points in the direction that the light is shining and represents depth. The x and y axes are aligned to
the s and t directions in the shadow map. (The x axis points out of the page in this figure.)

10.2 Shadow Mapping 283

orthographic projection that precisely encloses the bounding box. For each object
that is to be rendered in the shadow map, the vertex shader needs to transform the
vertices into the camera’s local coordinate system and apply the projection, as
would normally be done for the main camera.
 Let objectM be the 4 4× matrix that transforms points in the space of the object
being rendered into a common world-space coordinate system. Let lightM be the
matrix that transforms points in the space of the light source into world space.
Then points are transformed from object space to light space through the matrix
product 1

light object
−M M . The orthographic projection is then applied by multiplying

by the matrix

max min

max min max min

max min

max min max min
proj

max

2 0 0

20 0

20 0 1

0 0 0 1

x x
x x x x

y y
y y y y

z

+ − − −
 

+ − − − =
 − − 
 
 
  

M , (10.1)

where the minimum and maximum x and y values represent the extents of the
bounding box in light space, and maxz represents the z coordinate of the maximum
depth in light space. (projM is the projection matrix given by Equation (5.58) with

minl x= , maxr x= , minb y= , maxt y= , maxf z= , and 0n = .) When rendering the shad-
ow map, the vertex shader should apply the matrix product 1

proj light object
−M M M to

each vertex.
 The viewport should be set up to render into a depth-only render target for
which the depth buffer has been allocated as a texture map whose pixels use a
depth format. The viewport transformation should be set, using the glView-
port() function in OpenGL, to the dimensions of the shadow map’s render
target.

10.2.2 Rendering the Main Scene

During the ordinary rendering pass from the main camera, texture coordinates for
the shadow map are generated by transforming vertices into the light source’s
coordinate space, applying the orthographic projection, and then applying a scale
and bias to produce normalized texture coordinates for the shadow map. Three

284 10. Shadows

coordinates are generated during this transformation, the s and t coordinates that
are normally used to access a two-dimensional texture map and a p coordinate
that represents the depth of the vertex in the space of the shadow map. These co-
ordinates are interpolated across the face of a triangle, and the p coordinate is
compared to the depth stored in the shadow map at the ,s t coordinates. If the
depth p is greater, then the point corresponding to the pixel being drawn lies in
shadow. (Most GPUs have the functionality for making this comparison built into
the hardware, and it is enabled in OpenGL by making a call to the glTex-
Parameteri() function to set the value of GL_TEXTURE_COMPARE_MODE to
GL_COMPARE_REF_TO_TEXTURE for the shadow map texture.)
 The viewport transformation used to calculate shadow map coordinates is
given by

1 1
2 2

1 1
2 2

viewport 1 1
2 2

0 0
0 0
0 0
0 0 0 1

 
 
 =
 
 
 

M . (10.2)

The entire matrix product 1
viewport proj light object

−M M M M should be precalculated one
time per object and stored as a constant accessible to the vertex shader. (The ma-
trices projM , lightM , and objectM should be identical to those used in the shadow
map generation phase.) The vertex shader should apply this matrix to an object-
space vertex position in order to generate the , , ,s t p q texture coordinates that
are passed to the fragment shader and used to sample the shadow map. The q co-
ordinate is normally going to be one all the time, so the fourth row of the matrix
need not participate.

10.2.3 Self-Shadowing

A well-known problem that occurs with the shadow mapping technique is a self-
shadowing artifact often called shadow acne, as illustrated in Figure 10.4. This
problem is due to the finite precision available for storing depth values in the
shadow map. A conventional integer depth buffer stores 24 bits per pixel,2 and
the values are evenly spaced between the minimum and maximum depths. (Float-
ing-point depth buffers are also available on recent GPUs, and the spacing

2 A depth buffer is usually combined with a stencil buffer that stores 8 more bits of in-
formation per pixel in an interleaved fashion, for a total of 32 contiguous bits per pixel.

10.2 Shadow Mapping 285

Figure 10.4. In the left image, a depth offset is used to prevent self-shadowing artifacts. Without
this offset, striped shadowing artifacts can be seen on the concrete and rock in the right image.
(Image from the C4 Engine, courtesy of Terathon Software LLC.)

between representable values varies with depth.) When a surface is rendered at
an oblique angle relative to the direction of the light, the depths of many pixels in
a small neighborhood may be quantized to the same value in the shadow map. As
shown in Figure 10.5, this can result in some of the pixels being shadowed while
others are not.
 The most straightforward solution to the self-shadowing problem is to apply
an offset to the values in the shadow map to make them appear slightly deeper
than they would normally be. This eliminates the shadow artifacts by moving the
shadow-casting surface underneath the actual surface that we render by a small
distance. However, as the surface of an object becomes more oblique with re-
spect to the light direction, a greater offset must be used in order to fix the
problem.
 Fortunately, OpenGL provides a function called glPolygonOffset() that
applies a depth offset that depends on the camera-space slope of the surface at
each pixel. The following code solves the self-shadowing problem in most cases:

glEnable(GL_POLYGON_OFFSET_FILL);

glPolygonOffset(1.0F, 1.0F);

It’s possible to use larger values to handle more problematic scenes, but values
that are too large result in shadows appearing to be disconnected from the objects
that are casting them.

286 10. Shadows

Lit Shadowed

z k=
1z k= +

2z k= +

Figure 10.5. This figure demonstrates how the finite precision of the depth buffer leads
to self-shadowing artifacts. Since the depth stored in a shadow map can only take on spe-
cific integer values, represented by k, 1k + , and 2k + here, any surface not perpendicular
to the light direction goes in and out of its own shadow.

10.3 Stencil Shadows

The stencil shadows technique can be used to render accurate shadows for fully
dynamic scenes using any type of light source residing at any location. Unlike
shadow mapping, however, stencil shadows require a significant amount of geo-
metrical computation that must usually be performed by the CPU. The advantage
is that the shadows are as accurate as the polygonal representation of the models
that cast them, completely avoiding aliasing artifacts.

10.3.1 Algorithm Overview

Using an idea that was first conceived in the 1970s,3 the stencil buffer can be
employed to generate extremely accurate shadows in real time. Two decades af-
ter the algorithm’s invention, 3D graphics hardware finally advanced to the point

3 Frank Crow, “Shadow Algorithms for Computer Graphics”, Proceedings of SIG-
GRAPH, 1977, pp. 242–248.

10.3 Stencil Shadows 287

where stencil shadows became practical, but several unsolved problems still ex-
isted that prevented the algorithm from working correctly under various condi-
tions. These problems have now been solved, and stencil shadows can be robust-
ly implemented to handle arbitrarily positioned point lights and infinite direction-
al lights having any desired spatial relationship with the camera.
 The basic concept of the stencil shadow algorithm is to use the stencil buffer
as a masking mechanism that prevents pixels in shadow from being drawn during
the rendering pass for a particular light source. This is accomplished by rendering
an invisible shadow volume for each shadow-casting object in a scene using
stencil operations that leave nonzero values in the stencil buffer wherever light is
blocked. Once the stencil buffer has been filled with the appropriate mask, a
lighting pass only illuminates pixels where the value in the stencil buffer is zero.
 As shown in Figure 10.6, an object’s shadow volume encloses the region of
space for which light is blocked by the object. This volume is constructed by
finding the edges in the object’s triangle mesh representing the boundary be-
tween lit triangles and unlit triangles and extruding those edges away from the
light source. Such a collection of edges is called the object’s silhouette with re-
spect to the light source. The shadow volume is rendered into the stencil buffer
using operations that modify the stencil value at each pixel depending on whether
the depth test passes or fails. Of course, this requires that the depth buffer has
already been initialized to the correct values by a previous rendering pass. Thus,
the scene is first rendered using a shader that applies surface attributes that do not
depend on any light source, such as ambient illumination, emission, and envi-
ronment mapping.

L

Figure 10.6. An object’s shadow volume encloses the region of space for which light
emitted by the light source L is blocked by the object.

288 10. Shadows

C

1

0

1

0
1+

1+ 1+

1−

Figure 10.7. Numbers at the ends of rays emanating from the camera position C repre-
sent the values left in the stencil buffer for a variety of cases. The stencil value is incre-
mented when front faces of the shadow volume pass the depth test, and the stencil value
is decremented when back faces of the shadow volume pass the depth test. The stencil
value is not changed when the depth test fails.

 The original stencil algorithm renders the shadow volume in two stages. In
the first stage, the front faces of the shadow volume (with respect to the camera)
are rendered using a stencil operation that increments the value in the stencil
buffer whenever the depth test passes. In the second stage, the back faces of the
shadow volume are rendered using a stencil operation that decrements the value
in the stencil buffer whenever the depth test passes. As illustrated in Figure 10.7,
this technique leaves nonzero values in the stencil buffer wherever the shadow
volume intersects any surface in the scene, including the surface of the object
casting the shadow.
 There are two major problems with the method just described. The first is
that no matter what finite distance we extrude an object’s silhouette away from a
light source, it is still possible that it is not far enough to cast a shadow on every
object in the scene that should intersect the shadow volume. The example shown
in Figure 10.8 demonstrates how this problem arises when a light source is very

10.3 Stencil Shadows 289

L

d

d

Figure 10.8. No matter what finite distance d an object’s silhouette is extruded away
from a light source L, moving the light close enough to the object can result in a shadow
volume that cannot reach other objects in the scene.

close to a shadow-casting object. Fortunately, this problem can be elegantly
solved by using a special projection matrix and extruding shadow volumes all the
way to infinity.
 The second problem shows up when the camera lies inside the shadow vol-
ume or the shadow volume is clipped by the near plane. Either of these occur-
rences can leave incorrect values in the stencil buffer, causing the wrong surfaces
to be illuminated. The solution to this problem is to add caps to the shadow vol-
ume geometry, making it a closed surface, and using different stencil operations.
The two caps added to the shadow volume are derived from the object’s triangle
mesh as follows. A front cap is constructed using the unmodified vertices of tri-
angles facing toward the light source. A back cap is constructed by projecting the
vertices of triangles facing away from the light source to infinity. For the result-
ing closed shadow volume, we render back faces (with respect to the camera)
using a stencil operation that increments the stencil value whenever the depth test
fails, and we render front faces using a stencil operation that decrements the sten-
cil value whenever the depth test fails. As shown in Figure 10.9, this technique
leaves nonzero values in the stencil buffer for any surface intersecting the shad-
ow volume for arbitrary camera positions. Rendering shadow volumes in this
manner is more expensive than using the original technique, but we can deter-
mine when it’s safe to use the less-costly depth-pass method without having to
worry about capping our shadow volumes.

290 10. Shadows

C

1

1

0

0

0

1+

1+

1+

Figure 10.9. Using a capped shadow volume and depth-fail stencil operations allows the
camera to be inside the shadow volume. The stencil value is incremented when back fac-
es of the shadow volume fail the depth test, and the stencil value is decremented when
front faces of the shadow volume fail the depth test. The stencil value does not change
when the depth test passes.

 The details of everything just described are discussed throughout the remain-
der of this section. In summary, the rendering algorithm for a single frame runs
through the following steps.

A. Clear the frame buffer and perform an ambient rendering pass. Render the
visible scene using any surface shading attribute that does not depend on any
particular light source.

B. Choose a light source and determine what objects may cast shadows into the
visible region of the world. If this is not the first light to be rendered, clear
the stencil buffer.

10.3 Stencil Shadows 291

C. For each object, calculate the silhouette representing the boundary between
triangles facing toward the light source and triangles facing away from the
light source. Construct a shadow volume by extruding the silhouette away
from the light source.

D. Render the shadow volume using specific stencil operations that leave non-
zero values in the stencil buffer where surfaces are in shadow.

E. Perform a lighting pass using the stencil test to mask areas that are not illu-
minated by the light source.

F. Repeat steps B through E for every light source that may illuminate the visi-
ble region of the world.

 For a scene illuminated by n lights, this algorithm requires at least 1n + ren-
dering passes. More than 1n + passes may be necessary if surface-shading calcu-
lations for a single light source cannot be accomplished in a single pass. To effi-
ciently render a large scene containing many lights, one must be careful during
each pass to render only objects that could potentially be illuminated by a partic-
ular light source. An additional optimization using the scissor rectangle can also
save a significant amount of rasterization work—this optimization is discussed in
Section 10.3.7.

10.3.2 Infinite View Frustums

To ensure that shadow volumes surround every last bit of space for which light is
blocked by an object, we must extrude the object’s silhouette to infinity. Using a
standard perspective projection matrix would cause such a shadow volume to be
clipped by the far plane. To avoid this unwanted effect, we can actually place the
far plane at an infinite distance from the camera.
 The standard OpenGL perspective projection matrix frustumM , derived in Sec-
tion 5.5.1, has the form

 frustum

2 0 0

20 0

20 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f n fn
f n f n

+ 
 − −
 + 
 − −=
 + − −

− − 
 − 

M , (10.3)

292 10. Shadows

where n is the distance to the near plane, f is the distance to the far plane, and l, r,
b, and t represent the left, right, bottom, and top edges of the rectangle carved out
of the near plane by the view frustum. By evaluating the limit as f tends to infini-
ty, we obtain the matrix

 infinite frustum

2 0 0

20 0lim

0 0 1 2
0 0 1 0

f

n r l
r l r l

n t b
t b t b

n
→∞

+ 
 − −
 + = =  − −
 − − 
 − 

M M . (10.4)

 The matrix infiniteM transforms a 4D homogeneous eye-space point eye =P
, , ,x y z w to the clip-space point clipP as follows.

 clip infinite eye

2 20 0

2 20 0

0 0 1 2 2
0 0 1 0

n r l n r lx zxr l r l r l r l
n t b y n t by z

t b t b t b t bz
n z nww

z

+ +   +    − − − −
    + +     += = =   − − − − 
    − − − −    
   − −   

P M P (10.5)

Assuming 0w > (it is normally the case that 1w =), the resulting z coordinate of
clipP is always less than the resulting w coordinate of clipP , ensuring that projected

points are never clipped by the far plane. A point at infinity is represented by a
4D homogeneous vector having a w coordinate of 0 in eye space. For such a
point, () ()clip clipz w=P P , and the perspective divide produces a 3D point in nor-
malized device coordinates having the maximal z value of 1.
 In practice, the limitations of hardware precision can produce points having a
normalized z coordinate slightly greater than 1. This causes severe problems
when the z coordinate is converted to an integer value to be used in the depth
buffer because the stencil operations that depend on the depth test to render
shadow volumes may no longer function correctly. To circumvent this undesira-
ble effect, we can map the z coordinate of a point at infinity to a value slightly
less than 1 in normalized device coordinates. The z coordinate of a 3D point D in
normalized device coordinates is mapped from a value zD in the range []1,1− to a
value zD′ in the range []1,1 ε− − , where ε is a small positive constant, using the
relation

10.3 Stencil Shadows 293

 () 21 1
2z z
εD D −′ = + − . (10.6)

We need to find a way to modify the z coordinate of clipP in order to perform this
mapping as points are transformed from eye space into clip space. We can re-
write Equation (10.6) as an adjustment to ()clip zP by replacing zD with
() ()clip clipz wP P and zD′ with () ()clip clipz w′P P as follows.

 ()
()

()
()

clip clip

clip clip

21 1
2

z z

w w

ε′   −= + − 
 

P P

P P
 (10.7)

Plugging in the values of ()clip zP and ()clip wP given by Equation (10.5), we have

 ()clip 2 21 1
2

z z nw ε
z z

′ − − − = + − − − 
P

. (10.8)

Solving for ()clip z′P and simplifying yields

 () () ()clip 1 2z z ε nw ε′ = − + −P . (10.9)

We can incorporate this mapping into the projection matrix infiniteM given by
Equation (10.4) as follows to arrive at the slightly tweaked matrix infinite′M that we
actually use to render a scene.

()
infinite

2 0 0

20 0

0 0 1 2
0 0 1 0

n r l
r l r l

n t b
t b t b

ε n ε

+ 
 − −
 + ′ =  − −
 − − 
 − 

M (10.10)

 For graphics hardware that supports depth clamping,4 the use of the matrix
infinite′M given by Equation (10.10) is not necessary. The depth clamping function-

ality in OpenGL allows a renderer to force depth values in normalized device
coordinates to saturate to the range []1,1− , thus curing the precision problem at
the infinite far plane. When depth clamping is enabled using the function call

4 Depth clamping became a core feature of OpenGL in version 3.2. It was previously
available through the GL_ARB_depth_clamp and GL_NV_depth_clamp extensions.

294 10. Shadows

 glEnable(GL_DEPTH_CLAMP);

the projection matrix infiniteM given by Equation (10.4) can safely be used.
 The question of depth buffer precision arises when using an infinite projec-
tion matrix. It is true that placing the far plane at infinity reduces the number of
discrete depth values that can occur within any finite interval along the z axis, but
in most situations this effect is small. Consider the function ()frustumd P that uses
the matrix frustumM given in Equation (10.3) to map an eye-space point

, , ,1x y zP P P=P to its corresponding depth in normalized device coordinates:

 () ()
()

frustum
frustum

frustum

1 2z

w z

f n fnd
f n P f n

+  = = +  − − 

M P
P

M P
. (10.11)

We obtain a different function ()infinited P by using the matrix infiniteM given by
Equation (10.4) to map an eye-space point P to its normalized depth:

 () ()
()

()infinite
infinite

infinite

11 2z

w z
d n

P
= = +

M P
P

M P
. (10.12)

Given two eye-space points 1P and 2P , we can compare the differences in depth
values produced by the functions frustumd and infinited as follows.

 () ()
() ()frustum 2 frustum 1

2 1

2 1 1
z z

fnd d
f n

 − = − −  
P P

P P

 () ()
() ()infinite 2 infinite 1

2 1

1 12
z z

d d n − = − 
 

P P
P P

 (10.13)

This demonstrates that the standard projection matrix frustumM maps the points 1P
and 2P to a range that is a factor ()f f n− larger than the range to which the
points are mapped by the infinite projection matrix infiniteM , thus equating to
greater precision. For practical values of f and n, where f is much larger than 1
and n is much smaller than 1, ()f f n− is close to unity, so the loss of precision
is not a significant disadvantage.

10.3.3 Silhouette Determination

The stencil shadow algorithm requires that the models in our world be closed
triangle meshes. In mathematical terms, the surface of any object that casts a

10.3 Stencil Shadows 295

shadow must be a two-dimensional closed manifold. What this boils down to is
that every edge in a mesh must be shared by exactly two triangles, disallowing
any holes that would let us see the interior of the mesh.
 Edge connectivity information must be precomputed so that we can deter-
mine a mesh’s silhouette for shadow volume rendering. Suppose that we have an
indexed triangle mesh consisting of an array of N vertices 1 2, , , NV V V and an
array of M triangles 1 2, , , MT T T . Each triangle simply indicates which three ver-
tices it uses by storing three integer indexes 1i , 2i , and 3i . We say that an index pi
precedes an index qi if the number p immediately precedes the number q in the
cyclic chain 1 2 3 1→ → → . For instance, 2i precedes 3i and 3i precedes 1i , but 2i
does not precede 1i .
 The indexes 1i , 2i , and 3i are ordered such that the positions of the vertices 1iV ,

2iV , and 3iV to which they refer are wound counterclockwise about the triangle’s
normal vector. Suppose that two triangles share an edge whose endpoints are the
vertices aV and bV as shown in Figure 10.10. The consistent winding rule enforc-
es the property that for one of the triangles, the index referring to aV precedes the
index referring to bV , and that for the other triangle, the index referring to bV pre-
cedes the index referring to aV .
 As demonstrated in Listing 10.1, the edges of a triangle mesh can be identi-
fied by making a single pass through the triangle list. For any triangle having ver-
tex indexes 1i , 2i , and 3i , we create an edge record for every instance in which
1 2i i< , 2 3i i< , or 3 1i i< and store the index of the current triangle in the edge rec-
ord. This procedure creates exactly one edge for every pair of triangles that share

aV

bV

1i

1i2i

2i

3i 3i

Figure 10.10. When consistent winding is enforced, it is always the case that the indexes
referring to the vertices aV and bV of exactly one of the two triangles sharing an edge sat-
isfies the property that the index referring to aV precedes the index referring to bV .

296 10. Shadows

two vertices aV and bV , duplicating any edges that are shared by multiple pairs of
triangles.
 Once we have identified all the edges, we make a second pass through the
triangle list to find the second triangle that shares each edge. This is done by lo-
cating triangles for which 1 2i i> , 2 3i i> , or 3 1i i> and matching it to an edge hav-
ing the same vertex indexes that has not yet been supplied with a second triangle
index.
 Armed with the edge list for a triangle mesh, we determine the silhouette by
first calculating the dot product between the light position and the plane of each
triangle. For a triangle whose vertex indexes are 1i , 2i , and 3i , the (unnormalized)
outward-pointing normal direction N is given by

 () ()2 1 3 1i i i i= − × −N V V V V (10.14)

since the vertices are assumed to be wound counterclockwise. The 4D plane vec-
tor F corresponding to the triangle is then given by

 1, , ,x y z iN N N= − ⋅F N V . (10.15)

 Let L represent the 4D homogeneous position of the light source. For point
light sources, 0wL ≠ ; and for infinite directional light sources, 0wL = . A triangle
faces the light source if 0⋅ >F L . Otherwise, the triangle faces away from the
light source. The silhouette is equal to the set of edges shared by one triangle fac-
ing the light and one triangle facing away from the light.

Listing 10.1. The BuildEdges() function examines an array of indexed triangles and constructs
an array of edge records that refer back to the triangles that share them. The return value is the
number of edges written to the array edgeArray.
Parameters
 triangleCount The number of triangles in the array pointed to by the triangle-

Array parameter.
 triangleArray A pointer to an array of Triangle structures describing the polygonal

mesh.
 edgeArray A pointer to a location in which a pointer to the edge array is returned.

long BuildEdges(long vertexCount, long triangleCount,

 const Triangle *triangleArray, Edge **edgeArray)

{

 long maxEdgeCount = triangleCount * 3;

10.3 Stencil Shadows 297

 unsigned short *firstEdge =

 new unsigned short[vertexCount + maxEdgeCount];

 unsigned short *nextEdge = firstEdge + vertexCount;

 for (long a = 0; a < vertexCount; a++) firstEdge[a] = 0xFFFF;

 // First pass over all triangles. This finds all the edges satisfying

 // the condition that the first vertex index is less than the second

 // vertex index when the direction from the first vertex to the second

 // vertex representsa counterclockwise winding around the triangle to

 // which the edge belongs. For each edge found, the edge index is

 // stored in a linked list of edges belonging to the lower-numbered

 // vertex index i. This allows us to quickly find an edge in the second

 // pass whose higher-numbered vertex index is i.

 long edgeCount = 0;

 const Triangle *triangle = triangleArray;

 for (long a = 0; a < triangleCount; a++)

 {

 long i1 = triangle->index[2];

 for (long b = 0; b < 3; b++)

 {

 long i2 = triangle->index[b];

 if (i1 < i2)

 {

 Edge *edge = &edgeArray[edgeCount];

 edge->vertexIndex[0] = (unsigned short) i1;

 edge->vertexIndex[1] = (unsigned short) i2;

 edge->faceIndex[0] = (unsigned short) a;

 edge->faceIndex[1] = (unsigned short) a;

 long edgeIndex = firstEdge[i1];

 if (edgeIndex == 0xFFFF)

 {

 firstEdge[i1] = edgeCount;

 }

 else

 {

 for (;;)

298 10. Shadows

 {

 long index = nextEdge[edgeIndex];

 if (index == 0xFFFF)

 {

 nextEdge[edgeIndex] = edgeCount;

 break;

 }

 edgeIndex = index;

 }

 }

 nextEdge[edgeCount] = 0xFFFF;

 edgeCount++;

 }

 i1 = i2;

 }

 triangle++;

 }

 // Second pass over all triangles. This finds all the edges satisfying

 // the condition that the first vertex index is greater than the second

 // vertex index when the direction from the first vertex to the second

 // vertex represents a counterclockwise winding around the triangle to

 // which the edge belongs. For each of these edges, the same edge should

 // have already been found in the first pass for a different triangle.

 // So we search the list of edges for the higher-numbered vertex index

 // for the matching edge and fill in the second triangle index. The

 // maximum number of comparisons in this search for any vertex is the

 // number of edges having that vertex as an endpoint.

 triangle = triangleArray;

 for (long a = 0; a < triangleCount; a++)

 {

 long i1 = triangle->index[2];

 for (long b = 0; b < 3; b++)

 {

 long i2 = triangle->index[b];

10.3 Stencil Shadows 299

 if (i1 > i2)

 {

 for (long edgeIndex = firstEdge[i2]; edgeIndex != 0xFFFF;

 edgeIndex = nextEdge[edgeIndex])

 {

 Edge *edge = &edgeArray[edgeIndex];

 if ((edge->vertexIndex[1] == i1) &&

 (edge->faceIndex[0] == edge->faceIndex[1]))

 {

 edge->faceIndex[1] = (unsigned short) a;

 break;

 }

 }

 }

 i1 = i2;

 }

 triangle++;

 }

 delete[] firstEdge;

 return (edgeCount);

}

10.3.4 Shadow Volume Construction

Once the set of an object’s silhouette edges has been determined with respect to a
light source, we must extrude each edge away from the light’s position to form
the object’s shadow volume. Such an extrusion may be accomplished by making
use of widely available vertex programming hardware exposed by shading lan-
guages such as GLSL.
 For a point light source, the extrusion of the silhouette edges consists of a set
of quads, each of which has the two unmodified vertices belonging to an edge
and two additional vertices corresponding to the extrusion of the same edge to
infinity. For an infinite directional light source, all points project to the same
point at infinity, so the extrusion of the silhouette edges can be represented by a
set of triangles that all share a common vertex. We distinguish between points

300 10. Shadows

that should be treated normally and those that should be extruded to infinity by
using 4D homogeneous coordinates. A w coordinate of 1 is assigned to the un-
modified vertices and a w coordinate of 0 is assigned to the extruded vertices.
The vertex program performing the extrusion utilizes the information stored in
the w coordinate to perform the appropriate vertex modifications.
 Before we examine the extrusion method, we must prepare the appropriate
quad list or triangle list (depending on whether we are using a point light or infi-
nite directional light). We need to make sure that the vertices of each extrusion
primitive are wound so that the face’s normal direction points out of the shadow
volume. Suppose that a silhouette edge E has endpoints A and B. The edge-
finding code presented in Listing 10.1 associates the triangle for which the verti-
ces A and B occur in counterclockwise order as the first triangle sharing the edge
E. Thus, if the first triangle faces toward the light source, then we want the verti-
ces A and B to occur in the opposite order for the extruded primitive so that its
vertices are wound counterclockwise. If the first triangle faces away from the
light source, then we use the vertices A and B in the same order for the extruded
primitive. Table 10.1 lists the vertices of the extrusion of the edge E for point
light sources and infinite directional light sources for the cases that the first trian-
gle associated with the edge E faces toward or away from the light source.

Facing of First
Triangle

Point Light Source
(Extrusion is a list of
quads)

Infinite Light Source
(Extrusion is a list of tri-
angles)

Toward light
source

1 , , ,1x y zB B B=V
2 , , ,1x y zA A A=V
3 , , ,0x y zA A A=V
4 , , ,0x y zB B B=V

1 , , ,1x y zB B B=V
2 , , ,1x y zA A A=V
3 0,0,0,0=V

Away from light
source

1 , , ,1x y zA A A=V
2 , , ,1x y zB B B=V
3 , , ,0x y zB B B=V
4 , , ,0x y zA A A=V

1 , , ,1x y zA A A=V
2 , , ,1x y zB B B=V
3 0,0,0,0=V

Table 10.1. Given a silhouette edge E having endpoints A and B, this table lists the ob-
ject-space vertices of the extruded shadow volume face corresponding to E. The first tri-
angle associated with the edge E is the triangle for which the vertices A and B occur in
counterclockwise order.

10.3 Stencil Shadows 301

 We can write a couple of simple vertex shaders to perform edge extrusion
and transformation to clip space. In each of the shaders that follow, we assume
that we have access to a uniform variable named mvpMatrix containing the four
rows of the product of the projection matrix and model-view matrix and another
uniform variable named lightPosition containing the object-space light
position.
 The vertex shader shown in Listing 10.2 demonstrates a safe way to extrude
vertices away from a point light source, where by “safe”, we mean that it is im-
mune to floating-point round-off errors. A similar vertex shader for infinite light
sources is shown in Listing 10.3.

Listing 10.2. This vertex shader extrudes vertices having a w coordinate of 0 away from a point
light source and leaves vertices having a w coordinate of 1 unchanged. Vertex positions are then
transformed into homogeneous clip space.

in vec4 vertexPosition; // The object-space vertex position.

uniform vec4 mvpMatrix[4]; // The model-view-projection matrix.

uniform vec3 lightPosition; // The object-space light position.

void main()

{

 float t = (vertexPosition.w < 0.5) ? 1.0 : 0.0;

 vec4 extrudedPosition = vec4(vertexPosition.xyz - lightPosition * t,

 vertexPosition.w);

 gl_Position = vec4(dot(mvpMatrix[0], extrudedPosition),

 dot(mvpMatrix[1], extrudedPosition),

 dot(mvpMatrix[2], extrudedPosition),

 dot(mvpMatrix[3], extrudedPosition));

}

Listing 10.3. This vertex shader extrudes vertices having a w coordinate of 0 away from an
infinite light source and leaves vertices having a w coordinate of 1 unchanged. Vertex positions
are then transformed into homogeneous clip space.

in vec4 vertexPosition; // The object-space vertex position.

uniform vec4 mvpMatrix[4]; // The model-view-projection matrix.

uniform vec3 lightDirection; // The object-space light direction.

302 10. Shadows

void main()

{

 float t = (vertexPosition.w < 0.5) ? 1.0 : 0.0;

 vec4 extrudedPosition =

 vec4(vertexPosition.xyz + lightDirection, vertexPosition.w);

 extrudedPosition = vertexPosition - extrudedPosition * t;

 gl_Position = vec4(dot(mvpMatrix[0], extrudedPosition),

 dot(mvpMatrix[1], extrudedPosition),

 dot(mvpMatrix[2], extrudedPosition),

 dot(mvpMatrix[3], extrudedPosition));

}

 In the case that shadow volume caps must be rendered for a point light
source (see the next section), a vertex shader similar to the one in Listing 10.2
should be used to transform vertices belonging to triangles that face away from
the light. As demonstrated in Listing 10.4, extruded cap vertices can be obtained
by simply subtracting the x, y, and z coordinates of the light’s position from the
vertex’s position and assuming that the result has a w coordinate of 0. As shown
in Figure 10.11, the silhouette extrusion for an infinite light source always comes
to a point, so caps are never necessary.

Listing 10.4. This vertex shader extrudes vertices belonging to a shadow volume cap away from a
point light source. (Note that the extruded position is only a three-dimensional vector here.) Vertex
positions are then transformed into homogeneous clip space.

in vec4 vertexPosition; // The object-space vertex position.

uniform vec4 mvpMatrix[4]; // The model-view-projection matrix.

uniform vec3 lightPosition; // The object-space light position.

void main()

{

 vec3 extrudedPosition = vertexPosition.xyz - lightPosition;

 gl_Position = vec4(dot(mvpMatrix[0].xyz, extrudedPosition),

 dot(mvpMatrix[1].xyz, extrudedPosition),

 dot(mvpMatrix[2].xyz, extrudedPosition),

 dot(mvpMatrix[3].xyz, extrudedPosition));

}

10.3 Stencil Shadows 303

Figure 10.11. A cylinder illuminated by an infinite light source and the shadow volume
formed by the extrusion of its silhouette. (Image from the C4 Engine, courtesy of Tera-
thon Software LLC.)

10.3.5 Determining Cap Necessity

As mentioned earlier, a completely closed shadow volume having a front cap and
a back cap must be rendered whenever the camera lies inside the shadow volume,
or the faces of the silhouette extrusion could potentially be clipped by the near
plane. We wish to render this more expensive shadow volume as infrequently as
possible, so a test for determining when it is not necessary would be useful.
 The near rectangle is the rectangle carved out of the near plane by the four
side planes of the view frustum. As shown in Figure 10.12, we can devise a test

304 10. Shadows

to determine whether the shadow volume might be clipped by the near plane by
constructing the set of planes that connect the boundary of the near rectangle to
the light source. We call the volume of space bounded by these planes and by the
near plane itself the near-clip volume. Only a point inside the near-clip volume
can have an extrusion away from the light source that intersects the near rectan-
gle. Thus, if an object is known to lie completely outside the near-clip volume,
then we do not have to render a capped shadow volume.
 When constructing the near-clip volume, we consider three cases: 1) the light
source lies in front of the near plane, 2) the light source lies behind the near
plane, and 3) the light source is very close to lying in the near plane. Let W be
the transformation matrix that maps eye space to world space, and suppose that
our light source lies at the 4D homogeneous point L in world space. We consider
a point light source (for which 1wL =) to be lying in the near plane if its distance
to the near plane is at most some small positive value δ. For an infinite direction-
al light source (for which 0wL =), we consider the distance to the near plane to be
the length of the projection of the light’s normalized direction vector , ,x y zL L L
onto the near plane’s normal direction. In either case, we can obtain a signed dis-
tance d from the light source to the near plane by calculating

 ()1 0,0, 1,d n−= ⋅ − −W L . (10.16)

L

C

n

Figure 10.12. The near-clip volume is bounded by the planes connecting the near rectan-
gle to the light position L. If an object lies completely outside the near-clip volume, then
its shadow volume cannot intersect the near rectangle, so it is safe to render it without
caps.

10.3 Stencil Shadows 305

If d δ> , then the light source lies in front of the near plane; if d δ< − , then the
light source lies behind the near plane; otherwise, the light source lies in the near
plane.
 In the case that the light source lies in the near plane, the near-clip volume is
defined by the planes 0 0,0, 1, n= − −K and 1 0,0,1,n=K . These two planes are
coincident but have opposite normal directions. This encloses a degenerate near-
clip volume, so testing whether an object is outside the volume amounts to de-
termining whether the object intersects the near plane.
 If the light source does not lie in the near plane, we need to calculate the ver-
tices of the near rectangle. In eye space, the points 0R , 1R , 2R , and 3R at the four
corners of the near rectangle are given by

0

1

2

3

, ,
, ,
, ,

, , ,

n e an e n
n e an e n
n e an e n

n e an e n

= −
= − −
= − − −
= − −

R

R

R

R (10.17)

where n is the distance from the camera to the near plane; a is the aspect ratio of
the viewport, equal to its height divided by its width; and e is the camera’s focal
length, related to the horizontal field-of-view angle α by Equation (5.27). These
four points are ordered counterclockwise from the camera’s perspective. For a
light source lying in front of the near plane, the world-space normal directions

iN , where 0 3i≤ ≤ , are given by the cross products

 ()() ()1 mod 4 , ,i i x y z w ii L L L L−′ ′ ′= − × −N R R R , (10.18)

where each i′R is the world-space vertex of the near rectangle given by
i i′ =R WR . For a light source lying behind the near plane, the normal directions

are simply the negation of those given by Equation (10.18). The corresponding
world-space planes iK bounding the near-clip volume are given by

 () () ()1 , , ,i i x i y i z i i
i

′= − ⋅K N N N N R
N

. (10.19)

We close the near-clip volume by adding a fifth plane that is coincident with the
near plane and has a normal pointing toward the light source. For a light source
lying in front on the near plane, the fifth plane 4K is given by

 ()1 T
4 0,0, 1, n−= − −K W , (10.20)

306 10. Shadows

and for a light source lying behind the near plane, the fifth plane is given by the
negation of this vector. (Remember that if W is orthogonal, then ()1 T− =W W.)
 We determine whether a shadow-casting object lies completely outside the
near-clip volume by testing the object’s bounding volume against each of the
planes iK . If the bounding volume lies completely on the negative side of any
one plane, then the object’s shadow volume cannot intersect the near rectangle.
In the case that an object is bounded by a sphere having center C and radius r, we
do not need to render a capped shadow volume if i r⋅ < −K C for any i.
 Figure 10.13 demonstrates that for point light sources, bounding volumes
lying behind the light source from the camera’s perspective may often be mistak-
en for those belonging to objects that might cast shadows through the near rec-
tangle. This happens when the bounding volume lies outside the near-clip vol-
ume, but does not fall completely on the negative side of any one plane. We can
improve this situation substantially by adding an extra plane to the near-clip vol-
ume for point lights. As shown in Figure 10.13, the extra plane contains the light
position L and has a normal direction that points toward the center of the near
rectangle. The normal direction 5N is given by

 ()1 T
5 0,0, ,1n−= − −N W L, (10.21)

L L

(a) (b)

Figure 10.13. (a) The near-clip volumes tends to be somewhat thin, so objects behind the
light source are sometimes not excluded by plane tests. (b) Adding an extra plane to the
near-clip volume for point light sources enables more objects to be classified as outside
the near-clip volume.

10.3 Stencil Shadows 307

and the corresponding plane 5K is given by

 () () ()5 5 5 5 5
5

1 , , ,x y z= − ⋅K N N N N L
N

. (10.22)

The plane 5K is added to the near-clip volume boundary for point light sources
regardless of whether the light position is in front of, behind, or in the near plane.

10.3.6 Rendering Shadow Volumes

Now that we can determine an object’s silhouette with respect to a light source,
construct a shadow volume by extruding the silhouette edges away from the light
source, and decide whether front and back caps are necessary, we are finally
ready to render the shadow volume into the stencil buffer. We assume that the
frame buffer has already been cleared and that an ambient rendering pass (or a
depth-only pass) has been performed to initialize the depth buffer. This section
concentrates on the operations necessary to illuminate the scene using a single
light source, and these operations should be repeated for all light sources that can
affect the visible region of the world being rendered.
 First, we must clear the stencil buffer, configure the stencil test so that it al-
ways passes, and configure the depth test so that it passes only when fragment
depth values are less than those already in the depth buffer. This can be done in
OpenGL using the following function calls.

glClear(GL_STENCIL_BUFFER_BIT);

glEnable(GL_STENCIL_TEST);

glStencilFunc(GL_ALWAYS, 0, ~0);

glEnable(GL_DEPTH_TEST);

glDepthFunc(GL_LESS);

We are only going to be drawing into the stencil buffer, so we need to disable
writes to the color buffer and depth buffer as follows.

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

glDepthMask(GL_FALSE);

Shadow volume faces are rendered using different stencil operations depending
on whether they face toward or away from the camera, and modern graphics
hardware can be configured to perform different operations for front-facing and

308 10. Shadows

back-facing polygons.5 So that no faces are skipped even when they face away
from the camera, we make the following call to disable face culling.

glDisable(GL_CULL_FACE);

 For a shadow volume that does not require capping because it cannot possi-
bly intersect the near rectangle, we modify the values in the stencil buffer when
the depth test passes. The stencil value is incremented for fragments belonging to
front-facing polygons and is decremented for fragments belonging to back-facing
polygons. These operations are performed by the following function calls, where
the DrawShadowVolume() function renders all of the polygons belonging to the
shadow volume.

glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR_WRAP);

glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR_WRAP);

DrawShadowVolume();

 If a shadow volume does require capping, then we modify the values in the
stencil buffer when the depth test fails. The stencil value is incremented for
fragments belonging to back-facing polygons and is decremented for fragments
belonging to front-facing polygons (the opposite of the depth-pass operations).
These operations are accomplished using the following function calls. In this
case, the DrawShadowVolume() function renders the polygons belonging to the
shadow volume’s caps as well as its extruded silhouette edges.

glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_DECR_WRAP);

glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_INCR_WRAP);

DrawShadowVolume();

 Once shadow volumes have been rendered for all objects that could poten-
tially cast shadows into the visible region of the world, we perform a lighting
pass that illuminates surfaces wherever the stencil value remains zero. We re-
enable writes to the color buffer, re-enable face culling, change the depth test to
pass only when fragment depth values are equal to those in the depth buffer, and

5 Two-sided stencil operations became a core feature of OpenGL in version 2.0. Previ-
ously, the same functionality was available through the GL_EXT_stencil_two_side
and GL_ATI_separate_stencil extensions.

10.3 Stencil Shadows 309

configure the stencil test to pass only when the value in the stencil buffer is zero
using the following function calls.

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

glEnable(GL_CULL_FACE);

glDepthFunc(GL_EQUAL);

glStencilFunc(GL_EQUAL, 0, ~0);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

Since the lighting pass adds to the ambient illumination already present in the
color buffer, we need to configure the blending function as follows.

glEnable(GL_BLEND);

glBlendFunc(GL_ONE, GL_ONE);

After the lighting pass has been rendered, we clean up by resetting a few render-
ing states back to those needed by the ambient pass for the next frame using the
following function calls.

glDepthMask(GL_TRUE);

glDepthFunc(GL_LEQUAL);

glStencilFunc(GL_ALWAYS, 0, ~0);

10.3.7 Scissor Optimization

When using an attenuated light source, it is usually convenient to define a range r
beyond which the light source does not contribute any illumination to the world.
Although this is not a physically correct model, using an attenuation function that
vanishes at a distance r from the light’s position allows us to quickly cull any
light source whose sphere of illumination does not intersect the view frustum.
When a light source’s sphere of illumination is visible, the area within the view-
port that could possibility be affected by the light source may not be the entire
viewport. By projecting the sphere of illumination to the image plane and using
the scissor rectangle to limit our drawing to the projected area of influence, we
can avoid a significant amount of superfluous rendering of both shadow volumes
and illuminated surfaces.
 Suppose that we have a point light source whose center lies at the point L in
eye space and whose range is r, as shown in Figure 10.14. We wish to find four
planes, two parallel to the x axis and two parallel to the y axis, that pass through

310 10. Shadows

L
r

e

r

C

P

Q

z−

1x = − 1x =

Figure 10.14. For a point light source at the position L having range r, we calculate the
four planes that pass through the camera position C and are tangent to the light’s sphere
of illumination. By calculating the intersection of each tangent plane with the image
plane lying at a distance e from the camera, we can limit our drawing to an area smaller
than the full size of the viewport.

the camera position (the origin in eye space) and are also tangent to the light
source’s bounding sphere. Once these planes have been determined, we can lo-
cate their intersections with the image plane to find the rectangular boundary of
the projection of the light source’s bounding sphere.
 We assume that the tangent planes parallel to the y axis have a unit-length
normal vector N whose y coordinate is 0. Since the planes pass through the
origin, each can be represented by a 4D vector ,0, ,0x zN N=T . We wish to cal-
culate values of xN and zN such that the following conditions are satisfied.

 r⋅ =T L (10.23)

 2 2 1x zN N+ = (10.24)

10.3 Stencil Shadows 311

By expanding the dot product and rearranging slightly, we can rewrite Equation
(10.23) as

 z z x xN L r N L= − . (10.25)

Squaring both sides of Equation (10.25) and making the substitution 2 21z xN N= − ,
we have

 ()2 2 2 2 21 2x z x x x xN L r rN L N L− = − + . (10.26)

This can be rewritten as a quadratic equation in xN as follows.

 () ()2 2 2 2 22 0x z x x x zL L N rL N r L+ + − + − = (10.27)

The discriminant D is given by

 ()()2 2 2 2 2 24 x x z zD r L L L r L= − + −  . (10.28)

0D ≤ precisely when 2 2 2
x zL L r+ ≤ (i.e., when the origin falls within the parallel

projection of the sphere onto the x-z plane). When this happens, we know the
light source’s bounding sphere fills the entire viewport, and we do not continue.
 If 0D > , then we can solve Equation (10.27) using the quadratic formula to
obtain

()2 2

2 2

2
2

4

x
x

x z

x

x z

rL DN
L L

rL D
L L

±=
+

±=
+

. (10.29)

This gives us two values for xN . The corresponding values for zN are calculated
by making a small adjustment to Equation (10.25):

 x x
z

z

r N LN
L

−= . (10.30)

 The point P at which the plane T is tangent to the sphere is simply given by

 ,0, ,1x x z z

r
L rN L rN

= −
= − −

P L N

. (10.31)

312 10. Shadows

We only want to consider planes whose point of tangency with the light source’s
bounding sphere lies in front of the camera. If 0zP < , then we have found a plane
that may allow us to shrink the scissor rectangle. We now need to determine
where the tangent plane intersects the image plane.
 As shown in Figure 10.14, the image plane is perpendicular to the z axis and
lies at a distance e from the camera. On the image plane, the area of the viewport
corresponds to x coordinates in the range []1,1− and y coordinates in the range
[],a a− , where a is the aspect ratio given by the height of the viewport divided by
its width. Any point Q lying in the image plane has coordinates , ,x y e= −Q . A
point Q lying in the plane tangent to the light source’s bounding sphere satisfies

0⋅ =N Q , so we can solve for x:

 z

x

N ex
N

= . (10.32)

This x coordinate can be mapped to the viewport coordinate x′ using the formula

 1
2

xx l w+′ = + , (10.33)

where l is the left edge of the viewport and w is the viewport’s width, both in
pixels.
 Given a value x′ calculated using Equation (10.33), we need to determine
whether it represents a left-side boundary or a right-side boundary. If x xP L< (or
equivalently, if 0xN >), then x′ represents a left-side boundary because the point
of tangency falls to the left of the light source. If x xP L> , then x′ represents a
right-side boundary. Since the value x′ may lie outside the viewport (if

[]1,1x ∉ −), we calculate the left and right edges of the scissor rectangle as
follows.

()
()

. max ,
. min ,

scissor left x l
scissor right x l w

′=
′= +

 (10.34)

 The two tangent planes parallel to the x axis are found in an almost identical
manner. Each of these planes is represented by a 4D vector 0, , ,0y zN N , whose
nonzero components are given by the following formulas.

()()2 2 2 2 2 2

2 2
y y y z z

y
y z

rL r L L L r L
N

L L
± − + −

=
+

10.3 Stencil Shadows 313

 y y
z

z

r N LN
L

−
= (10.35)

The point of tangency P is given by

 0, , ,1y y z zL rN L rN= − −P . (10.36)

If 0zP < , then the y coordinate where each plane intersects the image plane is
given by

 z

y

N ey
N a

= , (10.37)

where the viewport’s aspect ratio a has been added to the denominator. Finally,
the viewport coordinate y′ is calculated using the formula

 1
2

yy b h+′ = + , (10.38)

where b is the bottom edge of the viewport and h is the viewport’s height, both in
pixels.
 If y yP L< (or equivalently, if 0yN >), then y′ represents a bottom-side
boundary. If y yP L> , then y′ represents a top-side boundary. As with the left and
right sides, the values of y′ should be clamped to the viewport’s range as follows.

()
()

. max ,
. min ,

scissor bottom y b
scissor top y b h

′=
′= +

 (10.39)

 Using the values given by Equations (10.34) and (10.39), the OpenGL scis-
sor rectangle is enabled and set to the appropriate values using the following
function calls.

glEnable(GL_SCISSOR_TEST);

glScissor(scissor.left, scissor.bottom,

 scissor.right - scissor.left, scissor.top - scissor.bottom);

The scissor rectangle affects the clear operation as well, so once rendering has
been completed, scissor test should either be disabled or the scissor rectangle
should set back to the entire viewport rectangle by making the following call.

glScissor(l, b, w, h);

314 10. Shadows

Chapter 10 Summary

Shadow Mapping

A shadow map is generated by placing the camera at the light position, orienting
it to the direction of the light, and using the projection matrix

max min

max min max min

max min

max min max min
proj

max

2 0 0

20 0

20 0 1

0 0 0 1

x x
x x x x

y y
y y y y

z

+ − − −
 

+ − − − =
 − − 
 
 
  

M ,

where []min max,x x and []min max,y y are the extents of the light-space-aligned
bounding box for the shadow casting region, and maxz is the z coordinate repre-
senting the maximum depth of the bounding box.

Silhouette Determination

An edge shared by two triangles lying in the planes 1F and 2F is part of an ob-
ject’s silhouette with respect to the light position L if the dot products 1 ⋅F L and

2 ⋅F L have opposite signs. For point light sources, 0wL ≠ , and for infinite direc-
tional light sources, 0wL = .

Shadow Volume Construction

The vertices of a silhouette edge E having endpoints A and B are listed in Table
10.1. For a point light source at the position L (where 1wL =), an edge vertex V is
extruded using the formula

 , , ,0w x x y y z zV V L V L V L′ = + − − −V L .

For an infinite light source at the position L (where 0wL =), an edge vertex V is
extruded using the formula

 ()wV′ = + −V V L L.

Exercises for Chapter 10 315

Determining Cap Necessity

The near-clip volume is bounded by the planes connecting the near rectangle to
the world-space light position L. The four world-space normal directions iN for
the near-clip volume are given by

 ()() ()1 mod 4 , ,i i x y z w ii L L L L−′ ′ ′= − × −N R R R ,

where each i′R is the world-space vertex of the near rectangle given by
i i′ =R WR , W is the transformation from camera space to world space, and the

values of iR are given by Equation (10.17). The corresponding world-space
planes iK bounding the near-clip volume are given by

 () () ()1 , , ,i i x i y i z i i
i

′= − ⋅K N N N N R
N

.

The near-clip volume is closed by adding a fifth plane that is coincident with the
near plane and has a normal pointing toward the light source. For a light source
lying in front on the near plane, the fifth plane 4K is given by

 ()1 T
4 0,0, 1, n−= − −K W .

For an object that is bounded by a sphere having center C and radius r, we do not
need to render a capped shadow volume if i r⋅ < −K C for any i.

Exercises for Chapter 10

1. Use a technique similar to that described in Section 9.1 to derive the ()3,3
entry of a projection matrix based on the matrix infinite′M given by Equation
(10.10) that offsets depth values at a camera-space depth zP by a small
amount δ.

2. Write a program that renders a stencil shadow for a triangle mesh illuminat-
ed by a single point light source. Assume that the triangle mesh is specified
such that each of n triangles indexes three entries in an array of m vertices.
The program should precalculate an edge list, determine the edges belonging
to the model’s silhouette with respect to the light source, and render the ex-
truded silhouette edges using the stencil buffer operations described in Sec-
tion 10.3.6.

This page intentionally left blank

 317

Chapter 11

Curves and Surfaces

Curved geometry has become commonplace in 3D graphics engines due to mod-
ern hardware’s ability to render the high number of vertices and faces needed to
convincingly render smoothly varying surfaces. In addition to geometrical mod-
eling, curves may be employed as paths along which certain objects travel. This
chapter examines several classes of three-dimensional cubic curves and then dis-
cusses how they can be used to produce bicubic parametric surfaces.

11.1 Cubic Curves

Due to the balance that they possess between simplicity and flexibility, curves
defined by cubic polynomials have earned widespread use by computer graphics
applications. In the sections that follow, we examine several classes of cubic
curves and compare their properties.
 The fundamental form of a cubic curve is given by the parametric repre-
sentation

 () 2 3t t t t= + + +Q a b c d , (11.1)

where a, b, c, and d are constant vectors, and ()tQ is the point on the curve cor-
responding to the parameter value t. Writing the components of ()tQ separately,
we have

()
()
()

2 3

2 3

2 3.

x x x x x

y y y y y

z z z z z

Q t a b t c t d t
Q t a b t c t d t

Q t a b t c t d t

= + + +

= + + +

= + + + (11.2)

It is convenient for us to write this as the following matrix product.

318 11. Curves and Surfaces

 () 2

3

1
x x x x

y y y y

z z z z

a b c d
t

t a b c d
t

a b c d
t

 
   
   =    
    

 

Q (11.3)

Using a more compact notation, we can write

 () ()t t=Q CT , (11.4)

where C represents the matrix of coefficients and () 2 31, , ,t t t t≡T . The deriva-
tive of ()tQ , which gives the tangent direction to the curve at t, is easy to calcu-
late in this form since the matrix C is constant. Thus, we can write

 () ()
2

0
1
2

3

dt t
tdt

t

 
 
 ′ = =
 
 
 

Q C T C . (11.5)

 A long, curving path is generally composed of several smaller cubic “pieces”
that are connected together at their endpoints. At the points where two adjacent
pieces of a curve join together, there are the notions of parametric continuity and
geometric continuity. The symbol nC is used to represent n-th order parametric
continuity, and the symbol nG is used to represent n-th order geometric continui-
ty. The two curves are said to have 1C continuity if their tangent vectors are equal
in both magnitude and direction at the join point. If the tangent vectors point in
the same direction but have different magnitudes, then the curves have 1G conti-
nuity. In general, two curves meet with nC continuity if their n-th derivatives are
equal, and two curves meet with nG continuity if their n-th derivatives are non-
zero and point in the same direction but do not have the same magnitude. nC con-
tinuity implies nG continuity unless the n-th derivatives are zero. 0C and 0G con-
tinuity are equivalent and simply mean that the curves share a common endpoint.
 The classes of cubic curves that we examine in this chapter are defined in
terms of certain geometrical constraints such as the endpoint positions (i.e., the
values of ()tQ at 0t = and 1t =) or endpoint tangent directions (i.e., the values of

()t′Q at 0t = and 1t =). Since an arbitrary cubic curve has four coefficients, we
need four constraints in order to define a particular curve. Calling these con-
straints 1g , 2g , 3g , and 4g , we can express the curve ()tQ as

11.1 Cubic Curves 319

() ()
()
()
()

2 3
1 1 1 1 1

2 3
2 2 2 2 2

2 3
3 3 3 3 3

2 3
4 4 4 4 4

t a b t c t d t

a b t c t d t

a b t c t d t

a b t c t d t

= + + +

+ + + +

+ + + +

+ + + +

Q g

g

g

g . (11.6)

This is simply a weighted sum of the four geometrical constraints. The polyno-
mials 2 3

i i i ia b t c t d t+ + + are called the blending functions. Equation (11.6) can
be written in matrix form as

 () []

1 1 1 1

2 2 2 2
1 2 3 4 2

3 3 3 3
3

4 4 4 4

1a b c d
a b c d t

t
a b c d t
a b c d t

   
   
   =
   
   
   

Q g g g g . (11.7)

We can write this more compactly as

 () ()t t=Q GMT , (11.8)

where the matrix G defined by

 []
() () () ()
() () () ()
() () () ()

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

x x x x

y y y y

z z z z

 
 = =  
  

g g g g

G g g g g g g g g

g g g g

 (11.9)

is called the geometry matrix, and the 4 4× matrix M defined by

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

a b c d
a b c d
a b c d
a b c d

 
 
 =
 
 
 

M (11.10)

is called the basis matrix. In most of the discussions that follow, there is a con-
stant basis matrix M pertaining to each class of cubic curve, and the shapes of
particular curves in each class are determined solely by the geometry matrix G.

320 11. Curves and Surfaces

11.2 Hermite Curves

A cubic Hermite curve is defined by two endpoints 1P and 2P , and the tangent
directions 1T and 2T at those endpoints. Using these four quantities to define the
geometry matrix, we can express a Hermite curve ()tH as

 () []1 2 1 2 2

3

1

H
t

t
t
t

 
 
 =
 
 
 

H P P T T M , (11.11)

where HM is a 4 4× basis matrix that we need to determine. The geometry matrix
is []1 2 1 2H =G P P T T . By imposing the geometrical constraints, we obtain
the four equations

() []
() []
() []
() []

1 2 1 2 1

1 2 1 2 2

1 2 1 2 1

1 2 1 2 2

0 1,0,0,0
1 1,1,1,1
0 0,1,0,0
1 0,1,2,3

H

H

H

H

= =
= =

′ = =
′ = =

H P P T T M P

H P P T T M P

H P P T T M T

H P P T T M T . (11.12)

Writing this as the single equation

 [] []1 2 1 2 1 2 1 2

1 1 0 0
0 1 1 1
0 1 0 2
0 1 0 3

H

 
 
  =
 
 
 

P P T T M P P T T , (11.13)

we deduce that HM must be given by

11 1 0 0 1 0 3 2
0 1 1 1 0 0 3 2
0 1 0 2 0 1 2 1
0 1 0 3 0 0 1 1

H

− −   
   −   = =

−   
   −   

M . (11.14)

 The basis matrix HM provides the coefficients of the blending functions, al-
lowing us to write the Hermite curve as the weighted sum of the geometrical con-
straints 1P , 2P , 1T , and 2T :

 () () () () ()2 3 2 2 2
1 2 1 21 3 2 3 2 1 1t t t t t t t t t= − + + − + − + −H P P T T . (11.15)

11.2 Hermite Curves 321

The blending functions are shown in Figure 11.1. As expected, only the weight
corresponding to 1P is nonzero at 0t = , and only the weight corresponding to 2P is
nonzero at 1t = .
 Figure 11.2 shows two Hermite curves ()1 tH and ()2 tH that share a common
endpoint. If the geometry matrix corresponding to the curve ()1 tH is given by
[]1 2 1 2P P T T , then 1G continuity is achieved if the geometry matrix for the
curve ()2 tH is equal to []2 3 2 3uP P T T with 0u > , and 1C continuity is
achieved if 1u = .

t

1

10
()2 1t t−

()21t t−

()2 3 2t t−

2 31 3 2t t− +

Figure 11.1. Blending functions for the Hermite class of cubic curves.

2u− T

2T

1−T

3T
1P

2P

3P

()1 tH

()2 tH

Figure 11.2. Two Hermite curves sharing the endpoint 2P .

322 11. Curves and Surfaces

11.3 Bézier Curves

Although we shall limit ourselves to studying the cubic variety, a Bézier (pro-
nounced BAY-ZEE-AY) curve can be defined for any polynomial degree n. Giv-
en 1n + points 0 1, , , nP P P , called the control points of the curve, the degree n
Bézier curve ()tB is given by the parametric function

 () (),
0

n

n k k
k

t B t
=

=B P , (11.16)

where the blending functions (),n kB t are the Bernstein polynomials defined by

 (), 1 n kk
n k

n
B t t

k
− = − 

 
 (11.17)

with the binomial coefficient

()

!
! !

n n
k k n k
  =  − 

. (11.18)

The first and last control points, 0P and nP , are interpolated by the curve, and the
interior control points 1 2 1, , , n−P P P are approximated by the curve. The Bern-
stein polynomials can be generated by the recurrence relation

 () (), 1, 1 1,1n k n k n kB t t B tB− − −= − + , (11.19)

where 0,0 1B = , and , 0n kB = whenever 0k < or k n> . As shown in Figure 11.3,
this recurrence resembles Pascal’s triangle, but with the modification that each
value is the weighted average of the two closest values above it instead of the
sum.

11.3.1 Cubic Bézier Curves

The cubic Bézier curve has four control points whose positions are blended to-
gether by evaluating Equation (11.16) for 3n = :

() ()

() () ()

3

3,
0

3 2 2 3
0 1 2 31 3 1 3 1

k k
k

t B t

t t t t t t
=

=

= − + − + − +

B P

P P P P . (11.20)

11.3 Bézier Curves 323

1
t(1 − t)

t(1 − t)

t(1 − t) t(1 − t) t(1 − t)

t(1 − t)

()1 t− t

()21 t− ()2 1t t− 2t

()31 t− ()23 1t t− ()23 1t t− 3t
Figure 11.3. The Bernstein polynomials, generated by the recurrence relation given in
Equation (11.19), can be calculated using a method similar to that used to calculate bi-
nomial coefficients in Pascal’s triangle. Each value is the weighted average of the two
closest values above it, where the weights are t and 1 t− . (For values on the left and right
edges of the triangle, the missing value above it is assumed to be zero.)

The geometry matrix for a cubic Bézier curve is []0 1 2 3B =G P P P P . From
Equation (11.20), we can derive the basis matrix BM for the cubic Bézier curve
and write ()tB as follows.

 () []0 1 2 3 2

3

1 3 3 1 1
0 3 6 3
0 0 3 3
0 0 0 1

t
t

t
t

− −   
   −   =

−   
   
   

B P P P P (11.21)

 The four Bernstein polynomials appearing in Equation (11.20) are shown in
Figure 11.4. Since the Bézier curve interpolates the endpoints 0P and 3P , we must
have

 ()3,
1, if 0;

0
0, if 1,2,3;k

k
B

k
==  =

 (11.22)

and

 ()3,
0, if 0,1,2;

1
1, if 3.k

k
B

k
==  =

 (11.23)

324 11. Curves and Surfaces

t

1

10

3,0B

3,1B 3,2B

3,3B

Figure 11.4. The blending functions for the cubic Bézier curve. The functions 3,kB are the
degree 3 Bernstein polynomials.

An additional property of the Bernstein polynomials is that they sum to unity for
all values of t:

 ()
3

3,
0

1k
k

B t
=

= . (11.24)

 Figure 11.5 shows some of the shapes that a Bézier curve may assume. A
useful property of the Bézier curve is that it is entirely contained within the con-
vex hull of its control points. That is, the smallest polyhedron containing all four
control points of a Bézier curve ()tB also contains every point on the curve be-
tween 0t = and 1t = . This is a consequence of the fact that the Bernstein polyno-
mials are nonnegative on the interval []0,1 and that they sum to unity.
 The derivative of a Bézier curve ()tB , giving the tangent direction to the
curve, can be expressed as

 () []0 1 2 3
2

3 6 3
1

3 12 9
0 6 9
0 0 3

t t
t

− − 
  −   ′ =  − 
   

 

B P P P P . (11.25)

Examining the derivative at 0t = and 1t = , we find

() ()
() ()

1 0

3 2

0 3
1 3

′ = −
′ = −

B P P

B P P . (11.26)

11.3 Bézier Curves 325

0P

1P 2P

3P

0P

1P

2P

3P

0P

1P2P

3P

0P

1P

2P3P

Figure 11.5. A variety of Bézier curves having control points 0P , 1P , 2P , and 3P .

This reveals that the tangent directions at the endpoints are multiples of the dif-
ferences between the endpoints and the adjacent interior control points. This pro-
vides us with a mechanism for easily translating between the Bézier form and
Hermite form of a cubic curve. To translate from Bézier to Hermite (where we
are now calling the endpoints of the Hermite curve 0P and 3P), we simply use the
values given by Equation (11.26) as the tangents 1T and 2T corresponding to the
endpoints 0P and 3P , respectively. To translate from Hermite to Bézier, we solve
Equation (11.26) for the interior control points as follows.

1
1 0

2
2 3

3

3

= +

= −

T
P P

T
P P (11.27)

326 11. Curves and Surfaces

11.3.2 Bézier Curve Truncation

Equation (11.27) is also useful for calculating the interior control points for a
Bézier curve that exactly matches another Bézier curve on an interval []0 1,t t .
This process is called truncation and is illustrated in Figure 11.6. Suppose we
wish to truncate a Bézier curve ()P tB having the control points 0P , 1P , 2P , and 3P
to the interval []0 1,t t by creating a new Bézier curve ()Q uB having the control
points 0Q , 1Q , 2Q , and 3Q . The new parameter u is related to the parameter t by
the function

 () ()0 1 0t u t t t u= + − . (11.28)

The endpoints 0Q and 3Q of the new Bézier curve are simply

()
()

0 0

3 1 .
P

P

t
t

=
=

Q B

Q B (11.29)

The interior control points 1Q and 2Q are obtained using Equation (11.27), but we
must be careful to calculate the tangents with respect to the parameter u. Since
the curves ()P tB and ()Q uB are coincident,

0P

1P

2P

3P0Q

1Q

2Q

3Q

()P tB

()Q uB

Figure 11.6. A Bézier curve ()P tB having the control points 0P , 1P , 2P , and 3P is truncat-
ed to the interval []0 1,t t to create a new Bézier curve ()Q uB having the control points 0Q ,

1Q , 2Q , and 3Q .

11.3 Bézier Curves 327

 () ()()Q Pu t u=B B .

Thus, applying the chain rule, we have

() ()() ()

() ()()1 0 0 1 0

Q P

P

d d du t u t u
du dt du

t t t t t u

=

′= − + −

B B

B . (11.30)

The tangents 0T and 3T to the curve ()Q uB at 0u = and 1u = are given by

() () ()
() () ()

0 1 0 0

3 1 0 1

0
1 ,

Q P

Q P

t t t
t t t

′ ′= = −
′ ′= = −

T B B

T B B (11.31)

and the control points 1Q and 2Q are therefore

() ()

() ()

1 00
1 0 0 0

1 03
2 3 3 1

3 3

.
3 3

P

P

t t t

t t t

− ′= + = +

− ′= − = −

T
Q Q Q B

T
Q Q Q B (11.32)

11.3.3 The de Casteljau Algorithm

The de Casteljau algorithm provides a geometrical construction by which we can
subdivide a Bézier curve into two parts at an arbitrary parameter value []0,1t ∈ .
During the construction, we obtain the four control points corresponding to both
components of the subdivided curve.
 Suppose that we split a Bézier curve ()P tB having the control points 0P , 1P ,

2P , and 3P at the parameter value t s= to create two new Bézier curves ()Q uB and
()R vB coinciding with the original curve on the intervals []0, s and [],1s , respec-

tively. Equations (11.29) and (11.32) provide the control points 0Q , 1Q , 2Q , and
3Q of the curve ()Q uB :

()

() ()

() ()

()

0 0

1

2

3

0

0 0
3

3
.

P

P P

P P

P

s

ss s

s

= =

′= +

′= −

=

Q B P

Q B B

Q B B

Q B (11.33)

328 11. Curves and Surfaces

Evaluating the functions PB and P′B for 1Q and 2Q gives us the following formu-
las for the interior control points of ()Q uB .

()
()

1 0 1

0 1

1
1

s s
s s

= − +
= − +

Q P P

Q P (11.34)

() ()[] ()[]
() ()[]

2 0 1 1 2

1 1 2

1 1 1
1 1

s s s s s s
s s s s

= − − + + − +
= − + − +

Q P P P P

Q P P (11.35)

We repeat a similar procedure for the control points 0R , 1R , 2R , and 3R of the
curve ()R vB :

()

() ()

() ()

()

0

1

2

3 3

1
3

11 1
3

1 .

P

P P

P P

P

s
ss s

s

=
− ′= +

− ′= −

= =

R B

R B B

R B B

R B P (11.36)

Formulas for the interior control points of ()R vB are found by evaluating the
functions PB and P′B as follows.

()
()

2 2 3

2 3

1
1

s s
s s

= − +
= − +

R P P

P R (11.37)

() ()[] ()[]
() ()[]

1 1 2 2 3

1 2 2

1 1 1
1 1

s s s s s s
s s s s

= − − + + − +
= − − + +

R P P P P

P P R (11.38)

Finally, we take a look at the value of 3 0=Q R . This is the point where the line
segment connecting 2Q and 1R is tangent to the curve ()P tB . If we evaluate

()P sB and compare it to Equations (11.35) and (11.38), we see that

 () () 2 11P s s s= − +B Q R . (11.39)

 The entire procedure that we just went through leads us to the formulation of
the de Casteljau algorithm. As illustrated in Figure 11.7, we begin by connecting
adjacent pairs of the four control points 0P , 1P , 2P , and 3P , creating three line
segments. We then construct the points ()1

0P , ()1
1P , and ()1

2P by linearly interpolating
the endpoints of each of the line segments using the parameter value s as follows.

 () ()1
11 i ii s s += − +P P P (11.40)

11.4 Catmull-Rom Splines 329

0 0=P Q 3 3=P R

()1
10 =P Q

()2
20 =P Q ()3

0P

1P 2P()1
1P

()2
11 =P R

()1
22 =P R

0R
3Q

Figure 11.7. A Bézier curve is subdivided into two components at the parameter value

1 2s = . The green points are those constructed by the de Casteljau algorithm.

This process recurs by connecting these new points and interpolating at the pa-
rameter value s until we are left with only one point ()3

0P . In general, we have the
recurrence formula

 () () () ()1 1
11k k k

i i is s− −
+= − +P P P , (11.41)

where we have equated ()0
ii ≡P P . The control points of the two components of the

subdivided Bézier curve are given by

()

()
0

3

i
i

i
i i

−

=

=

Q P

R P . (11.42)

11.4 Catmull-Rom Splines

Given a set of 1n + points { }0 1, , , nP P P with 3n ≥ , a Catmull-Rom spline inter-
polates the points { }1 2 1, , , n−P P P using a piecewise cubic curve. The tangent
direction iT at each point iP is given by

330 11. Curves and Surfaces

 ()1 1
1
2i i i+ −= −T P P . (11.43)

We can express each piece ()i tC of the spline, where 1 2i n≤ ≤ − , as a Hermite
curve having the endpoints iP and 1i+P and the tangents iT and 1i+T :

 () []1 1 2

3

1

i i i i i H
t

t
t
t

+ +

 
 
 =
 
 
 

C P P T T M . (11.44)

We would like to find a basis matrix CRM that allows us to express the geometry
matrix CRG as four points, so we observe the following.

 [] []

1
2

1
2

1 1 1 1 2 1
2

1
2

0 0 0
1 0 0
0 1 0
0 0 0

i i i i i i i i+ + − + +

− 
 − =
 
 
 

P P T T P P P P (11.45)

Substituting this into Equation (11.44) shows us that the basis matrix CRM must
be the product of the rightmost matrix in Equation (11.45) and the Hermite basis
matrix HM . Thus,

0 0 1 0 1 0 3 2 0 1 2 1
2 0 0 1 0 0 3 2 2 0 5 31 1
0 2 1 0 0 1 2 1 0 1 4 32 2
0 0 0 1 0 0 1 1 0 0 1 1

CR

− − − −     
     − − −     = =

− −     
     − −     

M , (11.46)

and we can express the pieces of the Catmull-Rom spline as

 () []1 1 2 2

3

1

i i i i i CR
t

t
t
t

− + +

 
 
 =
 
 
 

C P P P P M , (11.47)

where the geometry matrix is []1 1 2CR i i i i− + +=G P P P P . Figure 11.8 shows an
example of a Catmull-Rom spline and illustrates how the tangent at each point is
parallel to the line segment connecting the two neighboring points.

11.5 Cubic Splines 331

0P

1P

2P

3P

4P

5P

6P

Figure 11.8. A Catmull-Rom spline interpolates a set of points in such a way that the
tangent direction at each point is parallel to the line segment connecting the two neigh-
boring points.

11.5 Cubic Splines

The piecewise cubic curves that we have examined up to this point exhibit local
control, meaning that if the geometrical constraints are modified for one of the
cubic functions composing the curve, then only that piece of the curve and its
immediate neighbors can be affected. We now examine a different kind of curve
called a cubic spline. Cubic splines exhibit global control through the fact that
moving one of the control points affects the entire curve.
 A cubic spline is a set of piecewise cubic polynomials that interpolate a given
set of points and maintain 2C continuity everywhere. Cubic splines require no
geometrical constraints, such as tangent directions or control points, in addition
to the points that they interpolate. We derive the cubic spline as a set of scalar
functions ()iS x . This can be extended to a parametric interpolation of a set of 3D
points by constructing cubic splines for each coordinate independently.
 Suppose we have a set of 1n + points { }0 0 1 1, , , , , ,n nx y x y x y where

1i ix x +< for 0 1i n≤ ≤ − . We wish to find a set of n cubic polynomial functions
() () (){ }0 1 1, , , nS x S x S x− where each function ()iS x is defined on the interval

[]1,i ix x + .

332 11. Curves and Surfaces

 () ()1 1 1i i i iS x S x+ + += (11.48)

 () ()1 1 1i i i iS x S x+ + +′ ′= (11.49)

 () ()1 1 1i i i iS x S x+ + +′′ ′′= (11.50)

 We define the constants ih and ik as follows for 0 1i n≤ ≤ − .

1

1

i i i

i i i

h x x
k y y

+

+

= −
= − (11.51)

We construct the cubic spline interpolating the points { } 0, n
i i ix y = by choosing

values for the second derivatives of the functions (){ } 1
0

n
i iS x −

= that cause the condi-
tions listed in Equations (11.48), (11.49), and (11.50) to be satisfied. We begin
with the set of functions

 () () ()1
1

i i
i i i

i i

y yS x x x x x
h h

+
+

′′ ′′′′ = − + − , (11.52)

where the constants 0 1, , ny y y′′ ′′ ′′ have not yet been determined, but Equation
(11.50) is satisfied regardless of their eventual values. Integrating ()iS x′′ twice,
we have

 () () ()13 3
16 6

i i
i i i i i

i i

y yS x x x x x C x D
h h

+
+

′′ ′′
= − + − + + , (11.53)

where iC and iD are the constants of integration. For later convenience, we re-
place the arbitrary linear polynomial i iC x D+ with a different linear polynomial,

 () ()1i i i iA x x B x x+ − + − , (11.54)

to obtain

 () () () () ()13 3
1 16 6

i i
i i i i i i i

i i

y yS x x x x x A x x B x x
h h

+
+ +

′′ ′′
= − + − + − + − . (11.55)

Applying the requirements that ()i i iS x y= and ()1 1i i iS x y+ += allows us to write
the pair of equations

2

1 2
1

6

6

i
i i i i

i
i i i i

yy h A h

yy h B h+
+

′′
= +

′′
= + , (11.56)

11.5 Cubic Splines 333

from which we can deduce the following values of iA and iB .

 1 1

6

6

i i i
i

i

i i i
i

i

y y hA
h
y y hB
h

+ +

′′
= −

′′
= − (11.57)

Plugging these values into Equation (11.55) gives us

() () ()

() ()

13 3
1

1 1
1

6 6

6 6

i i
i i i

i i

i i i i i i
i i

i i

y yS x x x x x
h h
y y h y y hx x x x
h h

+
+

+ +
+

′′ ′′
= − + −

′′ ′′   + − − + − −   
   

. (11.58)

Differentiating, we have

 () () () ()12 2
1 12 2 6

i i i i
i i i i i

i i i

y y k hS x x x x x y y
h h h

+
+ +

′′ ′′′ ′′ ′′= − − + − + + − . (11.59)

By applying the requirement that () ()1 1 1i i i iS x S x+ + +′ ′= , we arrive at the following
system of 1n − equations.

 () 1
1 1 1 2

1
2 6 ; 0 2i i

i i i i i i i
i i

k kh y h h y h y i n
h h

+
+ + + +

+

 ′′ ′′ ′′+ + + = − ≤ ≤ − 
 

 (11.60)

Since there are 1n + unknowns 0 1, , , ny y y′′ ′′ ′′ , the solution set to the system given
by Equation (11.60) is a two-dimensional space. We can reduce this to a single
solution by choosing any values we like for the second derivatives 0y′′ and ny′′ at
the endpoints and moving the terms in which they appear to the right side of
Equation (11.60) for 0i = and 2i n= − . The resulting system of 1n − equations
having 1n − unknowns is written in matrix form as

0 1 1 0 0 0

1 1 2 2 1

3 3 2 2 3

2 2 1 2 1

0 0 0 0
0 0 0

0 0 0
0 0 0 0

n n n n n

n n n n n n

m h y p h y
h m h y p

h m h y p
h m y p h y

− − − − −

− − − − −

′′ ′′−     
     ′′
     

=     
     ′′     
     ′′ ′′−     




    



, (11.61)

where

334 11. Curves and Surfaces

1,1

2,5

3,4

4,4

5,2

Figure 11.9. A natural cubic spline interpolates a set of points with 2C continuity.

()1

1

1

2

6

i i i

i i
i

i i

m h h
k kp
h h

+

+

+

= +

 = − 
 

. (11.62)

The matrix appearing in Equation (11.61) is tridiagonal and diagonally dominant,
so the values { } 1

1
n

i iy −
=′′ can easily be found using the method described in

Section 16.2.5.
 Plugging the values { } 0

n
i iy =′′ into Equation (11.58) gives us the pieces of the

cubic spline. The second derivatives 0y′′ and ny′′ at the ends of the curve may be
arbitrarily chosen and are usually set to zero. When 0 0ny y′′ ′′= = , the curve is
called a natural cubic spline. An example of a natural cubic spline is shown in
Figure 11.9.

11.6 B-Splines

The Catmull-Rom spline and the natural cubic spline both interpolate a set of
points without requiring any information in excess of the points themselves. The
Catmull-Rom spline exhibits the local control property and provides 1C continui-
ty. The natural cubic spline provides 2C continuity, but at the cost of local control
since moving one point changes the entire curve. We now examine the B-spline,
a curve that possesses the local control property and provides 2C continuity eve-
rywhere. The trade-off is that a B-spline does not generally interpolate a set of
points, but only approximates their positions.

11.6 B-Splines 335

11.6.1 Uniform B-Splines

Like Hermite and Bézier curves, each piece of a B-spline can be expressed as a
cubic curve in terms of a basis matrix and geometry matrix. The letter “B” in
B-spline stands for “basis” and distinguishes the curve from the natural cubic
spline, which does not use the basis and geometry matrix formulation. The ge-
ometry matrix BSG used by the B-spline is the same as that used by the Catmull-
Rom spline:

 []1 1 2BS i i i i− + +=G P P P P . (11.63)

Given a set of 1n + control points { }0 1, , , nP P P , a B-spline is composed of 2n −
cubic curves ()i tQ corresponding to the pair of points iP and 1i+P . Each of these
pieces is expressed as the weighted sum

 () ()
3

1
0

i k i k
k

t B t + −
=

=Q P , (11.64)

where the blending functions ()kB t are determined by imposing the constraint
that the entire curve possess 2C continuity.
 The set of points () () (){ }2 3 20 , 0 , , 0n−Q Q Q where the pieces of the
B-spline join together are called knots. We also classify as knots the endpoints of
the curve, ()1 0Q and ()2 1n−Q , and thus a curve having 1n + control points pos-
sesses 1n − knots. A B-spline is called uniform if the knots are spaced at equal
parameter values along the entire curve. At this point, we are only considering
the case that each piece ()i tQ of the curve corresponds to a parameter range of
[]0,1 , so we are dealing with uniform B-splines. Nonuniform B-splines, in which
the knots may not be equally spaced with respect to the parameterization, are dis-
cussed in Section 11.6.3. Figure 11.10 shows the six knots belonging to a
B-spline curve having eight control points and thus five cubic pieces.
 The blending functions ()kB t are found by requiring 2C continuity at each
knot, leading to the following equations.

() ()
() ()
() ()

1

1

1

1 0
1 0
1 0

i i

i i

i i

+

+

+

=
′ ′=
′′ ′′=

Q Q

Q Q

Q Q (11.65)

Expanding the first of these requirements with Equation (11.64), we have

336 11. Curves and Surfaces

P0

P1

P2

P3

P4

P5

P6 P7

Q1(t)

Q2(t)

Q3(t)

Q4(t)

Q5(t)

Figure 11.10. A B-spline curve constructed using the eight control points iP . The gray
diamonds indicate the positions of the six knots corresponding to the values of ()0iQ and

()1iQ .

() () () ()

() () () ()
0 1 1 2 1 3 2

0 1 1 2 2 3 3

1 1 1 1
0 0 0 0

i i i i

i i i i

B B B B
B B B B

− + +

+ + +

+ + +
= + + +
P P P P

P P P P . (11.66)

Since this equation must be satisfied for arbitrary choices of the control points iP ,
the coefficients of each point in the equation must be equal on both the left and
right sides. Three points appear on both sides of Equation (11.66) and two more
appear only on one side, so we obtain the following five equalities.

()
() ()
() ()
() ()

()

0

1 0

2 1

3 2

3

1 0
1 0 0
1 0 0
1 0 0

0 0

B
B B
B B
B B

B

=
− =
− =
− =
− = (11.67)

Applying the same procedure to the first and second derivatives, we also have

11.6 B-Splines 337

()
() ()
() ()
() ()

()

0

1 0

2 1

3 2

3

1 0
1 0 0
1 0 0
1 0 0

0 0

B
B B
B B
B B

B

′ =
′ ′− =
′ ′− =
′ ′− =

′− = (11.68)

and

()
() ()
() ()
() ()

()

0

1 0

2 1

3 2

3

1 0
1 0 0
1 0 0
1 0 0

0 0

B
B B
B B
B B

B

′′ =
′′ ′′− =
′′ ′′− =
′′ ′′− =

′′− = . (11.69)

This gives us 15 equations, but the coefficients of ()0B t , ()1B t , ()2B t , and ()3B t
amount to 16 unknowns. We remedy this deficiency by forcing the blending
functions to sum to unity at 0t = , giving us the final equation

 () () () ()0 1 2 30 0 0 0 1B B B B+ + + = . (11.70)

By solving the linear system represented by Equations (11.67), (11.68), (11.69),
and (11.70), we obtain the following blending functions for the uniform B-spline.

() ()

()

()

()

3

0

2 3

1

2 3

2

3

3

1
6

4 6 3
6

1 3 3 3
6

6

tB t

t tB t

t t tB t

tB t

−
=

− +=

+ + −=

= (11.71)

The basis matrix BSM is thus

1 3 3 1
4 0 6 31
1 3 3 36
0 0 0 1

BS

− − 
 − =

− 
 
 

M . (11.72)

338 11. Curves and Surfaces

t

1

10

2 3

1 6
0B 3B

1B 2B

Figure 11.11. The blending functions for the uniform B-spline.

 The blending functions ()0B t , ()1B t , ()2B t , and ()3B t are shown in Fig-
ure 11.11. A major difference between these blending functions and those for
Hermite curves, Bézier curves, and Catmull-Rom splines is that more than one
function is nonzero at both endpoints. The fact that the control points are not in-
terpolated, but only approximated by the knots, is a consequence of this property
of the blending functions.
 Control points may be replicated, but doing so incurs the cost of one degree
of continuity each time the same control point appears consecutively along a
B-spline curve. The benefit is that more control over where the curve goes is ac-
quired. One location at which control point replication is particularly useful is at
the endpoints. Consider the case in which the first control point is replicated three
times so that 0 1 2= =P P P . The first component ()1 tQ of the B-spline curve is
then given by

() () () () ()

() () ()[] ()
1 0 0 1 1 2 2 3 3

0 1 2 0 3 3 .
t B t B t B t B t

B t B t B t B t
= + = +
= + + +

Q P P P P

P P (11.73)

This is a linear interpolation between the two points 0P and 3P . Plugging in the
values 0t = and 1t = , we see that ()1 00 =Q P and () 5 1

1 0 36 61 = +Q P P . The curve
()1 tQ traces out the first sixth of the straight line running from 0P to 3P . Similar-

ly, replicating the last control point nP of a B-spline curve three times results in
the final component ()2n t−Q tracing out the last sixth of the straight line running
from 3n−P to nP . Figure 11.12 shows the same B-spline shown in Figure 11.10
with its first and last control points both replicated three times.

11.6 B-Splines 339

P0,1,2

P3

P4

P5

P6

P7

P8 P9,10,11

Q3(t)

Q4(t)

Q5(t)

Q6(t)

Q7(t)

Q8(t)

Q9(t)

Q2(t)

Q1(t)

Figure 11.12. The same B-spline shown in Figure 11.10 with its first and last control
points replicated three times each. The green diamonds represent the knots. The compo-
nents ()1 tQ and ()9 tQ are straight lines.

P0

P1

P2

P3

P4,5,6

P7

P8 P9

Q1(t)

Q2(t)

Q3(t)

Q6(t)

Q7(t)

Q4(t)

Q5(t)

Figure 11.13. The same B-spline shown in Figure 11.10 with one of its interior control
points replicated three times. The green diamonds represent the knots.

340 11. Curves and Surfaces

 Figure 11.13 shows the same B-spline curve again, but this time with one of
its interior points replicated three times. The curve interpolates the replicated
control point, but only exhibits 0C continuity at that point. This is equivalent to
two separate B-spline curves for which the last control point of the first curve is
equal to the first control point of the second curve and each is replicated three
times.

11.6.2 B-Spline Globalization

Each piece ()i tQ of a uniform B-spline is defined over the range of parameter
values [)0,1t ∈ . For a curve having 1n + control points, we can define each piece
in terms of a global parameter u by assigning it i= and writing

 () ()i i iu u t= −Q Q . (11.74)

The pieces ()i uQ compose the same curve using the range of parameter values
[)1, 1u n∈ − . We can write Equation (11.74) in terms of the B-spline basis func-

tions as follows.

 () ()
3

1
0

i k i i k
k

u B u t + −
=

= −Q P (11.75)

Any one of the control points iP affects at most four pieces of the curve, and few-
er than four only if it occurs near the beginning or end of the sequence of control
points. For the piece ()i uQ , the point iP is weighted by the blending function 1B .
The same point is weighted by the blending function 0B for the piece ()1i u+Q , the
blending function 2B for the piece ()1i u−Q , and the blending function 3B for the
piece ()2i u−Q . Since the point iP does not contribute to any other piece of the
curve, we can say that its weight is zero for any piece ()j uQ where 2j i< − or

1j i> + . It is possible for us to construct a weighting function ()iN u that is al-
ways used as the weight for the point iP for every piece of the curve. Since each
piece ()i uQ is defined over the parameter range [)1,i iu t t +∈ , we define ()iN u as

 ()

() [)
() [)
() [)
() [)

0 1 1 2

1 1

2 1 1

3 2 2 1

, if , ;
, if , ;

, if , ;
, if , ;

0, otherwise.

i i i

i i i

i i i i

i i i

B u t u t t
B u t u t t

N u B u t u t t
B u t u t t

+ + +

+

− −

− − −

− ∈
 − ∈= − ∈
 − ∈


 (11.76)

11.6 B-Splines 341

This allows us to express the entire curve as the following weighted sum of all of
the 1n + control points.

 () ()
0

n

k k
k

u N u
=

=Q P (11.77)

Of course, any single piece ()i uQ is still only affected by four control points, so
we can write

 ()
3

1 1
0

i i k i k
k

u N + − + −
=

=Q P . (11.78)

The shape of the blending function ()iN u is shown in Figure 11.14. Since it is
composed of shifted versions of the four blending functions shown in Figure
11.11, the function ()iN u possesses 2C continuity.
 The values it are called knot values since they correspond to the global pa-
rameter value at each of the curve’s knots. The collection of knot values
{ }0 1, , , nt t t is called the knot vector. The uniformity of the B-spline corresponds
to the fact that the difference 1i it t+ − is the same for any choice of i. This limita-
tion is removed for nonuniform B-splines—the only restriction is that the differ-
ence between consecutive knot values be nonnegative.

u

2it − 1it − it 1it + 2it +
Figure 11.14. The global blending function ()iN u given by Equation (11.76). Each of
the four components is a shifted version of one of the uniform B-spline blending func-
tions shown in Figure 11.11.

342 11. Curves and Surfaces

11.6.3 Nonuniform B-Splines

A nonuniform B-spline is a generalization of the uniform B-spline in which the
knot values are not required to be equally spaced. As with uniform B-splines, a
nonuniform B-spline defined by a set of 1n + control points { }0 1, , , nP P P is
composed of 2n − cubic curves ()i uQ where 1 2i n≤ ≤ − . The only restriction on
the knot value it corresponding to the control point iP is that it is not less than the
preceding knot value 1it − . Each piece ()i uQ of the spline is expressed as the
weighted sum

 () ()
3

1,3 1
0

i i k i k
k

u N u+ − + −
=

=Q P , (11.79)

where the per-control-point blending functions (),3iN u are given by the following
recursive formula, known as the Cox-de Boor algorithm.

() [)

() () () () ()

2 1
,0

, 1 1, 1
, 2 1

2 2 1 1

1, if ,
0, otherwise

i i
i

i k i k
i k i i k

i k i i k i

u t t
N u

N u N uN u u t t u
t t t t

− −

− + −
− + −

+ − − + − −

∈= 


= − + −
− −

 (11.80)

It is allowable for consecutive knot values to be equal, so the convention that di-
vision by zero yields zero is used in Equation (11.80). As with the global blend-
ing function ()iN u given by Equation (11.76), the function (),3iN u used to
weight the control point iP has four separate components covering the ranges
[)2 1,i it t− − , [)1,i it t− , [)1,i it t + , and [)1 2,i it t+ + . These components can be precomputed
for a particular knot vector and control point index. Outside the range ()2 2,i it t− + ,
the function (),3iN u is zero. The blending functions (),3iN u are always nonnega-
tive and always sum to unity, so a nonuniform B-spline is contained within the
convex hull determined by its control points.
 Maintaining consistency with globally-parameterized uniform B-splines, a
piece ()i uQ of a nonuniform B-spline depends only on the control points 1i−P
through 2i+P and is defined only over the range [)1,i iu t t +∈ . However, the four
blending functions corresponding to ()i uQ collectively require the eight knot
values 3it − through 4it + . The first piece ()1 uQ depends on the knot values 2t−
through 5t , and the last piece ()2n u−Q depends on the knot values 5nt − through

2nt + . Thus, a nonuniform B-spline having 1n + control points requires 5n + knot
values. We begin the knot vector at the index 2− so that the piece ()i uQ conven-
iently begins at it .

11.6 B-Splines 343

P0

P1

P2

P3

P4

P5

P6 P7

Q1(u)

Q2(u)

Q3(u)

Q4(u)

Q5(u)

t1
t2

t3

t4

t5

t6

Figure 11.15. A nonuniform B-spline possessing the 8 control points 0P through 7P and
using the knot vector { }0,0,0,0,1,2,3,4,5,5,5,5 representing knot values 2t − through 9t .
These are the same control points used by the uniform B-spline shown in Figure 11.10,
but the curve has now been modified so that it interpolates its first and last control points.
The green diamonds represent the knots corresponding to the knot values shown next to
them.

 Although it is by no means a necessity, the first four and last four knot values
are usually set to 1t and 1nt − , respectively. This guarantees the nice property that
the first and last knots are coincident with the first and last control points, as
shown in Figure 11.15. We recover the uniform B-spline by assigning it i= for
every i. We may modify this so that the spline interpolates its first and last con-
trol points by setting

1, if 2 1;
, if 2 2;

1, if 1 2.
i

i
t i i n

n n i n

− ≤ ≤
= ≤ ≤ −
 − − ≤ ≤ +

 (11.81)

 A knot value that is repeated m times is said to have multiplicity m. As the
difference between knot values it and 1it + decreases, the length of the piece ()i uQ
becomes shorter. When 1i it t += , the piece ()i uQ is reduced to a single point. Eve-

344 11. Curves and Surfaces

P0

P1

P2

P3

P4

P5

P6 P7

Q1(u)

Q2(u)

Q5(u)

t1
t2

t3 = t4 = t5

t6

Figure 11.16. A nonuniform B-spline having an interior knot value of multiplicity 3. The
knot vector is { }0,0,0,0,1,2,2,2,3,3,3,3 . The curve interpolates the control point 4P , but
only with 0C continuity.

ry time a knot value is repeated, a degree of continuity is lost at the correspond-
ing knot. As shown in Figure 11.16, if the knot value it has multiplicity 3 (so that

1 2i i it t t+ += =), then the control point 1i+P is interpolated by the curve, but there is
only 0C continuity at that point. If the multiplicity is increased to 4, as shown in
Figure 11.17, then the curve actually breaks at 1i+P .
 For the knot vector { }0,0,0,0,1,1,1,1 , the blending functions ,3iN given by the
Cox-de Boor algorithm are equivalent to the Bernstein polynomials ,3iB . Thus, a
curve having this knot vector is a Bézier curve. The two separate components of
the curve shown in Figure 11.17 are both Bézier curves since the multiplicities of
the knot values at their endpoints are 4.
 A major advantage that nonuniform B-splines have over uniform B-splines is
that it is possible to insert a control point corresponding to a new knot value
without changing the shape of the curve. Suppose that we have a knot vector
{ }2 2, , nt t− + and control points 0P through nP . To add a new knot value

(]1,j jt t t +′∈ , we must find a new set of control points 0′P through 1n+′P such that the
curves determined by the original control points and the new control points are

11.6 B-Splines 345

P0

P1

P2

P3

P4

P5

P6 P7

Q1(u)

Q5(u)

t1

t2 = t3 = t4 = t5

t6

Figure 11.17. A nonuniform B-spline having an interior knot value of multiplicity 4. The
knot vector is { }0,0,0,0,1,1,1,1,2,2,2,2 . There is a discontinuity at 2u t= .

coincident. The new control points are given by the following formulas, a process
known as Böhm subdivision.

 2 2
1

1 2 1 2

1

, if 1

1 , if 2

, if 3

i

i i
i i i

i i i i

i

i j
t t t t j i j

t t t t
i j

− −
−

+ − + −

−

≤ −
 ′ ′− − ′ = − + ≤ ≤ + − − 
 ≥ +

P

P P P

P

 (11.82)

(We again use the convention that division by zero yields zero.) This process re-
places two original control points with three new control points and leaves the
rest alone. Böhm subdivision can be used to increment the multiplicity of a knot
by setting 1jt t +′ = .

11.6.4 NURBS

Nonuniform B-splines can be made even more flexible by extending them to ho-
mogeneous coordinates. A weight iw is assigned to each control point iP , and we
express each control point as

346 11. Curves and Surfaces

 , , ,i i i i i i i iw x w y w z w=P . (11.83)

As usual, the control point’s position in 3D space is obtained by dividing by the
w coordinate. Since a piece ()i uQ of the nonuniform B-spline is expressed as

 () ()
3

1,3 1
0

i i k i k
k

u N u+ − + −
=

=Q P , (11.84)

the w coordinate at some point along the curve is given by

 ()[] ()
3

1,3 1
0

i w i k i k
k

u N u w+ − + −
=

=Q . (11.85)

The 3D position ()i uQ at the parameter value u is therefore

 ()
()

()

3

1,3 1 1 1 1
0

3

1,3 1
0

, ,i k i k i k i k i k
k

i

i k i k
k

N u w x y z
u

N u w

+ − + − + − + − + −
=

+ − + −
=

=



Q . (11.86)

This can also we written as

 () ()
3

1 1 1 1
0

, ,i i k i k i k i k
k

u R u x y z+ − + − + − + −
=

=Q , (11.87)

where

 () ()

()

1,3 1
1 3

1,3 1
0

i k i k
i k

i l i l
l

N u wR u
N u w

+ − + −
+ −

+ − + −
=

=


. (11.88)

Since points on the curve are expressed as a ratio of two polynomials, these
curves are called nonuniform rational B-splines, or NURBS.
 The weights affect how strongly the associated control points influence the
shape of the curve. As shown in Figure 11.18, a larger weight iw causes the curve
to be pulled toward the control point iP , and a smaller weight causes the curve to
move away from the control point. Like the control points, the weights only af-
fect at most four pieces of the entire curve, so the influence of a single weight is
isolated to a local portion of the entire curve.

11.6 B-Splines 347

P0

P1

P2

P3

P4

w3 = 1

w3 = 2w3 = 4

w3 = 1/2

w3 = 1/4

Figure 11.18. A nonuniform rational B-spline. The different curves show what happens
as the weight corresponding to the control point 3P changes.

 All of the curves described in this chapter are invariant with respect to any
translation, rotation, or scaling transformation. That is, transforming the geomet-
rical constraints (e.g., the control points) and generating the curve produces the
same results as generating the curve using the untransformed geometrical con-
straints and then transforming the result. NURBS are also invariant with respect
to a homogeneous projection transformation. The curve generated by the homo-
geneous control points after projection is the same as the projection of the curve
generated using the unprojected control points. This property can be gained by a
nonuniform B-spline by promoting it to a NURBS curve in which every weight
has been assigned a value of 1.
 NURBS have been widely adopted by computer modeling systems because
of their generality. NURBS can represent any of the other types of curves dis-
cussed in this chapter, and unlike nonrational curves, can represent conic sections
exactly.1

1 See David F. Rogers and J. Alan Adams, Mathematical Elements for Computer
Graphics, Second Edition, McGraw-Hill, 1990.

348 11. Curves and Surfaces

11.7 Bicubic Surfaces

Our knowledge of cubic curves can be readily extended to bicubic surfaces.
Whereas a single component ()i tQ of a cubic curve required four geometrical
constraints iG through 3i+G , a single component (),ij s tQ of a bicubic surface,
called a patch, requires 16 geometrical constraints ,i jG through 3, 3i j+ +G . The gen-
eral parametric representation of a surface patch is given by

 () () ()
3 3

,
0 0

,ij k l i k j l
k l

s t B s B t + +
= =

=Q G , (11.89)

where the parameters s and t range from 0 to 1, and the functions 0B , 1B , 2B , and
3B are the blending functions for the type of cubic curve on which the surface

patch is based. Calling the basis matrix corresponding to the blending functions
M, we can write Equation (11.89) in the form

 () () ()

, , 1 , 2 , 3

1, 1, 1 1, 2 1, 3T T

2, 2, 1 2, 2 2, 3

3, 3, 1 3, 2 3, 3

,

r r r r
i j i j i j i j

r r r r
i j i j i j i jr

ij r r r r
i j i j i j i j
r r r r
i j i j i j i j

G G G G
G G G G

Q s t s t
G G G G
G G G G

+ + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

 
 
 =
 
 
 

S M MT , (11.90)

where () 2 31, , ,s s s s≡S , () 2 31, , ,t t t t≡T , and the index r represents one of the
x, y, or z coordinates of (),ij s tQ . The geometrical constraint matrix G for a bicu-
bic surface patch is a 4 4 3× × array of coordinates.
 A bicubic Bézier surface patch is defined by 16 control points. The surface
passes through four of these points at the corners of the patch, and the remaining
12 control points influence the shape of the interior of the patch. A simple exam-
ple is shown in Figure 11.19. Two adjacent Bézier patches have 0C continuity at
the edge where they meet whenever they share the same four control points along
that edge. They have 1G continuity across the edge if the adjacent control points
on either side of the edge are collinear with the control points on the edge, and 1C
is achieved if the distances to the control points on either side of the edge are
equal, ensuring that the tangent vectors have equal magnitude. When four Bézier
patches meet at a single point P, 1C continuity at that point requires that each pair
of adjacent patches meet with 1C continuity and that the eight nearest control
points are coplanar with P.
 The normal vector at a point on a bicubic surface patch (),ij s tQ is obtained
by finding two tangent vectors and then calculating their cross product. The tan-

11.7 Bicubic Surfaces 349

Figure 11.19. A Bézier surface patch is defined by 16 control points. This particular sur-
face passes through the 12 control points lying on the boundary of the patch. The remain-
ing four control points determine the shape of the patch’s interior. In general, a Bézier
surface passes through only the four control points at the corners of the patch.

gent vectors are found by taking the derivatives of (),ij s tQ with respect to s and
t. Using Equation (11.90), we can write the derivatives as

() () ()

() () ()

T T

T T

,

,

r r
ij

r r
ij

dQ s t s t
s ds

dQ s t s t
t dt

∂  =  ∂  
∂  =  ∂  

S M G MT

S M G M T , (11.91)

where r again represents one of the x, y, or z coordinates. The normal vector
(),ij s tN is then given by

 () () (), , ,ij ij ijs t s t s t
s t

∂ ∂= ×
∂ ∂

N Q Q . (11.92)

350 11. Curves and Surfaces

11.8 Curvature and Torsion

In this section, we investigate quantities that characterize the amounts by which
an arbitrary path through space curves and twists. In the process, we are able to
construct an orthogonal coordinate system at each point along a curving path
such that one axis is parallel to the tangent direction.
 Let ()tP represent a twice-differentiable parametric curve. The curvature

()κ t of ()tP is defined to be the magnitude of the rate at which the unit tangent
direction ()ˆ tT changes with respect to distance s traveled along the curve. That
is,

 () ()
()ˆ

ˆ
d td dtκ t t dsds

dt

= =
T

T , (11.93)

where ds is the differential length given by

 ()dds t dt
dt

= P , (11.94)

and the unit tangent vector ()ˆ tT can be expressed as

 () ()
()

()

()

()
ˆ

d dt tt dt dtt d dst t
dt dt

= = =
P PT

T
T P

. (11.95)

Intuitively, the curvature ()κ t quantifies how much a curve bends at the point
()tP . For a straight line, whose tangent vector always points in the same direc-

tion, the curvature is zero as would be expected.
 Rearranging Equation (11.95), we can write the first derivative of ()tP as

 () ()ˆd dst t
dt dt

=P T . (11.96)

Since the curvature depends on the derivative of the tangent direction, we would
like to see how it relates to the second derivative of ()tP . The derivative of the
unit tangent vector ()ˆ tT points in a direction ()tN that is orthogonal to the tan-

11.8 Curvature and Torsion 351

gent vector itself (assuming that the derivative is not zero). This can be seen by
first observing that () ()ˆ ˆ 1t t⋅ ≡T T and then calculating

 () ()() () ()ˆ ˆ ˆ ˆ0 2d dt t t t
dt dt

= ⋅ = ⋅T T T T . (11.97)

The direction ()tN can be thought of as a normal direction to the curve ()tP . It
always points inward with respect to the direction in which the curve is bending.
 Evaluating the derivative of ()ˆ tT , we have

 ()
() ()

2 2

2 2

2
ˆ

ds d d s dt td dt dt dt dtt
dt ds

dt

−
=

 
 
 

P P
T . (11.98)

Using Equation (11.96) to replace the first derivative of ()tP gives us

 ()
() ()

2 2

2 2
ˆ

ˆ
d d st td dt dtt dsdt

dt

−
=

P T
T . (11.99)

Solving for the second derivative of ()tP yields

 () () ()
2 2

2 2
ˆ ˆd d s ds dt t t

dt dt dt dt
= +P T T . (11.100)

Since the derivative of ()ˆ tT points in the direction ()tN , we can write

 () () ()ˆ ˆ ˆd dt t t
dt dt

=T T N , (11.101)

where ()ˆ tN has unit length. Using the definition of ()κ t given by Equation
(11.93), we rewrite Equation (11.100) as

 () () () ()
22 2

2 2
ˆ ˆd d s dst t κ t t

dt dt dt
 = +  
 

P T N . (11.102)

If we take the cross product of the first and second derivatives of ()tP given by
Equations (11.96) and (11.102), we obtain

352 11. Curves and Surfaces

() () () () () ()

() () ()

22 2

2 2

3

ˆ ˆ ˆ

ˆ ˆ .

d d ds d s dst t t t κ t t
dt dt dt dt dt

dsκ t t t
dt

  × = × +     

   = ×    

P P T T N

T N (11.103)

Since ()ˆ tT and ()ˆ tN are both unit vectors, the magnitude of their cross product is
unity. Thus, upon using Equation (11.94) to replace the quantity ds dt , we arrive
at the following expression for ()κ t .

 () () ()
() 3

t tκ t
t

′ ′′×
=

′
P P

P
 (11.104)

 Let us consider the curvature of a circle of radius ρ. Such a circle lying in the
x-y plane can be expressed parametrically as

 () cos , sin ,0t ρ t ρ t=P . (11.105)

Applying Equation (11.104), we see that the curvature is

 () 3

sin , cos ,0 cos , sin ,0 1
sin , cos ,0

ρ t ρ t ρ t ρ tκ t
ρρ t ρ t

− × − −= =
−

, (11.106)

or simply the reciprocal of the radius of the circle. For a general curve, we call
the quantity () ()1ρ t κ t= the radius of curvature. As shown in Figure 11.20, the
radius of curvature at a point ()tP corresponds to the radius of a circle that is
tangent to the curve at ()tP and lies in the plane determined by the directions

()ˆ tT and ()ˆ tN . This plane is called the osculating plane, and the circle is called
the osculating circle.
 The second derivative of the position vector ()tP gives the acceleration of a
particle following the path at time t. Examining Equation (11.102) more closely,
we observe

 () () () () ()[]
()

()
22

2
ˆ ˆv td dt t v t t t

dt dt ρ t
= = +a P T N , (11.107)

where ()v t ds dt= is the scalar speed at time t. The coefficients Ta and Na de-
fined by

11.8 Curvature and Torsion 353

()tP

()ˆ tT

()ˆ tN

()1 κ t

Figure 11.20. The osculating circle lies in the plane determined by the tangent direction
()ˆ tT and the normal direction ()ˆ tN . The radius of the osculating circle is the reciprocal of

the curvature ()κ t .

()

()[]
()

2

T

N

da v t
dt
v ta
ρ t

=

= (11.108)

are called the tangential and centrifugal components of the acceleration, respec-
tively. The centrifugal component agrees with the acceleration corresponding to
the centrifugal force given by Equation (14.8).

 We can complete a three-dimensional orthonormal basis at a point ()tP by
defining the unit binormal ()ˆ tB as

 () () ()ˆ ˆ ˆt t t= ×B T N . (11.109)

The coordinate system having the axes ()ˆ tT , ()ˆ tN , and ()ˆ tB is called the Frenet
frame. The derivatives of the axes with respect to the distance s along a path can
be written in terms of the axes themselves. For the tangent direction ()ˆ tT , we
have

354 11. Curves and Surfaces

 () () () () ()ˆ ˆ ˆ ˆd dt t t κ t t
ds ds

= =T T N N . (11.110)

The derivative of the binormal can be written as

 () () () () ()ˆ ˆ ˆ ˆ ˆd d dt t t t t
ds ds ds

= × + ×B T N T N . (11.111)

Since the derivative of the tangent direction is parallel to the normal direction,
the first cross product is zero. The derivative of the normal direction must be
perpendicular to the normal direction itself (because it has constant length) and
can therefore be expressed as a linear combination of the tangent and binormal
directions. Thus, using the functions ()α t and ()τ t , we simplify Equation
(11.111) as follows.

() () () () () ()

() ()

ˆ ˆ ˆ ˆ

ˆ

d t t α t t τ t t
ds

τ t t

 = × + 

= −

B T T B

N (11.112)

Finally, the derivative of the normal direction yields

() () ()

() () () ()

() () () () () ()
() () () ()

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ .

d dt t t
ds ds

d dt t t t
ds ds
τ t t t t κ t t

τ t t κ t t

 = × 

= × + ×

= − × + ×

= −

N B T

B T B T

N T B N

B T (11.113)

(This shows that the value of ()α t in Equation (11.112) is ()κ t− .) Taken together,
the three relations

() () ()

() () () () ()

() () ()

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

d t κ t t
ds
d t τ t t κ t t
ds
d t τ t t
ds

=

= −

= −

T N

N B T

B N (11.114)

are called the Frenet formulas.

Chapter 11 Summary 355

 The quantity ()τ t is called the torsion of the curve and pertains to the amount
by which the Frenet frame twists about the tangent direction as it travels along a
path. By taking the dot product of both sides of Equation (11.112) with ()ˆ tN , we
obtain the following explicit formula for the torsion.

 () () ()ˆ ˆdτ t t t
ds

= − ⋅N B (11.115)

For a planar curve, the vectors ()ˆ tT and ()ˆ tN always lie in the plane containing
the curve, so ()ˆ tB is constant except for discontinuities that occur when () 0κ t = .
Thus, the torsion of planar curves is zero everywhere.

Chapter 11 Summary

Cubic Curves

Several classes of cubic curves can be expressed in the form

 () ()t t=Q GMT ,

where G is the geometrical constraint matrix associated with the class of cubic
curve, M is the constant basis matrix, and () 2 31, , ,t t t t≡T . Table 11.1 summa-
rizes the geometrical constraint matrices and basis matrices discussed in this
chapter.

Nonuniform B-Splines

A nonuniform B-spline having the 1n + control points { }0 1, , , nP P P and the knot
vector { }2 1 0 2, , , , nt t t t− − + is composed of 2n − cubic curves ()i uQ , where
1 2i n≤ ≤ − . Each piece ()i uQ is defined as

 () ()
3

1,3 1
0

i i k i k
k

u N u+ − + −
=

=Q P ,

where the blending functions (),3iN u are given by the Cox-de Boor algorithm:

() [)

() () () () ()

2 1
,0

, 1 1, 1
, 2 1

2 2 1 1

1, if ,
0, otherwise

i i
i

i k i k
i k i i k

i k i i k i

u t t
N u

N u N uN u u t t u
t t t t

− −

− + −
− + −

+ − − + − −

∈= 


= − + −
− −

.

356 11. Curves and Surfaces

Class Geometrical Constraint
Matrix G

Basis Matrix M

Hermite []1 2 1 2P P T T

1 0 3 2
0 0 3 2
0 1 2 1
0 0 1 1

− 
 − 

− 
 − 

Bézier []0 1 2 3P P P P

1 3 3 1
0 3 6 3
0 0 3 3
0 0 0 1

− − 
 − 

− 
 
 

Catmull-Rom []1 1 2i i i i− + +P P P P

0 1 2 1
2 0 5 31
0 1 4 32
0 0 1 1

− − 
 − 

− 
 − 

Uniform B-spline []1 1 2i i i i− + +P P P P

1 3 3 1
4 0 6 31
1 3 3 36
0 0 0 1

− 
 − 

− 
 
 

Table 11.1. Geometrical constraint matrices and basis matrices for various classes of
parametric cubic curves.

NURBS

For a set of control points { }, , ,i i i i i i i iw x w y w z w=P , a nonuniform rational
B-spline is defined as

 () ()
3

1 1 1 1
0

, ,i i k i k i k i k
k

u R u x y z+ − + − + − + −
=

=Q ,

where

 () ()

()

1,3 1
1 3

1,3 1
0

i k i k
i k

i l i l
l

N u wR u
N u w

+ − + −
+ −

+ − + −
=

=


.

Exercises for Chapter 11 357

Bicubic Surfaces

A bicubic surface patch is defined as

 () () ()T T,r r
ijQ s t s t= S M G MT ,

where () 2 31, , ,s s s s≡S , () 2 31, , ,t t t t≡T , M is the 4 4× basis matrix corre-
sponding to the class of cubic curve on which the patch is based, and r represents
one of the x, y, or z coordinates of (),ij s tQ . G is the 4 4 3× × array of control
point coordinates.

The normal vector (),ij s tN to the surface of a bicubic patch (),ij s tQ is given by

 () () (), , ,ij ij ijs t s t s t
s t

∂ ∂= ×
∂ ∂

N Q Q .

Curvature and Torsion

The curvature ()κ t of a curve ()tP is given by

 () () ()
() 3

t tκ t
t

′ ′′×
=

′
P P

P
.

The radius of curvature is () ()1ρ t κ t= .

The torsion ()τ t is defined as

 () () ()ˆ ˆdτ t t t
ds

= − ⋅N B ,

where ()ˆ tN is the unit normal vector given by the normalized derivative of the
unit tangent direction ()ˆ tT , and () () ()ˆ ˆ ˆt t t= ×B T N .

Exercises for Chapter 11

1. Suppose that ()2 tB is a quadratic Bézier curve having the three control
points 0P , 1P , and 2P . That is,

 () () ()2 2
2 0 1 21 2 1t t t t t= − + − +B P P P .

 Determine the four control points 0′P through 3′P such that the cubic Bézier
curve

358 11. Curves and Surfaces

 () () () ()3 2 2 3
3 0 1 2 31 3 1 3 1t t t t t t t′ ′ ′ ′= − + − + − +B P P P P

 is exactly coincident with the quadratic Bézier curve ()2 tB . (This process is
called degree elevation.)

2. Suppose that the de Casteljau algorithm is used to split a Bézier curve hav-
ing the control points 0P , 1P , 2P , and 3P at the parameter value 1

2t = . Find the
matrix QM that transforms the control points of the original curve into the
control points 0Q , 1Q , 2Q , and 3Q for the curve coinciding with the interval
[]1

20, , and find the matrix RM that transforms the control points of the origi-
nal curve into the control points 0R , 1R , 2R , and 3R for the curve coinciding
with the interval []1

2 ,1 . That is, find matrices QM and RM such that

 [] []0 1 2 3 0 1 2 3 Q=Q Q Q Q P P P P M

 and

 [] []0 1 2 3 0 1 2 3 R=R R R R P P P P M .

3. A Kochanek-Bartels spline extends the formulation of the Catmull-Rom
spline by allowing three parameters, tension iτ , continuity iγ , and bias iβ , to
be specified at each control point iP . (Hence, Kochanek-Bartels splines are
sometimes called TCB splines.) For a cubic curve interpolating the points iP
and 1i+P , the tangent direction ,1iT corresponding to iP and the tangent direc-
tion ,2iT corresponding to the point 1i+P are given by

()()() ()

()()() ()

()()() ()

()()() ()

,1 1

1

1 1 1
,2 1

1 1 1
2 1

1 1 1
2

1 1 1
2

1 1 1
2

1 1 1
2

i i i
i i i

i i i
i i

i i i
i i i

i i i
i i

τ γ β

τ γ β

τ γ β

τ γ β

−

+

+ + +
+

+ + +
+ +

− + +
= −

− − −+ −

− − +
= −

− + −
+ −

T P P

P P

T P P

P P .

 (Note that the tangent direction used at a point iP is not necessarily the same
for both of the curves for which iP is an endpoint.)

 (a) For what values of iτ , iγ , and iβ does the Kochanek-Bartels spline re-
duce to the Catmull-Rom spline?

Exercises for Chapter 11 359

 (b) Under what conditions does the tangent direction ,2iT for the curve in-
terpolating iP and 1i+P match the tangent direction 1,1i+T for the curve in-
terpolating 1i+P and 2i+P ?

 (c) Find the basis matrix KBM corresponding to the curve interpolating iP
and 1i+P that describes the Kochanek-Bartels blending functions. As-
sume that the geometry matrix is []1 1 2KB i i i i− + +=G P P P P . [Hint.
Use a method similar to that which produces the Catmull-Rom basis
matrix in Equation (11.46).]

4. Let ()uQ be a nonuniform B-spline lying in the x-y plane having control
points 0 0,0=P , 1 1,2=P , 2 2,2=P , and 3 3,0=P . Suppose the knot
vector is { }0,0,0,0,1,1,1,1 . Use Böhm subdivision to insert a new knot at

1
2t′ = and determine the new control points 0′P through 4′P .

5. Calculate the curvature ()κ t and the torsion ()τ t of the helix given by

 () cos , sin ,t r t r t ct=P .

6. Given a path ()tP having 3C continuity, show that

 () () () ()[] ()
2 3

2
2 3

d d dt t t κ t τ t
ds ds ds

 ⋅ × =  
P P P ,

 where ()κ t is the curvature of the path and ()τ t is the torsion of the path.

This page intentionally left blank

 361

12

Collision Detection

Every 3D game is filled with the action of moving objects. Except when an ob-
ject is emitting a force field that affects its surroundings, interaction between two
objects generally occurs only when they attempt to occupy the same space at the
same time. The process by which game engines determine when such events oc-
cur is called collision detection. With the exception of those that take place in
deep space, most games need to determine when a collision occurs between a
moving object and the environment. The complex geometrical shapes that mov-
ing objects may possess are usually approximated by simple bounding volumes
in order to reduce the cost of collision detection calculations.
 Suppose that the position of a moving object is known at the time that a
frame is rendered, and that we are able to calculate the position to which the ob-
ject would move if it is unobstructed before the next frame is rendered. Since the
time between frames is usually small, it is commonly assumed that objects travel
along straight lines during the time between frames, even if it is known that an
object is following a curved path. Thus, the general collision detection problem is
determining whether the extrusion of an object’s surface along a line segment
intersects some part of the environment. Very small moving objects are often
treated as points, reducing the collision detection problem to a ray intersection
calculation. For larger objects, finding the exact point where the object makes
contact with a complex environment can be extremely difficult. For that reason,
surfaces of moving objects are often approximated by simpler bounding volumes.

12.1 Plane Collisions

Detecting a collision between a moving object and a single infinite plane
amounts to the problem of determining what point on the object would be in con-
tact with the plane at the time of a collision. We can then represent the entire
moving object by that point in a ray intersection calculation. Being able to detect

362 12. Collision Detection

collisions with infinite planes is useful in environments that are partitioned in
some way (see Section 12.1.3), so we examine the calculations involved in de-
termining when a sphere or box collides with an infinite plane in this section.
Later, we discuss the more difficult, but very practical method of determining the
collision of a sphere with an arbitrary environment.

12.1.1 Collision of a Sphere and a Plane

As shown in Figure 12.1, when a sphere is in contact with a plane L (on the posi-
tive side), the distance from the center of the sphere P to the plane is r, so

r⋅ =L P . Writing the plane L as the 4D vector

 , D=L N , (12.1)

the relationship r⋅ =L P can be written as

 D r⋅ + =N P . (12.2)

If we move r to the left side of the equation, then this is equivalent to

 0D r⋅ + − =N P , (12.3)

which is the same as stating that the point P lies on the plane ′L given by

 , D r′ = −L N . (12.4)

The plane ′L is parallel to L, but it has been shifted by the distance r in the direc-
tion of its normal.
 Suppose that the center of a sphere of radius r moves from the point 1P at
time 0t = to the point 2P at the time 1t = , and that we wish to determine whether

P
r

L

′L

Figure 12.1. A sphere of radius r is in contact with a plane L when its center lies on the
plane ′L that has been shifted by a distance r.

12.1 Plane Collisions 363

it collides with a plane L. We assume that the sphere is not initially intersecting
the plane and that the starting point 1P lies on the positive side of a plane since
the negative side represents the interior of some structure. Thus, 1 r⋅ ≥L P . If it is
also the case that 2 r⋅ ≥L P , then the sphere remains on the positive side of the
plane during the time interval 0 1t≤ < , in which case we know that no collision
occurs.
 The position ()tP of the sphere’s center at time t is then given by

 () 1t t= +P P V, (12.5)

where V is the velocity of the sphere:

 2 1= −V P P . (12.6)

A collision occurs between the sphere and the plane , D=L N if the equation

 () 0t′ ⋅ =L P (12.7)

(where ′L is defined by Equation (12.4)) has a solution t such that 0 1t≤ < . Sub-
stituting the value given by Equation (12.5) for ()tP , we have

 ()1 0t′ ′⋅ + ⋅ =L P L V . (12.8)

Solving for t yields

 1t
′ ⋅= −
′ ⋅

L P

L V
. (12.9)

Remember that the vector V represents a direction and therefore has a w coordi-
nate of 0, so the denominator is equal to ⋅N V. If 0⋅ =N V , then the sphere is
moving parallel to the plane, so no intersection occurs. Otherwise, the sphere col-
lides with the plane at the time t given by Equation (12.9). The point C at which
the sphere makes contact with the plane is given by

 ()t r= −C P N (12.10)

since this point lies at a distance r from the sphere’s center in the direction oppo-
site that of the plane’s normal N.

364 12. Collision Detection

12.1.2 Collision of a Box and a Plane

Determining whether a moving box collides with a plane can be accomplished
using a method similar to that used to determine whether a sphere collides with a
plane. The difference is that we must offset the plane by the effective radius of
the box, introduced in Section 8.2.4. Furthermore, the box can make contact with
the plane at more than one point. It is possible that an edge of the box collides
with the plane or that the box meets the plane directly parallel to one of its faces.
 Suppose that a box has edges whose lengths and orientations are described
by the vectors R, S, and T. The effective radius effr of the box with respect to a
plane having normal direction N is given by

 ()1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N . (12.11)

Let 1Q be the position of the box’s center at time 0t = , and let 2Q be its position
at time 1t = , as shown in Figure 12.2. Then the position ()tQ of the box is given
by

 () 1t t= +Q Q V, (12.12)

where V is the velocity of the box:

 2 1= −V Q Q . (12.13)

To find an intersection with the plane , D=L N , we calculate

L

′L

effr

1Q

2Q

Figure 12.2. Whether a moving box collides with a plane can be determined by shifting
the plane by the box’s effective radius.

12.1 Plane Collisions 365

 1t
′ ⋅= −
′ ⋅

L Q

L V
, (12.14)

where ′L is the plane parallel to L that has been offset by a distance effr :

 eff, D r′ = −L N . (12.15)

Again, we assume that the box is not initially intersecting the plane and that its
center lies on the positive side of ′L at time 0t = (i.e., 1 0′ ⋅ ≥L Q). Therefore, if
the condition 2 0′ ⋅ ≥L Q is also satisfied, then the box remains on the positive
side of the plane L, and no collision occurs.
 Once we have determined that a collision between the box and the plane has
occurred (because the value of t given by Equation (12.14) satisfies 0 1t≤ <), we
must determine the point or set of points at which contact has been made. If all
three of the quantities ⋅R N , ⋅S N , and ⋅T N are nonzero, then no edge of the
box is parallel to the plane L. In this case, the collision must occur at one of the
box’s vertices. We can find a general formula for the position of the vertex that
makes contact with the plane by examining expressions for all eight of the box’s
vertices. The position Z of each vertex of the box is given by

 () 1 1 1
2 2 2t= ± ± ±Z Q R S T. (12.16)

To find the vertex closest to the plane, we choose signs such that the dot product
⋅L Z is minimized. This occurs when the quantities ± ⋅R N, ± ⋅S N, and ± ⋅T N are

all negative; so if any one is positive, we choose the corresponding negative sign
in Equation (12.16). The point of contact C is then given by

 () () () ()[]1
2 sgn sgn sgnt= − ⋅ + ⋅ + ⋅C Q R N R S N S T N T . (12.17)

 In the case that exactly one of the quantities ⋅R N , ⋅S N , and ⋅T N is zero,
the corresponding axis of the box is parallel to the plane, and any collision must
occur at an edge. The endpoints 1C and 2C of the edge are given by modifying
Equation (12.17) so that both signs are chosen for the term containing the zero
dot product. For instance, if 0⋅ =T N , then we have

 () () ()[]1
1,2 2 sgn sgnt= − ⋅ + ⋅ ±C Q R N R S N S T . (12.18)

This modification is taken one step further when two of the quantities ⋅R N ,
⋅S N , and ⋅T N are zero. In this case, the collision occurs at a face of the box

whose vertices are given by modifying Equation (12.17) so that both signs are

366 12. Collision Detection

chosen for both of the terms containing zero dot products. For instance, if
0⋅ =S N and 0⋅ =T N , then the vertices 1C , 2C , 3C , and 4C of the face in contact

with the plane are given by

 () ()[]1
1,2,3,4 2 sgnt= − ⋅ ± ±C Q R N R S T . (12.19)

12.1.3 Spatial Partitioning

Being able to determine whether an object collides with a plane is essential to
fast collision detection in a spatially partitioned environment. Since regions of
octrees and BSP trees are separated by planes, we can usually tell that a moving
object does not collide with large parts of the world without having to perform
collision detection tests with the actual geometry in those regions.
 Suppose that an object moves from the point 1P to the point 2P during a single
frame. Let , D=L N represent a plane that partitions the world geometry in
some way, and suppose that the moving object has an effective radius of effr with
respect to that plane. We say that the object lies completely on the positive side
of the plane L if its position P satisfies

 effr⋅ ≥L P , (12.20)

and we say that the object lies completely on the negative side of the plane L if
its position P satisfies

 effr⋅ ≤ −L P . (12.21)

If both of the points 1P and 2P represent positions of the object for which it lies
completely on the positive side of the plane, then we know that no part of the
object ever crosses into the negative side of the plane L. Similarly, if both of the
points 1P and 2P represent positions of the object for which it lies completely on
the negative side of the plane, then we know that no part of the object ever cross-
es into the positive side of the plane L. When these cases occur, we can avoid
performing collision detection calculations between the moving object and any
geometry that lies on the opposite side of the plane L.

12.2 General Sphere Collisions

We now study a powerful technique for determining when a moving sphere col-
lides with an arbitrary static environment. The method presented in this section is
quite capable of serving as the entire collision detection system for a 3D game

12.2 General Sphere Collisions 367

engine, so long as it is acceptable to approximate moving objects by their bound-
ing spheres. It can also be employed to detect collisions between a moving sphere
and any other arbitrarily complex moving object by subtracting velocities.
 The collision detection method is based on the fact that the center of a sphere
of radius r in contact with another object lies at exactly the distance r from the
surface of the object. If we consider a sphere in contact with a polygonal model,
the set of all possible centers forms a surface having three kinds of components.
First, the set of centers for which a sphere is in contact with a single face of the
model consists of the interior of the face moved outward in the face’s normal
direction by the radius r. Second, the center of a sphere in contact with a single
edge of the model lies on the cylinder of radius r having the edge as its axis.
Third, the center of a sphere in contact with a single vertex of the model lies on
the sphere of radius r centered at the vertex position. We can determine when a
moving sphere collides with the model by determining when the ray representing
the motion of the sphere’s center intersects the expanded surface of the model, as
illustrated in Figure 12.3.
 The procedure for determining whether a sphere of radius r collides with a
polygonal model is summarized by the following three steps.

A. Determine whether the sphere’s center intersects any of the faces of the mod-
el after they have been moved outward by the distance r. If it does intersect a
face, then skip the next two steps.

C

r

Figure 12.3. A sphere of radius r collides with a polygonal model when its center C in-
tersects the expansion of the surface by the distance r.

368 12. Collision Detection

B. Determine whether the sphere’s center intersects any of the cylinders of radi-
us r corresponding to the expanded edges of the model. If it does intersect an
edge, skip the third step.

C. Determine whether the sphere’s center intersects any of the spheres of radius
r corresponding to the expanded vertices of the model.

 When performing intersections with the edge cylinders, we do not have to
worry about whether the intersection occurs on the exterior surface because an
intersection with the interior surface would be preceded along the ray by a face
intersection (see Figure 12.4). Likewise, an interior intersection with a vertex
sphere would be preceded by either a face intersection or an edge cylinder inter-
section.
 A ray intersection with a triangular face of a model can be accomplished us-
ing the method discussed in Section 6.2.1. Each face’s plane needs to be offset by
the distance r to determine the point of ray intersection. The barycentric coordi-
nates of that point can then be calculated using the original vertex positions of the
triangle (see Chapter 6, Exercise 5). A ray intersection with a vertex sphere can
be performed using the method discussed in Section 6.2.3 after translating the
vertex’s position to the origin. Calculating the intersection of a ray and an edge
cylinder is slightly more complicated since the cylinder can have an arbitrary
orientation.

Figure 12.4. A ray intersection with the interior surface of an edge cylinder must be pre-
ceded by a face intersection, in which case the cylinder intersection calculation would
never have been performed. Thus, cylinder intersections can be assumed to lie on the
exterior of the expanded surface. A similar argument applies to vertex spheres.

12.2 General Sphere Collisions 369

 Suppose we need to determine at what parameter value t the ray given by
()t t= +P S V intersects a cylinder of radius r corresponding to the edge having

endpoints 1E and 2E . It is convenient to translate our coordinate system by 1−E so
that one end of the cylinder is centered at the origin. A point P lies on the lateral
surface of the infinite cylinder aligned to the edge if its distance from the axis

2 1= −A E E is equal to r. Using the distance formula derived in Section 5.1.1, we
can describe the set of points on the surface of the infinite cylinder as follows.

()
()

2 2 2

2
2

2

projr P

P
A

= −

⋅
= −

A P

P A (12.22)

Replacing P with the translated ray () 1t −P E gives us

 () ()[] 2
02 2

0 2

tr t
A

+ ⋅
= + −

S V A
S V , (12.23)

where 0 1= −S S E . Expanding this and collecting terms, we obtain the quadratic
equation 2 2 0at bt c+ + = , where

()

()()

()

2
2

2

0
0 2

2
02 2

0 2 .

a V
A

b
A

c r
A

⋅
= −

⋅ ⋅
= ⋅ −

⋅
= − −

V A

S A V A
S V

S A
S (12.24)

 The discriminant 24D b ac= − tells us whether the ray intersects the infinite
cylinder. If 4 0D > , we must also check that the point of intersection falls within
the edge. Since the value of a is always positive, the parameter t corresponding to
the first intersection along the path followed by the ray is given by

2b b act

a
− − −= . (12.25)

The signed length L of the projection of () 1t −P E onto the vector A is equal to

 ()[]1tL − ⋅
=

P E A

A
.

370 12. Collision Detection

The ray intersects the portion of the cylinder corresponding to the edge if L is
positive and less than A , so we simply need to check that

 ()[] 2
10 t A< − ⋅ <P E A .

 When determining whether a swept sphere collides with a complex geomet-
rical model, we want to avoid as many ray-triangle, ray-cylinder, and ray-sphere
intersects as possible. The first step should always be to determine whether a col-
lision would occur with the model’s bounding sphere. For a moving sphere of
radius r and a model having a bounding sphere of radius R, we need to intersect a
ray with a sphere of radius R r+ . The point of intersection is irrelevant—we only
need to know whether an intersection occurs.
 If the bounding sphere test passes, we must determine whether the swept
sphere collides with a face, edge, or vertex of the model. To avoid unnecessary
intersection tests, these components of a model should be sorted into some kind
of hierarchical structure, such as an octree, and stored in an efficiently traversable
format ahead of time. Creating separate structures for faces, edges, and vertices
helps reduce memory access costs since edge and vertex intersects do not need to
be performed if a face intersection is found.
 Not all of a model’s edges and vertices need to be considered for collision
detection. As shown in Figure 12.5, the cylinder surrounding an edge where two
faces meet at an exterior angle of less than or equal to 180 degrees lies complete-
ly inside the expanded surface. Thus, no part of the cylinder contributes to the
collision surface, and the edge can be safely ignored. A similar principle applies
to vertices. If a particular vertex is not the endpoint of any eligible edge, then it
must also lie completely inside the expanded surface.
 To determine whether two faces sharing an edge with endpoints 1E and 2E
meet at an exterior angle less than or equal to 180 degrees, we need to know for

Figure 12.5. When two faces meet at an exterior angle of less than 180 degrees, the cyl-
inder surrounding the shared edge lies completely inside the expanded collision surface.
In this case, the cylinder does not need to be considered for collision detection.

12.3 Sliding 371

which of the two faces the vertices 1E and 2E occur in counterclockwise order.
(For each edge structure created by the BuildEdges() function shown in List-
ing 10.1, the triangle for which the vertices occur counterclockwise is always
listed first.) Let 1N be the normal to the face for which the vertices 1E and 2E oc-
cur in counterclockwise order, and let 2N be the normal to the face for which the
vertices 1E and 2E occur in clockwise order. The two faces meet at an exterior
angle less than or equal to 180 degrees if

 ()[]1 2 1 2 0× − ⋅ ≥N E E N . (12.26)

12.3 Sliding

When a moving object collides with a stationary part of the environment and is
not destroyed as a consequence of the collision, most games allow the object to
slide along the surface of the geometry that it hit. This is especially useful when
the moving object is a character under user control, since sliding avoids the frus-
tration of getting stuck whenever a player runs into something.
 The distance by which an object slides over a surface during the single frame
that it collides with part of the environment is determined by the angle with
which the object struck the surface. As shown in Figure 12.6, a typical sliding
implementation may choose to move an object to the point on the surface that is
closest to the point at which it would have reached had the surface not been there

N

Q

1P

2P

3P

Figure 12.6. The part of the path from 1P to 2P that lies beyond the point of collision Q is
projected onto the direction perpendicular to the normal vector N to determine how far an
object should slide.

372 12. Collision Detection

to obstruct its motion. The difference between this point and the point at which
the object hits the surface is perpendicular to the normal direction at the point of
collision.
 Suppose an object attempts to move from the point 1P to the point 2P during a
single frame, but collides with the expansion of some surface at the point Q. If
the unit normal direction to the surface at the point Q is N, then we can project
the untraveled portion of the object’s path onto the direction perpendicular to the
surface to find a new destination 3P by calculating

 ()[]3 2 2= − − ⋅P P P Q N N. (12.27)

Of course, we need to consider possible collisions between Q and 3P , so the pro-
cess repeats until either no collision occurs or the sliding distance falls below
some minimum threshold.
 When an object collides with a face of a model at a point Q, one may be
tempted to interpolate the vertex normal vectors using the barycentric coordinates
of the point Q to obtain the normal direction there. This should be avoided not
only because it creates a discontinuity in the normal direction at the cylindrical
edges and spherical vertices, but because it prevents the calculation of an accu-
rate sliding direction. Using a normal vector that is not truly perpendicular to the
expanded surface causes the sliding direction to either take the moving object
away from the surface or causes it to point inward, in which case another colli-
sion occurs immediately when attempting to slide.

12.4 Collision of Two Spheres

Suppose that two spheres are in motion and have a constant linear velocity during
a time interval beginning at 0t = and ending at 1t = . We assume that the spheres
are not already intersecting and that neither sphere contains the other. Let the
points 1P and 2P represent the initial and final positions of the first sphere’s cen-
ter, and let 1Q and 2Q be the initial and final positions of the second sphere’s cen-
ter, as shown in Figure 12.7. We define the velocity vectors PV and QV as

2 1

2 1

P

Q

= −
= −

V P P

V Q Q . (12.28)

The position ()tP of the first sphere’s center and the position ()tQ of the second
sphere’s center are then given by

12.4 Collision of Two Spheres 373

1P

2P

1Q

2Q PV

QV

Figure 12.7. Detecting a collision between two moving spheres.

()
()

1

1

P

Q

t t
t t

= +
= +

P P V

Q Q V . (12.29)

 Let Pr and Qr be the radii of the two spheres. We wish to determine whether
the distance d between the centers ()tP and ()tQ is ever equal to P Qr r+ at some
time [)0,1t ∈ . If so, then the spheres are tangent to each other at time t, and a col-
lision has taken place. We examine the squared distance between ()tP and ()tQ
given by

 () ()2 2d t t= −P Q . (12.30)

Substituting the values given by Equation (12.29) for ()tP and ()tQ , we have

 2 2
1 1P Qd t t= + − −P V Q V . (12.31)

For convenience, we define

1 1

P Q

= −
= −

A P Q

B V V (12.32)

so that Equation (12.31) can be written as

374 12. Collision Detection

 ()

2 2

2 2 22

d t
A t t B

= +

= + ⋅ +

A B

A B . (12.33)

Using the quadratic formula to solve for t gives us the formulas

() () ()

() () ()

2 2 2 2

1 2

2 2 2 2

2 2

B A d
t

B
B A d

t
B

− ⋅ − ⋅ − −
=

− ⋅ + ⋅ − −
=

A B A B

A B A B
. (12.34)

Setting P Qd r r= + gives us the times 1t and 2t when the two spheres are tangent, if
ever. It is possible that the value inside the radical is negative, in which case the
spheres never collide. It is also possible that 2 0B = , meaning that either both
spheres are stationary or that both are traveling in the same direction at the same
speed and thus cannot collide.
 Since 2B is not negative, the value of 1t is always less than or equal to the
value of 2t . The time 1t represents the instant at which the spheres are tangent
while they are still approaching each other. The time 2t , however, represents the
instant at which the spheres are tangent while they are moving away from each
other. Since we assume that the spheres are not intersecting to begin with, we are
only interested in the time 1t when they first collide. Thus, we only need to calcu-
late the following time t to determine when a collision occurs.

() () ()2 2 2 2

2
P QB A r r

t
B

− ⋅ − ⋅ − − +  =
A B A B

 (12.35)

If t does not fall in the range [)0,1 , then no collision occurs during our time inter-
val of interest.
 It is possible to determine that a collision cannot occur without evaluating
Equation (12.35). The time t at which the squared distance 2d is minimized can
be found by setting the derivative of the right side of Equation (12.33) to zero as
follows.

 ()22 2 0B t + ⋅ =A B (12.36)

Solving for t produces the following time at which the distance between the cen-
ters of the spheres is the least.

12.4 Collision of Two Spheres 375

 2t
B
⋅= − A B (12.37)

Plugging this time into Equation (12.33) yields the smallest distance ever separat-
ing the centers of the two spheres:

 () 2
2 2

2d A
B
⋅

= −
A B

. (12.38)

If ()2 2
P Qd r r> + , then we know that the two spheres can never collide.

 Once we have determined that a collision has occurred at time t, we can cal-
culate the centers ()tP and ()tQ of the two spheres at that time by plugging t into
Equations (12.29). As shown in Figure 12.8, the point of contact C lies on the
line segment connecting ()tP and ()tQ at a distance Pr from ()tP , and is thus
given by

 () Pt r= +C P N, (12.39)

where N is the unit length normal vector pointing from ()tP to ()tQ :

 () ()
() ()
t t
t t

−
=

−
Q P

N
Q P

. (12.40)

N

C
Pr

()tP

()tQ

Figure 12.8. The point of contact C where two spheres meet lies on the line connecting
their centers at the time of the collision.

376 12. Collision Detection

Chapter 12 Summary

Collision of a Sphere and a Plane

A sphere of radius r whose center moves from the point 1P at time 0t = to the
point 2P at time 1t = collides with a plane , D=L N at time

 1t
′ ⋅= −
′ ⋅

L P

L V
,

where , D r′ = −L N .

Collision of a Box and a Plane

A box described by the vectors R, S, and T whose center moves from the point
1Q at time 0t = to the point 2Q at time 1t = collides with a plane , D=L N at

time

 1t
′ ⋅= −
′ ⋅

L Q

L V
,

where eff, D r′ = −L N and effr is the effective radius of the box, given by

 ()1
eff 2r = ⋅ + ⋅ + ⋅R N S N T N .

When a box collides with the plane at a point, the position C of the vertex mak-
ing contact with the plane is given by

 () () () ()[]1
2 sgn sgn sgnt= − ⋅ + ⋅ + ⋅C Q R N R S N S T N T ,

where () ()1 2 1t t= + −Q Q Q Q .

General Sphere Collisions

Two faces sharing an edge with endpoints 1E and 2E meet at an exterior angle
less than or equal to 180 degrees if

 ()[]1 2 1 2 0× − ⋅ ≥N E E N ,

where 1N is the normal to the face for which the vertices 1E and 2E occur in coun-
terclockwise order, and 2N is the normal to the face for which the vertices 1E and

2E occur in clockwise order.

Chapter 12 Summary 377

A ray ()t t= +P S V intersects an infinite cylinder of radius r representing the
edge with endpoints 1E and 2E at the parameter value

2b b act

a
− − −= ,

where

()

()()

()

2
2

2

0
0 2

2
02 2

0 2

2 1

0 1 .

a V
A

b
A

c r
A

⋅
= −

⋅ ⋅
= ⋅ −

⋅
= − −

= −
= −

V A

S A V A
S V

S A
S

A E E

S S E

The intersection occurs between the edge’s endpoints if

 ()[] 2
10 t A< − ⋅ <P E A .

Sliding

If an object traveling from the point 1P to 2P collides with a surface at the point
Q, then the point 3P to which it should slide is given by

 ()[]3 2 2= − − ⋅P P P Q N N,

where N is the unit normal vector at the point Q.

Collision of Two Spheres

A sphere of radius Pr moving from the point 1P at time 0t = to the point 2P at time
1t = collides with another sphere of radius Qr moving from the point 1Q to the

point 2Q at time

() () ()2 2 2 2

2
P QB A r r

t
B

− ⋅ − ⋅ − − +  =
A B A B

,

where

 () ()
1 1

2 1 2 1

= −
= − − −

A P Q

B P P Q Q .

378 12. Collision Detection

Exercises for Chapter 12

1. Determine the time t when a sphere having a radius of two meters collides
with the plane 10 mx = if its center lies at the origin at time 0t = and it
moves with a constant velocity of 2,0,1 m s.

2. Suppose a collision occurs at the point Q on the surface of a cylinder of ra-
dius r whose ends are centered at the origin and the point A. Find an expres-
sion for the unit normal vector N at the point Q.

3. Write a program that determines whether two spheres collide within a given
time interval. The program should take as parameters the initial positions
and velocities of the two spheres. If a collision occurs, the program should
calculate the point of contact at the time of collision.

 379

Chapter 13

Linear Physics

Simulating the accurate motion and interaction of dynamic objects adds a perva-
sive feeling of realism to a game and can usually be achieved without overly
complex mathematics. This chapter and Chapter 14 discuss several general topics
in classical mechanics that apply to game programming. We begin with an exam-
ination of linear motion, which refers to any motion that is not taking place in a
rotating environment.

13.1 Position Functions

A position function provides the 3D position of an object as a function of time.
Time is usually measured relative to some starting point when the position of an
object is known. For instance, suppose that an object is traveling in a straight line
with a constant velocity 0v . If the position of the object at time 0t = is known to
be 0x , then its position ()tx at any time afterward is given by

 () 0 0t t= +x x v . (13.1)

 A velocity function describes the 3D velocity of an object as a function of
time. The velocity function ()tv of an object is given by the derivative of the po-
sition function with respect to time. The time derivative is commonly denoted by
placing a dot above the function being differentiated:

 () () ()dt t t
dt

= =v x x . (13.2)

Since the velocity of the object whose position is given by Equation (13.1) is
constant, its velocity function ()tv is simply given by

 () 0t =v v . (13.3)

380 13. Linear Physics

An object undergoing a constant acceleration 0a has the velocity function

 () 0 0t t= +v v a . (13.4)

The acceleration function ()ta of an object, which describes the object’s 3D ac-
celeration as a function of time, is given by the derivative of the velocity
function:

 () () () ()
2

2

dt t t t
dt

= = =a v x x  . (13.5)

 We can integrate any velocity function to determine the distance d that an
object has traveled between times 1t and 2t as follows.

 ()
2

1

t

t

d t dt=  v (13.6)

Integrating Equation (13.4) from time zero to time t, we have

()0 0
0

21
0 02 .

t

d t dt

t t

= +

= +

 v a

v a (13.7)

Adding the distance d to an initial position 0x , the position function ()tx of a uni-
formly accelerating object is given by

 () 21
0 0 02t t t= + +x x v a . (13.8)

 It is often the case that we are aware of the forces acting on an object, and we
want to find a function that predicts the future position of the object. The sum of
the forces 1 2, , , NF F F acting on an object is equal to the object’s mass m times
its acceleration ()ta :

 () () ()
1

N

i
i

t m t m t
=

= =F a x . (13.9)

Each force ()i tF may be a constant, a function of the object’s position, or a func-
tion of the object’s velocity. Equation (13.9) is a second-order differential equa-
tion whose solution ()tx is the object’s position function. The next section re-
views the general solutions to second-order differential equations, and solutions
to specific force equations are discussed at various places throughout this chapter
and Chapter 14.

13.2 Second-Order Differential Equations 381

13.2 Second-Order Differential Equations

A second-order linear ordinary differential equation in the function ()x t is one of
the following form.

 () () () ()
2

2

d dx t a x t bx t f t
dt dt

+ + = (13.10)

Using prime symbols to denote derivatives, we can write this in a slightly more
compact form as

 () () () ()x t ax t bx t f t′′ ′+ + = . (13.11)

In this chapter, a and b are always constants; but in general, they may be func-
tions of t.

13.2.1 Homogeneous Equations

The function ()f t is identically zero in many situations, in which case the differ-
ential equation is called homogeneous. Before attempting to find a solution ()x t
to the equation

 () () () 0x t ax t bx t′′ ′+ + = , (13.12)

we make a couple of important observations. First, suppose that the functions
()1x t and ()2x t are solutions to Equation (13.12). Then the functions ()1Ax t and

()2Bx t are also solutions, where A and B are arbitrary constants. Furthermore, the
function () ()1 2Ax t Bx t+ is also a solution to Equation (13.12) since we can write

() () () ()[] () ()[]
() () ()[] () () ()[]

1 2 1 2 1 2

1 1 1 2 2 2

0 0 0.

Ax t Bx t a Ax t Bx t b Ax t Bx t
A x t ax t bx t B x t ax t bx t
A B

′′ ′′ ′ ′+ + + + +
′′ ′ ′′ ′= + + + + +

= ⋅ + ⋅ = (13.13)

 A general solution ()x t to Equation (13.12) becomes evident upon making
the substitution

 () rtx t e= . (13.14)

The first and second derivatives of ()x t are given by

382 13. Linear Physics

()
() 2

rt

rt

x t re

x t r e

′ =
′′ = , (13.15)

and substitution into Equation (13.12) yields

 2 0rt rt rtr e are be+ + = . (13.16)

Multiplying both sides by rte− eliminates the exponentials, and we have

 2 0r ar b+ + = . (13.17)

Equation (13.17) is called the auxiliary equation and has the solutions

2
1

2
2

1 4
2 2

1 4
2 2

ar a b

ar a b

= − + −

= − − − . (13.18)

Unless 1 2r r= , the general solution to Equation (13.12) is thus given by

 () 1 2r t r tx t Ae Be= + . (13.19)

Example 13.1. Solve the differential equation

 () () ()5 6 0x t x t x t′′ ′− + = . (13.20)

Solution. The auxiliary equation is

 2 5 6 0r r− + = , (13.21)

which has the solutions 1 2r = and 2 3r = . The general solution to Equation (13.20)
is therefore given by

 () 2 3t tx t Ae Be= + , (13.22)

where A and B are arbitrary constants. 

 If 1 2r r= , then it must be true that 2 4a b= , so Equation (13.12) can be written
as

13.2 Second-Order Differential Equations 383

 () () ()
2

0
4

ax t ax t x t′′ ′+ + = . (13.23)

It is a simple task to verify that the function

 () ()2a tx t te −= (13.24)

is a solution to Equation (13.23), so the general solution to Equation (13.12)
when 1 2r r= is given by

 () rt rtx t Ae Bte= + , (13.25)

where we have set 1 2r r r= = .
 If 2 4 0a b− < , then the roots of the auxiliary equation are complex. The solu-
tion given by Equation (13.19) is still correct, but it requires the use of complex
arithmetic. We can express the solution entirely in terms of real-valued functions
by using the formula

 ()cos sinα βi αe e β i β+ = + (13.26)

(see Appendix A, Section A.4). Assuming that a and b are real numbers, the roots
1r and 2r of the auxiliary equation are complex conjugates, so we may write

1

2

r α βi
r α βi

= +
= − , (13.27)

where

 2

2
1 4
2

aα

β b a

= −

= − . (13.28)

The solution given by Equation (13.19) can now be written as

() () ()

() ()
() ()[]

cos sin cos sin

cos sin .

α βi t α βi t

αt αt

αt

x t Ae Be
Ae βt i βt Be βt i βt
e A B βt A B i βt

+ −= +

= + + −

= + + − (13.29)

This solution can be expressed using two real constants 1C and 2C by setting

384 13. Linear Physics

()
()

1
1 22

1
1 22

A C C i
B C C i

= +
= − . (13.30)

Plugging these values into Equation (13.29) yields

 () ()1 2cos sinαtx t e C βt C βt= + . (13.31)

Example 13.2. Solve the differential equation

 () ()4 0x t x t′′ + = . (13.32)

Solution. The auxiliary equation is

 2 4 0r + = , (13.33)

which has the solutions 1 2r i= and 2 2r i= − . The solution to Equation (13.32) giv-
en by

 () 2 2it itx t Ae Be −= + (13.34)

is valid, but we can also express the solution entirely in terms of real-valued
functions by using Equation (13.31) with 0α = and 2β = as

 () 1 2cos2 sin 2x t C t C t= + , (13.35)

where 1C and 2C are arbitrary constants. 

 Equation (13.31) can be transformed into an alternate solution involving only
a single trigonometric function by introducing the constant ()2 2 1 2

1 2D C C= + and
writing

 () 1 2cos sinαt C Cx t De βt βt
D D

 = + 
 

. (13.36)

Suppose that 1C and 2C are the lengths of the legs of a right triangle and that δ is
the angle opposite the side of length 1C (see Figure 13.1). Then D is the length of
the hypotenuse, so

13.2 Second-Order Differential Equations 385

D

δ

1C

2C
Figure 13.1. In this triangle, 1sin δ C D= and 2cosδ C D= . This enables us to write
Equation (13.36) in the form given by Equation (13.39).

1

2

sin

cos

C δ
D

C δ
D

=

= . (13.37)

Plugging these into Equation (13.36) yields

 () ()cos sin sin cosαtx t De βt δ βt δ= + . (13.38)

Using an angle sum identity (see Appendix B, Section B.4), this is equivalent to

 () ()sinαtx t De βt δ= + . (13.39)

13.2.2 Nonhomogeneous Equations

Differential equations of the form

 () () () ()x t ax t bx t f t′′ ′+ + = (13.40)

for which the function ()f t is not identically zero are called nonhomogeneous.
The solution to a nonhomogeneous differential equation has the form

 () () ()x t g t p t= + , (13.41)

where the function ()g t is the general solution to the corresponding homogene-
ous equation

 () () () 0x t ax t bx t′′ ′+ + = . (13.42)

The function ()p t is called a particular solution to the nonhomogeneous equa-
tion and satisfies

386 13. Linear Physics

 () () () ()p t ap t bp t f t′′ ′+ + = . (13.43)

To see that () ()g t p t+ is in fact a solution to Equation (13.40), we simply plug it
in:

() () () ()[] () ()[]
() () () () () ()

() ()0 .

g t p t a g t p t b g t p t
g t ag t bg t p t ap t bp t

f t f t

′′ ′′ ′ ′+ + + + +
′′ ′ ′′ ′= + + + + +

= + = (13.44)

 There are several methods for finding the particular solution to a nonhomo-
geneous differential equation. The method that we present in this section is called
the method of undetermined coefficients and is sufficient for the nonhomogene-
ous equations encountered later in this chapter. The general idea upon which the
method of undetermined coefficients is based is to guess at the form of the par-
ticular solution ()p t using the knowledge that we possess about the form of the
function ()f t . It is usually effective to choose ()p t to be a sum of terms that
have the same form as ()f t or whose derivatives have the same form as ()f t .
Each term is multiplied by an unknown coefficient for which we attempt to find a
solution by plugging ()p t into the nonhomogeneous equation. If coefficients can
be determined for which ()p t satisfies Equation (13.40), then a particular solu-
tion has been found. The following examples illustrate this technique in detail.

Example 13.3. Solve the differential equation

 () () ()5 6 12 4x t x t x t t′′ ′− + = − . (13.45)

Solution. We have already found the general solution ()g t to the homogeneous
equation in Example 13.1:

 () 2 3t tg t Ae Be= + . (13.46)

The nonhomogeneous portion of Equation (13.45) is a linear polynomial, so we
presume that the particular solution has the form

 () 2p t Dt Et F= + + , (13.47)

where the coefficients D, E, and F need to be determined. Plugging ()p t into
Equation (13.45) produces

13.2 Second-Order Differential Equations 387

() ()
()

2

2

12 4 2 5 2 6

6 10 6 2 5 6

t D Dt E Dt Et F

Dt D E t D E F

− = − + + + +

= + − + + − + . (13.48)

Equating the coefficients of like terms from each side, we find that

 0D = , 2E = , and 1F = . (13.49)

Thus, the function () 2 1p t t= + is a particular solution to Equation (13.45). The
complete solution is given by

() () ()

2 3 2 1t t

x t g t p t

Ae Be t

= +

= + + + , (13.50)

where A and B are arbitrary constants. 

Example 13.4. Solve the differential equation

 () ()4 12sinx t x t t′′ + = . (13.51)

Solution. We have already found the general solution ()g t to the homogeneous
equation in Example 13.2:

 () cos2 sin 2g t A t B t= + . (13.52)

Equivalently, we could write ()g t in the form

 () ()sin 2g t C t δ= + . (13.53)

Since the nonhomogeneous portion of Equation (13.51) is a sine function, we
presume that the particular solution has the form

 () sin cosp t D t E t= + , (13.54)

where the coefficients D and E need to be determined. Plugging ()p t into Equa-
tion (13.51) produces

()12sin sin cos 4 sin cos

3 sin 3 cos .
t D t E t D t E t

D t E t
= − − + +
= + (13.55)

388 13. Linear Physics

Equating the coefficients of the sine and cosine terms from each side, we find
that

 4D = and 0E = . (13.56)

Thus, the function () 4sinp t t= is a particular solution to Equation (13.51). The
complete solution is given by

 () cos 2 sin 2 4sinx t A t B t t= + + (13.57)

or, equivalently,

 () ()sin 2 4sinx t C t δ t= + + , (13.58)

where A, B, C, and δ are arbitrary constants. 

13.2.3 Initial Conditions

In every solution to a second-order differential equation presented so far, there
have been two arbitrary constants. These constants allow for the specification of
certain initial conditions that dictate the values of ()x t and ()x t′ when 0t = . Sup-
pose that the initial value of ()x t is required to be 0x and the initial value of ()x t′
is required to be 0v . Then the arbitrary constants appearing in the function ()x t
can be determined by examining the following system of equations.

()
()

0

0

0
0

x x
x v

=
′ = (13.59)

This is demonstrated in the following examples.

Example 13.5. Solve the differential equation

 () () ()5 6 0x t x t x t′′ ′− + = (13.60)

subject to the initial conditions

()
()
0 3
0 0

x
x

=
′ = . (13.61)

13.2 Second-Order Differential Equations 389

Solution. The general solution to the differential equation has already been found
in Example 13.1:

 () 2 3t tx t Ae Be= + . (13.62)

The derivative of ()x t is given by

 () 2 32 3t tx t Ae Be′ = + . (13.63)

Imposing the initial conditions given by Equation (13.61), we have

()
()
0 3
0 2 3 0

x A B
x A B

= + =
′ = + = . (13.64)

Solving this linear system yields

 9A = and 6B = − . (13.65)

Thus, the solution to the differential equation that satisfies the initial conditions is
given by

 () 2 39 6t tx t e e= − .  (13.66)

Example 13.6. Solve the differential equation

 () ()4 12sinx t x t t′′ + = (13.67)

subject to the initial conditions

()
()
0 0
0 6

x
x

=
′ = . (13.68)

Solution. The general solution to the differential equation has already been found
in Example 13.4:

 () cos2 sin 2 4sinx t A t B t t= + + . (13.69)

The derivative of ()x t is given by

 () 2 sin 2 2 cos2 4cosx t A t B t t′ = − + + . (13.70)

390 13. Linear Physics

Imposing the initial conditions given by Equation (13.68), we have

()
()
0 0
0 2 4 6

x A
x B

= =
′ = + = , (13.71)

from which we immediately deduce that 1B = . Thus, the solution to the differen-
tial equation that satisfies the initial conditions is given by the simplified function

 () sin 2 4sinx t t t= + .  (13.72)

13.3 Projectile Motion

In this section, we examine the motion of objects that are influenced only by the
force of gravity. The convention used in this chapter is that the z axis points up-
ward in world space, so the downward acceleration of gravity g is the vector

 0,0, g= −g , (13.73)

where the scalar g is approximately 29.8 m s on the surface of the earth. An ob-
ject in a gravitational field experiences a downward force of mg .
 The position ()tx of a projectile having initial position 0x and initial velocity

0v at time 0t = is given by

 () 21
0 0 2t t t= + +x x v g . (13.74)

Since the x and y components of g are 0, only the z component of Equation
(13.74) is quadratic. Using ()x t , ()y t , and ()z t to represent the components of

()tx , we have

()
()
()

0

0

21
0 2

x

y

z

x t x v t
y t y v t

z t z v t gt

= +
= +

= + − , (13.75)

where 0x , 0y , and 0z are the components of the initial position and xv , yv , and zv
are the components of the initial velocity.
 When a projectile attains its maximum height, its vertical velocity is zero.
We can determine the time t at which this occurs by solving the equation

 () 0zz t v gt= − = . (13.76)

13.3 Projectile Motion 391

Thus, a projectile reaches its maximum height at time

 zvt
g

= . (13.77)

Plugging this time into the function ()z t gives us the following expression for the
maximum height h attained by a projectile.

2

0 2
zvh z
g

= + (13.78)

Example 13.7. A projectile is launched from a platform 10 meters above the
ground with an initial speed of 50 m s in a direction forming an angle of 70 de-
grees with the horizontal plane (see Figure 13.2). What is the maximum height
above the ground attained by the projectile?

0v

70°

10 m

Figure 13.2. The projectile used in Example 13.7.

Solution. The projectile’s initial height 0z and initial upward velocity zv are given
by

0 10 m

50sin 70 47.0 m sz

z
v

=
= ° ≈ . (13.79)

Plugging these values into Equation (13.78) and using the value 29.8 m s for g,
we have 123 mh ≈ . 

392 13. Linear Physics

 The horizontal distance that a projectile travels before returning to the height
from which it was launched is called the projectile’s range. If a projectile is
launched from a horizontal plane at 0 0z = , then the time t at which it lands is
given by the solution to the equation

 21
2 0zv t gt− = . (13.80)

One solution to this equation is 0t = , corresponding to the time when the projec-
tile was launched. The other solution is

 2 zvt
g

= , (13.81)

and as we would expect, this is twice as long as it takes for the projectile to reach
its maximum height. If we assume that the projectile follows a path lying in the
x-z plane, then plugging this time into the function ()x t and subtracting the initial
x coordinate 0x gives us the following expression for the range r of a projectile.

 2 x zv vr
g

= (13.82)

Example 13.8. A projectile is launched with an initial speed of 30 m s in a di-
rection forming an angle of 40 degrees with the ground (see Figure 13.3). As-
suming the ground is flat down range, how far does the projectile travel before
landing?

40°

0v

Figure 13.3. The projectile used in Example 13.8.

Solution. We assume that the projectile is launched from the origin and that the
path of the projectile lies in the x-z plane. The xv and zv components of the initial
velocity are given by

13.3 Projectile Motion 393

30cos 40 23.0 m s
30sin 40 19.3 m s.

x

z

v
v

= ° ≈
= ° ≈ (13.83)

Plugging these values into Equation (13.82) and using the value 29.8 m s for g,
the range of the projectile is 90.4 meters. 

 Given an initial speed s at which a projectile is launched, we can determine at
what angle the initial velocity vector should point in order for the projectile to
reach a particular maximum height or to have a particular range. For motion in
the x-z plane, the components of the initial velocity are given by

cos
sin ,

x

z

v s α
v s α

=
= (13.84)

where α is the angle formed between the initial trajectory and the horizontal
plane. Given a desired maximum height h, we can plug the value of zv into Equa-
tion (13.78) and solve for α to obtain

 ()1
0

1sin 2α g h z
s

−  = − 
 

. (13.85)

Given a desired range r, we can plug the values of xv and zv into Equation (13.82)
as follows.

2 22 sin cos sin 2s sr α α α

g g
= = (13.86)

Solving for α gives us

 1
2

1 sin
2

rgα
s

−= . (13.87)

Since ()sin sinπ α α− = , there are two angles that produce the range r in Equation
(13.86): the angle α given by Equation (13.87) and its complementary angle

2π α− . If the values inside the inverse sine functions in Equations (13.85) and
(13.87) are greater than 1, then the initial speed s is not great enough to achieve
the desired maximum height or range.

394 13. Linear Physics

Example 13.9. A projectile is launched from the ground with an initial speed
of 65 m s (see Figure 13.4). Assuming that the ground is flat, at what angle α
should the projectile be launched so that it lands 400 meters down range?

0v

α
400 m

Figure 13.4. The projectile used in Example 13.9.

Solution. Plugging the values 65s = and 400r = into Equation (13.87), we have
34α ≈ °. The complementary angle 56β = ° would also result in the projectile

traveling a distance of 400 m. If we use the angle α, then the initial velocity is
given by

65cos34 53.9 m s
65sin 34 36.3 m s.

x

z

v
v

= ° ≈
= ° ≈  (13.88)

13.4 Resisted Motion

In the previous section, we neglected any kind of resistance to the motion of an
object. In reality, an object’s velocity is slowed by the medium through which it
is moving, whether it be air, water, or some other substance. A precise physical
formulation of resisted motion is complicated, but a decent approximation is
achieved by assuming that resistance produces a force that acts in the direction
opposite that in which an object is moving and is proportional to the magnitude
of the object’s velocity.
 The force equation for an object of mass m influenced by gravity and experi-
encing resistance from the surrounding medium is given by

 () ()m mk t m t− =g x x  , (13.89)

where mk is a constant describing the strength of the resistance. This can be re-
written as the following second-order nonhomogeneous differential equation.

13.4 Resisted Motion 395

 () ()t k t+ =x x g  (13.90)

The method of undetermined coefficients provides the following particular solu-
tion to Equation (13.90).

 ()t t
k

= g
x (13.91)

Adding the general solution to the homogeneous differential equation, we have

 () ktt e t
k

−= + + g
x A B , (13.92)

where the vectors A and B are arbitrary constants that can be determined by es-
tablishing initial conditions. Specifying the initial position 0x and initial velocity

0v , we have

()
()

0

0

0
0

=
=

x x

x v . (13.93)

Setting these equal to the values given by the functions ()tx and ()tx at time 0t =
gives us the system

0

0k
k

+ =

− + =

A B x

g
B v , (13.94)

from which we can derive the following expressions for A and B.

0
0 2

0
2

k k

k k

= − +

= −

g v
A x

g v
B (13.95)

The position function ()tx for an object moving through a resistive medium is
given by

 () ()0
0 2 1 ktkt t e

k k
−−= + + −g v g

x x . (13.96)

The velocity function ()tv is given by the derivative of ()tx :

396 13. Linear Physics

 () () 0
ktt t e

k k
− = = + − 

 
g g

v x v . (13.97)

 Over time, the velocity of an object whose motion is being resisted ap-
proaches a constant called the terminal velocity. The terminal velocity Tv is given
by the limit of the velocity function ()tv as t tends to infinity:

 ()limT
t

t
k→∞

= = g
v v . (13.98)

 Although it is not apparent from Equation (13.96), the position function for
an object moving through a resistive medium does converge to the familiar Equa-
tion (13.74) as the constant k approaches zero. This can be seen by evaluating the
limit

 () ()0
0 20

lim 1 kt

k

kt t e
k k

−

→

− = + + −  
g v g

x x . (13.99)

Replacing the exponential function with its power series (see Appendix D, Equa-
tion (D.11)), we have

()

()

()

2 2 3 3 4 4
0

0 20

2 3 2 4

0 0
0

3 2 4
2 21 1

0 0 0 02 20

21
0 0 2

lim
2! 3! 4!

lim
2! 3! 4!

lim
3! 4!

.

k

k

k

k k t k t k tt t kt
k k

t t kt k tt k
k k

kt k tt k t t k

t t

→

→

→

−  = + + − + − + −    
  = + + − − + − + −    
  = + − + + − − + −    

= + +

g v g
x x

g
x v g

x v v g v g

x v g







 (13.100)

13.5 Friction

Friction is the well-known force that arises when two surfaces are in contact. We
discuss two types of friction in this section: kinetic friction and static friction.
Kinetic friction occurs between two surfaces that are in motion relative to each
other and has the effect of resisting that motion. Static friction refers to the force
that holds a stationary object in place when it is in contact with another surface.

13.5 Friction 397

 The forces resisting the motion of one object sliding across the surface of
another object are very complex, but it turns out that the net kinetic frictional
force KF can usually be approximated quite accurately using the simple formula

 K KF μ N= − , (13.101)

where N is the normal component of the force by which the object is bound to the
surface (usually gravity), and Kμ is called the coefficient of kinetic friction. The
minus sign appears in Equation (13.101) because the kinetic friction force always
acts in the direction opposite that in which an object is moving across a surface.
The coefficient of kinetic friction Kμ is a positive constant that depends on the
types of the surfaces in contact with each other. Typical values of Kμ for various
surfaces are listed in Table 13.1 at the end of this section.

Example 13.10. Suppose that a 10-kg block is sliding down a plane that is in-
clined at an angle of 30 degrees. If the coefficient of kinetic friction is 0.5Kμ = ,
determine the block’s acceleration.

θmgcosmg θ

sinmg θ

Kμ N−

Figure 13.5. The block used in Example 13.10.

Solution. Let m be the mass of the block, and let θ be the angle by which the
plane is inclined. As shown in Figure 13.5, the block is acted on by a gravitation-
al force and a resisting force due to friction. The gravitational force can be divid-
ed into components that are parallel to the plane and perpendicular to the plane.
The parallel component GF is given by

 sinGF mg θ= (13.102)

398 13. Linear Physics

and pulls the block across the plane. The perpendicular component produces the
force holding the block to the plane:

 cosN mg θ= . (13.103)

The force KF due to kinetic friction is given by

 cosK K KF μ N μ mg θ= − = − (13.104)

and acts in the direction opposite that of GF . The acceleration a of the block is
equal to the net force acting on it divided by its mass:

 sin cosG K
K

F Fa g θ μ g θ
m
+= = − . (13.105)

Plugging in the angle of inclination and coefficient of kinetic friction, we obtain
the result

 () ()2 2 21 39.8 m s 0.5 9.8 m s 0.656 m s
2 2

a = ⋅ − ⋅ ⋅ ≈ . (13.106)

Notice that the mass of the block is inconsequential. 

 The static friction force prevents an object on a surface from moving by op-
posing any tangential force that may be acting on it. The maximum force SF that
can be exerted due to static friction is given by

 S SF μ N= − , (13.107)

where N is the normal force and Sμ is called the coefficient of static friction.
Again, we use a minus sign to indicate that the force acts in the direction opposite
that of any force trying to move the object. Typical values of Sμ for various sur-
faces are listed in Table 13.1.
 As soon as a force on an object exceeds the maximum value of SF given by
Equation (13.107), the object begins to move, and the static friction force is re-
placed by the kinetic friction force KF . It is often the case that K SF F< , so less
force is required to move an object once it has been set in motion than was re-
quired to initiate the motion.

13.5 Friction 399

Surfaces Kμ Sμ

Aluminum on aluminum 1.40 1.10

Aluminum on steel 0.47 0.61

Copper on steel 0.36 0.53

Steel on steel 0.57 0.74

Nickel on nickel 0.53 1.10

Glass on glass 0.40 0.94

Copper on glass 0.53 0.68

Oak on oak (parallel to grain) 0.48 0.62

Oak on oak (perpendicular to grain) 0.32 0.54

Rubber on concrete (dry) 0.90 1.00

Rubber on concrete (wet) 0.25 0.30

Table 13.1. Typical values of the coefficient of kinetic friction Kμ and coefficient of
static friction Sμ .

Example 13.11. A block is resting on a horizontal plane for which the coeffi-
cient of static friction is given by 0.5Sμ = . Determine by what angle the plane
needs to be inclined before the block begins sliding under the influence of
gravity.

Solution. We need to determine when the component of the gravitation force that
is parallel to the plane exceeds the static friction force. This occurs when

 sin cosS Smg θ μ N μ mg θ= = , (13.108)

where θ is the angle of inclination. Solving for θ , we have

 1tan 26.6Sθ μ−= ≈ °.  (13.109)

400 13. Linear Physics

Chapter 13 Summary

Force Equation

The acceleration ()ta of an object multiplied by its mass m is equal to the sum of
the forces acting on it:

 () () ()
1

N

i
i

t m t m t
=

= =F a x .

Second-Order Differential Equations

The general solution to the homogeneous second-order differential equation

 () () () 0x t ax t bx t′′ ′+ + =

is given by

 () 1 2r t r tx t Ae Be= + ,

where

2
1

2
2

1 4
2 2

1 4
2 2

ar a b

ar a b

= − + −

= − − − .

If 1 2r r r= = , then the general solution is given by

 () rt rtx t Ae Bte= + .

If 1r and 2r are complex numbers, then the general solution can also be written as

 () ()1 2cos sinαtx t e C βt C βt= + ,

where

 2

2
1 4
2

aα

β b a

= −

= − .

Chapter 13 Summary 401

This is equivalent to the solution

 () ()sinx t D βt δ= + ,

where

2 2
1 2

11sin .

D C C
Cδ
D

−

= +

=

Projectile Motion

The position ()tx of a projectile is given by the function

 () 21
0 0 2t t t= + +x x v g ,

where 0x is the initial position, 0v is the initial velocity, and 0,0, g= −g is the
acceleration of gravity. The maximum height h attained by the projectile is given
by

2

0 2
zvh z
g

= + ,

and the range r of the projectile is given by

 2 x zv vr
g

= .

Resisted Motion

The position function ()tx for an object moving through a resistive medium is
given by

 () ()0
0 2 1 ktkt t e

k k
−−= + + −g v g

x x ,

where k represents the intensity of the damping force. The terminal velocity Tv is
given by

 T k
= g

v .

402 13. Linear Physics

Friction

The force of kinetic friction KF is given by

 K KF μ N= − ,

where Kμ is the coefficient of kinetic friction. The kinetic friction force acts in
the direction opposite that of the motion.

The maximum force of static friction SF is given by

 S SF μ N= − ,

where Sμ is the coefficient of static friction. The static friction force acts in the
direction opposite that of any tangential force trying to move an object.

Exercises for Chapter 13

1. Solve the differential equation

 () () ()6 9 9 3x t x t x t t′′ ′− + = + .

2. Solve the differential equation

 () ()16 0x t x t′′ + =

 subject to the initial conditions ()0 3x = and ()0 1x′ = .

3. A projectile is launched from a platform 20 meters above the ground with an
initial speed of 20 m s in a direction forming an angle of 45 degrees with the
horizontal plane. What is the maximum height above the ground attained by
the projectile? Assume that the acceleration of gravity has magnitude g.

4. For what period of time does the projectile in Exercise 3 travel before it
lands on the ground?

5. Suppose a projectile is launched from the origin and travels toward a point P
in the x-z plane as shown in Figure 13.6. Assuming an acceleration of gravi-
ty 0,0, g= −g , at what initial velocity 0v would the projectile have to be
launched so that it strikes the point P under the constraint that its path at-
tains a maximum vertical difference h with the straight line connecting the
origin and the point P?

Exercises for Chapter 13 403

O

P
h

0v

x

z

Figure 13.6. The projectile launched in Exercise 5.

6. A rock is dropped from rest at 50 meters above the ground and allowed to
fall straight down through a resistive medium. Suppose that 11sk −= , and use
Newton’s method (see Section 6.1.4) to approximate the time t when the
rock hits the ground.

7. An object of mass M is hanging from a rope that runs over a frictionless pul-
ley and connects to another object of mass m lying on an inclined plane that
forms an angle θ with the horizontal (see Figure 13.7). The coefficient of
kinetic friction on the incline is Kμ . Assuming that M is much larger than m,
determine the downward acceleration a of the hanging object. [Hint. Both
masses are being accelerated, so the sum of the forces acting on the system
should be set equal to ()M m a+ .]

m

M

Figure 13.7. The system used in Exercise 7.

This page intentionally left blank

 405

Chapter 14
Rotational Physics

This chapter continues the survey of physics that begins in Chapter 13. We now
enter the domain of rotational mechanics to examine the behavior of rotating ob-
jects and the forces experienced in a rotating environment. Rotational physics has
a wide range of applications in game programming, from interaction between
players and objects in the environment to space combat simulations. Virtually
any object that is flying through the air or otherwise not resting on a surface is
probably rotating, and thus would benefit from an accurate simulation of its
motion.

14.1 Rotating Environments

This section discusses the physics that apply to an object in a rotating environ-
ment. A rotating environment refers to any frame of reference that is rotating
about some axis and includes everything from a merry-go-round to the planet
Earth. We begin with the introduction of angular velocity, and then we investi-
gate the forces experienced by an object in the rotating reference frame.

14.1.1 Angular Velocity

Suppose that a particle of mass m is rotating about an axis parallel to the unit vec-
tor A because it is attached to the axis by a string of length r (see Figure 14.1).
Let the vectors X and Y be unit vectors lying in the plane perpendicular to A
such that the axes X, Y, and A form a right-handed coordinate system (i.e.,

× =X Y A). Let ()θ t represent the counterclockwise angle that the projection of
the string onto the X-Y plane makes with the vector X at time t. The angular ve-
locity of the particle is defined to be the rate at which this angle is changing, and
is usually denoted by ω:

 () () ()dω t θ t θ t
dt

= = . (14.1)

406 14. Rotational Physics

A

Y

X

O

m
r

Figure 14.1. The angular velocity of a particle is a vector that is parallel to the axis of
rotation A and whose magnitude is equal to the rate of change of the angle formed in the
plane perpendicular to the axis.

The angular velocity is often written as a vector that is parallel to the axis of rota-
tion A and has the magnitude ()ω t . The vector angular velocity ()tω is defined
as

 () () ()t ω t θ t= =ω A A . (14.2)

 The speed at which a rotating particle moves through space is calculated by
multiplying the particle’s angular velocity by its distance from the axis of rota-
tion. For the particle shown in Figure 14.1, the speed ()v t is given by

 () ()v t ω t r= . (14.3)

However, this tells us nothing about what direction the particle is moving. Let the
vector function ()tr represent the position of the particle relative to a fixed origin
lying on the axis of rotation. As illustrated in Figure 14.2, the linear velocity vec-
tor ()tv of the particle is given by

 () () ()t t t= ×v ω r (14.4)

14.1 Rotating Environments 407

O

α

()tr

()tω
() ()t t×ω r

Figure 14.2. The linear velocity ()tv is equal to the cross product of the angular velocity

()tω and the position ()tr .

since the distance from the particle to the axis of rotation is equal to () sint αr ,
and the velocity ()tv is always perpendicular to the direction pointing toward the
axis.

14.1.2 The Centrifugal Force

We continue to consider the example in which a particle is fastened by a string to
the axis about which it is rotating. The linear acceleration ()ta of the particle is
equal to the derivative of its linear velocity with respect to time. Taking the time
derivative of the function ()tv given by Equation (14.4), we have

 () () () () () ()t t t t t t= = × + ×a v ω r ω r  . (14.5)

Since ()tr is equal to the linear velocity ()tv of the particle, we can write

 () () () () () ()[]t t t t t t= × + × ×a ω r ω ω r . (14.6)

If the angular velocity is constant, then the () ()t t×ω r term of the acceleration is
zero. The () () ()[]t t t× ×ω ω r term, however, is always present and points in the
direction from the particle toward the axis of rotation (see Figure 14.3). This part
of the acceleration arises from the tension in the string connecting the particle to
the axis of rotation. The particle itself experiences an equal but opposite force
known as the centrifugal force. The centrifugal force, given by

 () () ()[]()centrifugal m t t t= − × ×F ω ω r , (14.7)

408 14. Rotational Physics

O

α

()tr

()tω
() ()t t×ω r

() () ()[]()m t t t× ×ω ω r

Figure 14.3. The centrifugal force.

is responsible for the well-known effect that causes objects in a rotating system
to move away from the axis of rotation. In the case that ()tr and ()tω are per-
pendicular, the centrifugal force can be expressed as the scalar

2

2
centrifugal

mvF mω r
r

= = , (14.8)

where r is the radial distance from the particle to the axis of rotation.

14.1.3 The Coriolis Force

We now consider a somewhat more complicated situation in which a particle is
moving on the surface of a rotating object. Suppose that a particle of mass m is
rotating about some axis with angular velocity ()tω . Further suppose that the
particle is also moving relative to the rotating system with a velocity ()r tv . Then
the velocity ()tv of the particle for a stationary observer outside the system is
given by

 () () () ()rt t t t= × +v ω r v , (14.9)

where ()tr is the position of the particle relative to some origin lying on the axis
of rotation. Since the velocity ()r tv is rotating with the system, a stationary ob-
server sees the particle accelerating with respect to a fixed coordinate system ac-
cording to the function

 () () () ()f r rt t t t= × +a ω v a , (14.10)

14.1 Rotating Environments 409

where () ()r rt t=a v is the acceleration of the particle in the rotating reference
frame. The total linear acceleration ()ta of the particle is thus given by

() () () () () () ()

() () () () () () ()
f

r r

t t t t t t t
t t t t t t t

= = × + × +
= × + × + × +

a v ω r ω r a

ω r ω r ω v a

 
  . (14.11)

Since ()tr is equal to the linear velocity ()tv of the particle, we can write

 () () () () () ()[] () () ()2 r rt t t t t t t t t= × + × × + × +a ω r ω ω r ω v a . (14.12)

The force ()tF experienced by the particle is therefore

() () () () () () ()[]

() () ()2 .r r

t m t m t t m t t t
m t t m t

= = × + × ×
+ × +

F a ω r ω ω r

ω v a


 (14.13)

In the reference frame of the rotating system, the force ()r tF on the object ap-
pears to be the following.

() () () () () () () ()[]

() ()2
r r

r

t m t t m t t m t t t
m t t

= = − × − × ×
− ×

F a F ω r ω ω r

ω v


 (14.14)

As expected, the centrifugal force shows up again, but there is also a new term
called the Coriolis force that acts on the particle in a direction perpendicular to its
velocity in the rotating reference frame (see Figure 14.4). The Coriolis force,
given by

 () ()Coriolis 2 rm t t= − ×F ω v , (14.15)

O

α

()tr

()tω

()r tv

() ()2 rm t t×ω v

Figure 14.4. The Coriolis force.

410 14. Rotational Physics

arises only when the particle is moving within the rotating system. It is this force
that is responsible for the large-scale cyclonic motion of certain weather phe-
nomena. For instance, hurricanes rotate counterclockwise in the northern hemi-
sphere and clockwise in the southern hemisphere because the cross product in
Equation (14.15) changes sign at the equator.

14.2 Rigid Body Motion

We define a rigid body to be a system of particles that are absolutely fixed with
respect to each other and thus share the same angular velocity. A solid object can
be thought of as a collection of an infinite number of particles, each having an
infinitesimal mass. Since the particles composing a rigid body do not move with
respect to each other, the centrifugal and Coriolis forces do not apply when the
object is rotating. The only motions that a rigid body may undergo are the linear
motion associated with the path along which it travels through space and the an-
gular motion that it experiences because it is rotating about some axis. In this
section, we investigate the rotational properties of a rigid body and the effects of
external forces on this rotation.

14.2.1 Center of Mass

When a rigid body rotates freely in the absence of any external forces, it does so
about an axis that passes through the body’s center of mass. The center of mass is
the point within the rigid body at which a force could be applied in any direction
without causing any net torque when that point is considered the origin.
 Suppose that a rigid body is composed of some number of particles whose
position and mass are known. The total mass M of the system of particles is given
by

 k
k

M m= , (14.16)

where km is the mass of the k-th particle, and the summation is taken over all of
the particles belonging to the system. Let kr denote the position of the k-th parti-
cle. The center of mass C of the system is defined to be

 1
k k

k
m

M
= C r . (14.17)

For a solid object, we compute the total mass of a continuous volume using the
integral

14.2 Rigid Body Motion 411

 ()
V

M dm=  r , (14.18)

where ()dm r represents the differential mass at the position r, and V is the vol-
ume occupied by the object. If the density at the position r is described by the
function ()ρ r , then this integral can be written as

 ()
V

M ρ dV=  r . (14.19)

The center of mass for a solid object is then computed using the integral

 ()1
V
ρ dV

M
= C r r . (14.20)

Example 14.1. Calculate the center of mass of a cone of radius R, height h, and
constant density ρ, whose base is centered at the origin on the x-y plane (see
Figure 14.5).

h

R

z

x y

Figure 14.5. The cone used in Example 14.1.

Solution. We use cylindrical coordinates. The radius ()r z of a cross section of
the cone at a height z above the x-y plane is given by

 () () Rr z h z
h

= − . (14.21)

412 14. Rotational Physics

We calculate the total mass of the cone using Equation (14.19) to integrate over
the volume it occupies. The differential volume dV in cylindrical coordinates is
given by

 dV r dr dθ dz= , (14.22)

so the integral that we need to evaluate is

 ()[] 2

0

h

M ρπ r z dz=  , (14.23)

where the integrand represents the differential mass of a disk at height z above
the x-y plane. Replacing ()r z with the value given by Equation (14.21), we have

()
2

2
2

0

21
3 .

hRM ρπ h z dz
h

ρπR h

= −

=


 (14.24)

Due to the cylindrical symmetry of the cone, the x and y components of the cen-
ter of mass are clearly zero. The z component of the center of mass is found by
applying Equation (14.20):

()2

0 0 0

1 h π r z

zC ρzr dr dθ dz
M

=    . (14.25)

Evaluating the integral over θ leaves us with

()

0 0

2 h r z

z
ρπC zr dr dz

M
=   . (14.26)

We next integrate over r and replace ()r z with the value given by Equation
(14.21):

()

()

2
2

2
0

2
2 2 3

2
0

2 .

h

z

h

ρπRC z h z dz
Mh

ρπR h z hz z dz
Mh

= −

= − +



 (14.27)

14.2 Rigid Body Motion 413

Finally, integrating over z, we obtain

2 2

12 4z
ρπR h hC

M
= = . (14.28)

Thus, the center of mass of the cone is given by 0,0, 4h=C . 

14.2.2 Angular Momentum and Torque

Recall that the linear momentum p of a particle having mass m moving at a ve-
locity v is given by m=p v. Just as angular velocity is the rotational analog of
linear velocity, there exists a quantity called angular momentum that serves as
the rotational analog of linear momentum.
 Suppose that a particle of mass m is rotating about some axis with an angular
velocity of ()tω and that the position of the particle is given by the function ()tr .
The angular momentum ()tL of the particle is defined to be

 () () ()t t t= ×L r p , (14.29)

where () ()t m t=p v is the linear momentum of the particle.
 Differentiating both sides of Equation (14.29) gives us

 () () () () ()t t t t t= × + ×L r p r p   . (14.30)

Since () ()t t=r v , the vectors ()tr and ()tp point in the same direction, so the
cross product () ()t t×r p is zero. Thus,

 () () () () ()t t t t m t= × = ×L r p r v   . (14.31)

The vector ()m tv is equal to the net force ()tF acting on the particle, so we can
write

 () () ()t t t= ×L r F . (14.32)

 The quantity on the right side of Equation (14.32) is called the torque ()tτ
being applied to the particle:

 () () ()t t t= ×τ r F . (14.33)

414 14. Rotational Physics

Torque is the rotational analog to linear force and induces an angular accelera-
tion. If the net torque acting on a particle is zero, then the angular momentum
remains constant because

 () ()t t=L τ . (14.34)

14.2.3 The Inertia Tensor

Angular momentum is related to angular velocity in a much more complicated
way than linear momentum is related to linear velocity. In fact, the angular mo-
mentum vector and the associated angular velocity vector do not necessarily
point in the same direction. The relationship between these two quantities is the
topic of this section.
 The angular momentum of a rigid body composed of a set of particles is
equal to the sum

 () () ()k k
k

t t t= ×L r p , (14.35)

where ()k tr represents the position of the k-th particle, ()k tp represents the mo-
mentum of the k-th particle, and the summation is taken over all the particles be-
longing to the system. Since the linear momentum ()k tp can be written as

 () () () ()k k k k kt m t m t t= = ×p v ω r , (14.36)

the angular momentum becomes

 () () () ()[]k k k
k

t m t t t= × ×L r ω r . (14.37)

Using the vector identity given by Theorem 2.9(f),

 () ()2P× × = × × = − ⋅P Q P P Q P Q P Q P, (14.38)

the angular momentum can also be written as

 () () () () ()[] ()()2 .k k k k
k

t m r t t t t t= − ⋅L ω r ω r (14.39)

Dropping the function-of-t notation for the moment, we can express the i-th
component of L by

14.2 Rigid Body Motion 415

 () ()
3

2

1
i k k i k i k j j

k j
L m r ω ω

=

 
= − 

 
 r r . (14.40)

We can express the quantity iω as

3

1
i j ij

j
ω ω δ

=

= , (14.41)

where ijδ is the Kronecker delta defined by Equation (2.42). This substitution al-
lows us to write iL as

() ()

() ()

3
2

1

3
2

1
.

i k k j ij k i k j j
k j

j k ij k k i k j
j k

L m r ω δ ω

ω m δ r

=

=

= −  

= −  

 

 

r r

r r (14.42)

The sum over k can be interpreted as the (),i j entry of a 3 3× matrix :

 () ()2
ij k ij k k i k j

k
m δ r= −   r r . (14.43)

This allows us to express iL as

3

1
i j ij

j
L ω

=

=  , (14.44)

and thus the angular momentum ()tL can be written as

 () ()t t=L ω . (14.45)

 The entity  is called the inertia tensor and relates the angular velocity of a
rigid body to its angular momentum. The inertia tensor also relates the torque

()tτ acting on a rigid body to the body’s angular acceleration () ()t t=α ω . Dif-
ferentiating both sides of Equation (14.45) gives us

 () () ()t t t= =L τ α  . (14.46)

 Written as a 3 3× matrix, the inertia tensor is given by

416 14. Rotational Physics

2 2

2 2

2 2

k k k k k k

k k k k k k k
k

k k k k k k

y z x y x z
m x y x z y z

x z y z x y

 + − −
 = − + − 
 − − + 

 , (14.47)

where , ,k k k kx y z=r . Clearly,  is a symmetric matrix. The diagonal entries
11 , 22 , and 33 are called the moments of inertia with respect to the x, y, and z

axes, respectively. The off-diagonal entries are called the products of inertia.
Equation (14.47) can also be expressed as

 ()2
3k k k k

k
m r= − ⊗I E r r , (14.48)

where 3E is the 3 3× identity matrix, and the operation ⊗ is the tensor product
giving

2

2

2

k k k k k

k k k k k k k

k k k k k

x x y x z
x y y y z
x z y z z

 
 ⊗ =  
  

r r . (14.49)

 For a continuous mass distribution, Equation (14.43) is formulated as the
integral

 () ()2
ij ij i j

V
δ r r r dm= − r , (14.50)

where ()dm r represents the differential mass at the position r, and V is the vol-
ume occupied by the rigid body. If the density at the position r is described by
the function ()ρ r , then this integral can be written as

 () ()2
ij ij i j

V
δ r r r ρ dV= − r . (14.51)

 Because the inertia tensor is a summation, the inertia tensor for a collection
of objects is simply the sum of the inertia tensors for each object calculated indi-
vidually. This property is sometimes useful in the calculation of inertia tensors
for complex objects that can be broken into simpler pieces. (See Exercise 5.)

Example 14.2. Calculate the moment of inertia about the z axis of a solid
sphere of radius R that is centered at the origin and has a uniform density ρ.

14.2 Rigid Body Motion 417

Solution. The moment of inertia about the z axis is equal to the ()3,3 entry of the
inertia tensor . We need to evaluate the integral

 ()2 2
33

V
r z ρdV= − . (14.52)

The quantity 2 2r z− is equal to the squared distance from the z axis, which in
spherical coordinates is equal to 2 2sinr φ, where φ is the polar angle. The differ-
ential volume dV in spherical coordinates is given by

 2 sindV r φdr dθ dφ= , (14.53)

so Equation (14.52) becomes

()
2

2 2 2
33

0 0 0
2

4 3

0 0 0

sin sin

sin .

π π R

π π R

r φ ρr φdr dθ dφ

ρ r φdr dθ dφ

=

=

  

  



 (14.54)

Evaluating the integrals over r and θ , we have

 ()5 3 5 22 2
33 5 5

0 0

sin 1 cos sin
π π

πρR φdφ πρR φ φdφ= = −  . (14.55)

By making the substitutions cosu φ= − and sindu φdφ= , we can evaluate the re-
maining integral as follows.

()
1

5 22
33 5

1
58

15

1πρR u du

πρR
−

= −

=



 (14.56)

The volume of the sphere is given by 34
3V πR= , so we can write the moment of

inertia as

 2 22 2
33 5 5ρVR mR= = , (14.57)

where m ρV= is the mass of the sphere. 

418 14. Rotational Physics

 Due to the symmetry of the sphere, its moments of inertia about the x and y
axes are also equal to 22

5 mR . Furthermore, the products of inertia are zero, so the
inertia tensor  of a sphere has the form

22
5

22
5

22
5

0 0
0 0
0 0

mR
mR

mR

 
 =  
  

 . (14.58)

Consequently, the angular momentum of a rotating sphere may be written in
terms of a scalar moment of inertia 22

5I mR= :

 () ()t I t=L ω . (14.59)

Example 14.3. Calculate the inertia tensor of a solid cylinder of radius R and
height h that is aligned to the z axis, centered at the origin, and has a uniform
density ρ (see Figure 14.6).

R

y
x

z

2h

2h

Figure 14.6. The cylinder used in Example 14.3.

Solution. We first calculate the moment of inertia about the z axis using cylindri-
cal coordinates to evaluate the integral

 ()2 2
33

V
s z ρdV= − . (14.60)

14.2 Rigid Body Motion 419

(We have used 2s to represent the squared distance from the origin to avoid con-
fusion with the radial distance r in cylindrical coordinates.) The quantity 2 2s z−
is equal to the squared distance from the z axis, which in cylindrical coordinates
is simply 2r . The differential volume dV in cylindrical coordinates is given by

 dV r dr dθ dz= , (14.61)

so Equation (14.60) becomes

2 2
3

33
2 0 0

41
2 .

h π R

h

ρ r dr dθ dz

πρhR
−

=

=

  

 (14.62)

The volume of the cylinder is given by 2V πhR= , so we can write the moment of
inertia as

 2 21 1
33 2 2ρVR mR= = , (14.63)

where m ρV= is the mass of the cylinder. Since a cylinder is symmetric about the
z axis, we must have 11 22=  . We can calculate the moment of inertia about the
x axis by evaluating the integral

 ()2 2
11

V
s x ρdV= − . (14.64)

Making the substitutions 2 2 2s r z= + and 2 2 2cosx r θ= , we have

()
2 2

2 2 2 2
11

2 0 0

2 2 2 2
3 2 2

2 0 0 2 0 0

cos

sin

h π R

h

h π R h π R

h h

ρ r z r θ r dr dθ dz

ρ r θ dr dθ dz ρ z r dr dθ dz

−

− −

= + −

= +

  

     



. (14.65)

Evaluating the integrals for the variables r and z in the first term, and evaluating
all three integrals in the second term gives us

2

4 2 3 21 1
11 4 12

0

sin
π

ρhR θ dθ πρh R= + . (14.66)

Using the trigonometric identity

420 14. Rotational Physics

 2 1 cos 2sin
2

θθ −= (14.67)

(see Appendix B, Section B.4), we can evaluate the remaining integral:

()

]

2 2
2 1 1

2 2
0 0

21 1
2 4 0

sin cos2

sin 2
.

π π

π

θ dθ θ dθ

θ θ
π

= −

= −
=

 

 (14.68)

The moment of inertia about the x and y axes is therefore given by

4 3 21 1
11 22 4 12

2 21 1
4 12 .

πρhR πρh R

mR mh

= = +

= +

 

 (14.69)

The product of inertia 12 is equal to the integral

2 2

3
12

2 0 0

sin cos
h π R

V
h

xyρdV ρ r θ θ dr dθ dz
−

= − = −    . (14.70)

Since

2

0

sin cos 0
π

θ θ dθ = , (14.71)

it is the case that 12 21 0= =  . It can also be shown that all of the other products
of inertia are equal to zero, so the inertia tensor  of a cylinder has the form

2 21 1
4 12

2 21 1
4 12

21
2

0 0
0 0
0 0

mR mh
mR mh

mR

+ 
 = + 
  

 , (14.72)

where m ρV= is the mass of the cylinder. 

 Nonzero products of inertia arise when we consider a solid box that rotates
about an axis passing through one of its vertices. The significance of an inertia
tensor that is not diagonal is discussed in Section 14.2.4.

14.2 Rigid Body Motion 421

Example 14.4. Calculate the inertia tensor of a solid box having dimensions a,
b, and c that is aligned to the coordinate axes, has one vertex at the origin, and
has a uniform density ρ (see Figure 14.7).

a b

c

x y

z

Figure 14.7. The box used in Example 14.4.

Solution. The moment of inertia about the x axis 11 is given by the integral

()

()

()

2 2
11

2 2

0 0 0

2 2

0 0
3 31 1

3 3
2 21

3 .

V
c b a

b c

r x ρdV

ρ y z dx dy dz

ρac y dy ρab z dz

ρab c ρabc

ρabc b c

= −

= +

= +

= +

= +



  

 



 (14.73)

The volume of the box is given by V abc= , so we can write the moment of inertia
as

422 14. Rotational Physics

 ()2 21
11 3 m b c= + , (14.74)

where m ρV= is the mass of the box. Similar calculations yield the moments of
inertia about the y and z axes:

()
()

2 21
22 3

2 21
33 3

m a c

m a b

= +

= +



 . (14.75)

The product of inertia 12 is given by the integral

12

0 0 0

0 0

2 21 1
4 4

V
c b a

b a

xyρdV

ρ xy dx dy dz

ρc xy dx dy

ρa b c mab

= −

= −

= −

= − = −



  

 



. (14.76)

Similar calculations yield the remaining two unique products of inertia:

1
13 4

1
23 4

mac
mbc

= −
= −



 . (14.77)

The inertia tensor  of a box is therefore given by

()

()
()

2 21 1 1
3 4 4

2 21 1 1
4 3 4

2 21 1 1
4 4 3

m b c mab mac
mab m a c mbc
mac mbc m a b

+ − − 
 = − + − 
 − − + 

 , (14.78)

where m ρV= is the mass of the box. 

14.2.4 Principal Axes of Inertia

Because the angular momentum ()tL and angular velocity ()tω are related by the
equation

 () ()t t=L ω , (14.79)

14.2 Rigid Body Motion 423

the two vectors are parallel precisely when ()tω is an eigenvector of the inertia
tensor . Since the inertia tensor is a symmetric matrix, it has three real eigen-
values, and the associated eigenvectors are orthogonal (see Section 3.5). The ei-
genvalues of the inertia tensor are called the principal moments of inertia, and the
associated eigenvectors are called the principal axes of inertia. If a rigid body is
rotating about one of its principal axes of inertia, then its angular momentum is
given by

 () ()t I t=L ω , (14.80)

where I is the principal moment of inertia associated with the principal axis.
 If the inertia tensor is a diagonal matrix, as it is for a sphere and a cylinder,
then the principal moments of inertia are the same as the diagonal entries, and the
principal axes of inertia are simply the x, y, and z axes. If the inertia tensor is not
a diagonal matrix, then we must calculate its eigenvalues and eigenvectors to de-
termine the principal axes, as demonstrated in the following example.

Example 14.5. Determine the principal axes of inertia for a solid cube having
side length a that is aligned to the coordinate axes and has one vertex at the
origin.

Solution. The inertia tensor  for a box is given by Equation (14.78). Setting the
lengths in all three dimensions equal to each other produces the inertia tensor for
a cube:

2 2 22 1 1
3 4 4

2 2 21 2 1
4 3 4

2 2 21 1 2
4 4 3

ma ma ma
ma ma ma
ma ma ma

− − 
 = − − 
 − − 

 . (14.81)

The determinant

2 2 22 1 1
3 4 4

2 2 21 2 1
4 3 4

2 2 21 1 2
4 4 3

0
ma I ma ma

ma ma I ma
ma ma ma I

− − −
− − − =
− − −

, (14.82)

yields the characteristic polynomial whose roots are the eigenvalues of . Since
the determinant is not affected by adding a multiple of one row to another row,
we can subtract the first row from the second row to simplify our calculations:

424 14. Rotational Physics

2 2 22 1 1
3 4 4

2 211 11
12 12

2 2 21 1 2
4 4 3

0 0
ma I ma ma
ma I ma I

ma ma ma I

− − −
− + − =

− − −
. (14.83)

Factoring 211
12 ma I− out of the second row and setting 21

4b ma= gives us

 ()
8
3

11
3

8
3

1 1 0 0
b I b b

b I
b b b I

− − −
− − =

− − −
. (14.84)

Evaluating the resulting determinant, we have

() () ()
()()
()()()

2 28 811
3 3 3

2 21311 22
3 3 9

11 11 2
3 3 3

0 2

.

b I b I b b I b

b I I bI b

b I b I b I

 = − − − − − 
= − − +

= − − − (14.85)

The principal moments of inertia 1I , 2I , and 3I are thus given by

211 11
1 3 12

211 11
2 3 12

22 1
3 3 6 .

I b ma

I b ma

I b ma

= =

= =

= = (14.86)

To find the principal axis of inertia corresponding to the eigenvalue 3I , we need
to solve the homogeneous linear system

2 2 22 1 1
33 4 4

2 2 21 2 1
34 3 4

2 2 21 1 2
34 4 3

ma I ma ma x
ma ma I ma y
ma ma ma I z

− − −   
   − − − =   
   − − −   

0. (14.87)

Again using the constant 21
4b ma= and substituting the value 2

3 3I b= , we have

2

2
2

b b b x
b b b y
b b b z

− −   
   − − =   
− −      

0. (14.88)

The reduced form of this system is

14.2 Rigid Body Motion 425

1 0 1
0 1 1
0 0 0

x
y
z

−   
   − =   
      

0, (14.89)

and thus x y z= = . This tells us that the vector 1,1,1 , a diagonal of the cube, rep-
resents the principal axis corresponding to the principal moment of inertia 3I . The
principal axes corresponding to the eigenvalues 1I and 2I are found by solving the
system

8
13

8
13

8
13

b I b b x
b b I b y
b b b I z

− − −   
   − − − =   
   − − −   

0. (14.90)

Every entry of this matrix is the same, so the reduced form of the system is

1 1 1
0 0 0
0 0 0

x
y
z

   
    =   
      

0. (14.91)

Therefore, the y and z components of each principal axis may be chosen arbitrari-
ly (but not such that both are zero). The value of x is then given by x y z= − − .
Any vector of the form , ,y z y z− − is perpendicular to the vector 1,1,1 , so the
principal axes corresponding to the principal moments of inertia given by 1I and

2I can be any orthogonal pair in the plane perpendicular to the cube’s diagonal. 

 If a rigid body is not rotating about one of its principal axes, then the angular
velocity vector ()tω and the angular momentum vector ()tL are not parallel. In
this situation, the vector ()tL rotates about the axis ()tω at the rate

 () () () 0t t t= × ≡/L ω L . (14.92)

The resulting angular acceleration changes the axis of rotation, an effect called
precession. Since () ()t t=L α  , the angular acceleration ()tα is given by

 () () () ()[]1 1t t t t− −= = ×α L ω L  . (14.93)

To counter this angular acceleration and prevent the axis of rotation from chang-
ing, a torque equal in magnitude to () ()t t×ω L must be applied in the opposite

426 14. Rotational Physics

direction. Therefore, the motion of a rotating rigid body can be described by the
equation

 () () () () ()
1

N

i
i

t t t t t
=

− × = =τ ω L α θ  , (14.94)

where 1 2, , , Nτ τ τ represent the external torques acting on the body. Equation
(14.94) is the rotational analog of Equation (13.9).

14.2.5 Transforming the Inertia Tensor

Given an invertible 3 3× transformation matrix M that transforms points from one
coordinate system to another coordinate system with the same origin, an inertia
tensor  is transformed according to the formula

 1−′ = M M  . (14.95)

It’s useful to think of this product as first transforming in reverse from the new
coordinate system to the original coordinate system using 1−M , applying the iner-
tia tensor  in that coordinate system, and then transforming back into the new
coordinate system using M.
 To transform an inertia tensor into a coordinate system with a different
origin, we can use a formula known as the parallel axis theorem. Let s be an off-
set vector representing the difference between the new origin and the old origin.
Then, starting with the formula for the inertia tensor given in Equation (14.48),
we replace r with +r s to obtain

 () () ()2
3k k k k

k
m  ′ = + − + ⊗ +  r s E r s r s . (14.96)

Expanding this summation, we have

() ()
() ()

2 2
3 3 32k k k k k

k k k

k k k k k k k k
k k k k

m r m m s

m m m m

′  = + ⋅ +
  

− ⊗ − ⊗ − ⊗ − ⊗

  

   

E r s E E

r r r s s r s s



. (14.97)

This equation contains the two terms from the original summation given by
Equation (14.48) for , so we can substitute  for these terms to get

14.2 Rigid Body Motion 427

() ()
() ()

2
3 32 k k k

k k

k k k k k
k k k

m m s

m m m

′  = + ⋅ +
  

− ⊗ − ⊗ − ⊗

 

  

r s E E

r s s r s s

 

. (14.98)

Now, if the origin of the coordinate system coincides with the center of mass,
then the summation k kk

m r is equal to the point 0,0,0 . This allows us to make
a tremendous simplification because all of the terms in Equation (14.98) contain-
ing this summation vanish. We therefore can use the formula

 ()2
3m s′ = + − ⊗E s s  (14.99)

to transform an inertia tensor from a coordinate system in which the center of
mass lies at the origin to another coordinate system in which the new origin lies
at the point s in the original coordinate system. Note that the sign of s does not
matter because it is squared in both terms where it appears in Equation (14.99). A
translation by a certain distance in one direction produces the same inertia tensor
as a translation by the same distance in the opposite direction.
 It’s important to understand that Equation (14.99) can only be applied once
to an inertia tensor in order to move it away from the center of mass. After the
inertia tensor has been moved, it no longer uses a coordinate system in which the
origin coincides with the center of mass, but that condition must be true for
Equation (14.99) to be valid. However, it is possible to recover the inertia tensor
 from the offset inertia tensor ′ if the vector s is known, once again allowing
Equation (14.99) to be used to perform a new offset.

Example 14.6. Determine the inertia tensor for an axis-aligned box of constant
density ρ in a coordinate system where the box’s center of mass lies at the
origin.

Solution. We already calculated the inertia tensor for a box in Example 14.4, but
it was in a coordinate system where the origin coincided with one of the corners
of the box. We can treat this as the transformed inertia tensor ′ in Equation
(14.99) and recover the inertia tensor about the center of mass by solving for 
with an offset 2 2 2, ,a b c=s . This gives us

428 14. Rotational Physics

()
()

()

2 21 1 1
3 4 4

2 21 1 1
4 3 4

2 21 1 1
4 4 3

2

3, , , , , ,
2 2 2 2 2 2 2 2 2

m b c mab mac
mab m a c mbc
mac mbc m a b

a b c a b c a b cm

+ − − 
 = − + − 
 − − + 

 
− − ⊗ 

 
E



.

After adding corresponding matrix entries, we have for the inertia tensor of a box
(with side lengths a, b, and c) about its center of mass

()

()
()

2 21
12

2 21
12

2 21
12

0 0
0 0
0 0

m b c
m a c

m a b

+ 
 = + 
 + 

 . 

Example 14.7. Find the inertia tensor of a dome, having constant density ρ and
semiaxis lengths a, b, and c as shown in Figure 14.8, in a coordinate system
where center of mass coincides with the origin.

a b

c

Figure 14.8. The dome used in Example 14.7.

Solution. The total mass of the dome is 2
3m ρπabc= , and the z coordinate of the

center of mass can be calculated using the integral

2 2 2

2 2 2

1 1 1

2 2

0 1 1
4

w v w

z

w v w

πmC ρabc wdu dv dw abc
− − −

− − − − −

= =   , (14.100)

where we have made the substitutions

14.2 Rigid Body Motion 429

1

1

1 .

xu du dx
a a
yv dv dy
b b
zw dw dz
c c

= =

= =

= =

 (14.101)

After dividing by m, we find the center of mass to be located at the point
3
80,0, c . Instead of calculating the inertia tensor  about the center of mass, we

calculate the inertia tensor ′ about the origin at the center of the dome’s base
and then use Equation (14.99) to find  when the offset is 3

80,0, c=s . The mo-
ments of inertia for a dome with the origin at the center of the base are given by
the integrals

 () ()
2 2 2

2 2 2

1 1 1

2 2 2 2 2 2
11

0 1 1

2
15

w v w

w v w

πρabc b v c w du dv dw ρabc b c
− − −

− − − − −

= + = +   ,

 () ()
2 2 2

2 2 2

1 1 1

2 2 2 2 2 2
22

0 1 1

2
15

w v w

w v w

πρabc a u c w du dv dw ρabc a c
− − −

− − − − −

= + = +   ,

 () ()
2 2 2

2 2 2

1 1 1

2 2 2 2 2 2
33

0 1 1

2
15

w v w

w v w

πρabc a u b v du dv dw ρabc a b
− − −

− − − − −

= + = +   . (14.102)

Substituting the mass m, this gives us the inertia tensor

()
()

()

2 21
5

2 21
5

2 21
5

0 0
0 0
0 0

m b c
m a c

m a b

 +
 ′ = + 
 + 

 . (14.103)

In order to obtain the inertia tensor  about the center of mass, we must solve
Equation (14.99) with 3

80,0, c=s . The adjustment to the inertia tensor is given
by

29
64

2 29
3 64

0 0
0 0
0 0 0

c
s c

 
 − ⊗ =  
  

E s s , (14.104)

430 14. Rotational Physics

and so

()

2 2191
5 320

2 2191
5 320

2 21
5

0 0
0 0
0 0

mb mc
ma mc

m a b

 +
 = + 
 + 

 .  (14.105)

14.3 Oscillatory Motion

The motion of an object is oscillatory if it repeats over a period of time by mov-
ing back and forth through the same region of space. Such behavior is often
caused by a restoring force that may be constant or may act on an object with
greater magnitude as the object moves further away from some equilibrium posi-
tion. We examine oscillatory motion in this chapter because it shares some char-
acteristics with rotational motion, such as angular velocity. The motion of a pen-
dulum, discussed in Section 14.3.2, is an example of an object that rotates about a
point with an oscillatory nature.

14.3.1 Spring Motion

Oscillatory motion is exhibited by an object having mass m that is attached to the
end of a spring whose natural length is d (see Figure 14.9). Suppose that the
spring is aligned to the z axis and that one end is attached to an immovable object
at z d= . Let the mass be attached to the other end, which coincides with the
origin. Ignoring gravity for the moment, when the spring is stretched or com-
pressed so that its length is greater than or less than d, a restoring force is exerted
by the spring that is proportional to the displacement of the mass from its natural
resting position. If the position of the mass along the z axis is z, then the restoring
force F in that direction is given by

 F kz= − . (14.106)

This formula is known as Hooke’s law. The constant k is a property of the spring
corresponding to its stiffness. A larger value of k means that more work is re-
quired to move the mass attached to the end of the spring.
 The position of a mass attached to the end of a spring can be determined as a
function of time by examining the differential equation

 () ()mz t kz t= − . (14.107)

14.3 Oscillatory Motion 431

z

m

0z =

z d=

Figure 14.9. A mass attached to the end of a spring.

The general solution to this equation is

 () sin cosz t A ωt B ωt= + , (14.108)

where ω k m= is called the angular frequency of the oscillations, measured in
radians per unit time. The frequency f corresponding to the number of oscilla-
tions per unit time, measured in hertz (Hz) when the unit of time is the second, is
related to the angular frequency by the equation

2
ωf
π

= . (14.109)

The period P of the oscillations is equal to the time that passes between each rep-
etition of the motion and is given by the reciprocal of the frequency:

 2 2π mP π
ω k

= = . (14.110)

 The constants A and B in Equation (14.108) must be determined by imposing
initial conditions. Suppose that the initial position of the mass is 0z and the initial
velocity of the mass is 0v . Since

432 14. Rotational Physics

()
()
0
0

z B
z Aω

=
= , (14.111)

we can easily deduce

0

0 .

vA
ω

B z

=

= (14.112)

As discussed in Section 13.2.1, we may express Equation (14.108) in the form

 () ()sinz t C ωt δ= + , (14.113)

where

2
0 2

02

01sin .

vC z
ω

zδ
C

−

= +

= (14.114)

The constant C represents the amplitude of the oscillations and corresponds to the
largest distance that the mass is ever displaced from its equilibrium position. The
constant δ represents the phase of the oscillations and corresponds to the initial
position of the mass.

Example 14.8. Determine the frequency and amplitude of a 2-kg mass attached
to a spring having a restoring constant of 23 kg sk = . Suppose that the mass
was previously being pulled downward and that it is released at time 0t = with
an initial displacement of 0 4 mz = − and an initial velocity of 0 1 m sv = − .

Solution. The angular frequency ω is given by

 6 rad s
2

kω
m

= = . (14.115)

Dividing by 2π radians gives us the frequency f in oscillations per second:

 6 0.195 Hz
2 4
ωf
π π

= = ≈ . (14.116)

14.3 Oscillatory Motion 433

The amplitude C of the oscillations can be found by using Equation (14.114):

2
0 2

02

5 6 4.08 m
3

vC z
ω

= + = ≈ .  (14.117)

 Suppose that a mass m attached to the end of a vertical spring is now acted
upon by gravity. Adding the constant downward gravitational force mg− to Equa-
tion (14.107) gives us

 () ()mz t kz t mg= − − . (14.118)

The restoring force of the spring and the gravitational force are balanced when
they are equal in magnitude and act in opposite directions. Thus, the mass expe-
riences no net force when

 ()kz t mg− = . (14.119)

Solving for ()z t gives us the equilibrium position of the hanging mass:

 () mgz t
k

= − . (14.120)

If the mass lies at the position z mg k= − and has no velocity, then it will never
move.
 Equation (14.120) is in fact a particular solution to Equation (14.118). Add-
ing this to the general solution to the homogeneous problem given by Equation
(14.108), we have

 () sin cos mgz t A ωt B ωt
k

= + − . (14.121)

Imposing the same initial conditions as before, () 00z z= and () 00z v= , produces
the same value for A but a different value for B:

0

0

vA
ω

mgB z
k

=

= + . (14.122)

When we write Equation (14.121) in the form

434 14. Rotational Physics

 () ()sin mgz t C ωt δ
k

= + − , (14.123)

the amplitude C and phase δ are given by Equation (14.114) with the modifica-
tion that 0z is replaced by 0z mg k+ . The influence of gravity has the effect of
increasing the oscillation amplitude and advancing the phase angle corresponding
to the initial displacement.

14.3.2 Pendulum Motion

Suppose that an object of mass m under the influence of gravity is attached to a
massless rod of length L hanging from a fixed point coinciding with the origin as
shown in Figure 14.10. We assume that the rod is able to pivot freely about its
fixed end and that the mass is able to move in the x-z plane. Let I be the moment
of inertia of the object with respect to the y axis (about which the mass rotates). If
all of the mass is concentrated at a single point, then 2I mL= .
 Let ()tr represent the position of the object. Gravity pulls downward on the
object with the force mg , exerting a torque ()tτ given by

 () ()t t m= ×τ r g. (14.124)

The resulting angular acceleration ()tα is

 () () ()t t mt
I I

×= =τ r g
α . (14.125)

Since ()tτ and ()tα are always perpendicular to the x-z plane in which the pendu-
lum rotates, we can write them as scalar quantities ()τ t and ()α t . Equation
(14.125) can then be written as

 () () ()sinmgLα t θ t θ t
I

= = − , (14.126)

where ()θ t is the counterclockwise angle between the pendulum and the negative
z axis.
 Equation (14.126) cannot be solved analytically for the function ()θ t due to
the presence of the sine function. We can, however, transform the equation into a
form that can be solved by replacing ()sinθ t with the first term of its power
series:

 () ()mgLθ t θ t
I

= − . (14.127)

14.3 Oscillatory Motion 435

z

xO

θ

sinmg θ

m

mg

L

Figure 14.10. The plane pendulum.

Equation (14.127) approximates the motion of a pendulum for which the angle
()θ t is always small. The solution to Equation (14.127) is given by

 () ()sinθ t A ωt δ= + , (14.128)

where the angular frequency ω is

 mgLω
I

= , (14.129)

and the constants A and δ are determined by initial conditions. The period P of
the oscillations is given by

 2 2π IP π
ω mgL

= = . (14.130)

For a point mass, we have

 2

gω
L

LP π
g

=

= . (14.131)

436 14. Rotational Physics

Chapter 14 Summary

Centrifugal Force

The centrifugal force experienced by an object in a rotating environment is given
by

 () () ()[]()centrifugal m t t t= − × ×F ω ω r ,

where ()tω is the angular velocity and ()tr is the position of the object relative to
an origin through which the axis of rotation passes. In the case that ()tω and ()tr
are perpendicular, the centrifugal force can be expressed as the scalar

2

2
centrifugal

mvF mω r
r

= = .

Coriolis Force

The Coriolis force experienced by an object in a rotating environment is given by

 () ()Coriolis 2 rm t t= − ×F ω v ,

where ()r tv is the velocity of the object relative to the rotating reference frame.

Center of Mass

The center of mass C of a solid object whose density at the point r is ()ρ r is giv-
en by

 ()1
V
ρ dV

M
= C r r ,

where M is the total mass of the object.

Angular Momentum

The angular momentum ()tL of a particle is given by

 () () ()t t t= ×L r p ,

where ()tr is the position of the object relative to an origin through which the
axis of rotation passes, and () ()t m t=p v is the linear momentum of the particle.

Chapter 14 Summary 437

Torque

The torque ()tτ acting on a particle is given by

 () () ()t t t= ×τ r F ,

where ()tF is the force applied at the position ()tr . The net torque acting on a
particle is equal to the time rate of change of its angular momentum:

 () ()t t=L τ .

Inertia Tensor

The (),i j entry of the inertia tensor  of a rigid body is given by

 () ()2
ij ij i j

V
δ r r r ρ dV= − r ,

where ()ρ r is the density at the point r.

The inertia tensor  for an object of mass m can be translated from a coordinate
system in which the center of mass lies at the origin to a coordinate system in
which the center of mass lies at a point s using the parallel axis theorem:

 ()2
3m s′ = + − ⊗E s s  .

The inertia tensor relates the angular velocity to the angular momentum and the
angular acceleration to the torque:

() ()
() ().
t t
t t

=
=

L ω

τ α




Spring Motion

The position ()z t of a mass m attached to an oscillating spring having restoration
constant k is given by

 () ()sinz t C ωt δ= + ,

where

2
0 2

0

01sin ,

mvC z
k

zδ
C

−

= +

=

438 14. Rotational Physics

0z is the initial position, and 0v is the initial velocity.

Pendulum Motion

A pendulum consisting of a mass m suspended from a rod of length L obeys the
equation of motion

 () () ()sinmgLα t θ t θ t
I

= = − ,

where ()θ t is the angle formed with the vertical direction, and I is the moment of
inertia of the mass. Small oscillations of the pendulum have an angular frequency
ω given by

 mgLω
I

= .

Exercises for Chapter 14

1. An ant is walking radially outward with a velocity v on the surface of a disk
rotating counterclockwise with an angular velocity ω. At a distance r from
the center of the disk, what is the total magnitude F of the forces experi-
enced by the ant?

2. Suppose that a block of mass m is resting on the surface of a rotating disk at
a distance r from the axis of rotation. If the coefficient of static friction at
the surface is Sμ , determine the angular velocity at which the disk must ro-
tate to cause the block to begin sliding outward.

3. Calculate the center of mass C of a cylinder of radius R and height h whose
base is resting at the origin on the x-y plane if the density is given by

() 1 zρ r h= +r .

4. Calculate the moment of inertia about the z axis for the annular cylinder of
inner radius 1R , outer radius 2R , and height h shown in Figure 14.11. Let m
be the mass of the cylinder, and assume a uniform density ρ.

5. Calculate the inertia tensor of an axis-aligned capsule about its center of
mass. A capsule is a solid cylinder with height h (in the z direction) and
semiaxis lengths a and b (along the x and y axes, respectively) that has two
identical dome-shaped endcaps with semiaxis lengths a, b, and c, as shown

Exercises for Chapter 14 439

1R2R

h

z

Figure 14.11. The annular cylinder used in Exercise 4.

a b

c

h

Figure 14.12. The capsule used in Exercise 5.

 in Figure 14.12. Let m be the total mass of the capsule and assume a uniform
density ρ. [Hint. Combine the inertia tensors for a cylinder and two domes
in the appropriate way.]

6. Suppose that an object of mass m is hanging from a rope of negligible mass
that is wrapped around a cylindrical spool many times (see Figure 14.13). If
the cylinder has mass M and radius R, determine at what rate a the object
accelerates downward under the influence of gravity. Assume that the rope
does not slip as it unwinds from the spool. [Hint. As gravity pulls on the ob-
ject, it creates a tension T in the rope that is counteracted by the cylinder, so

440 14. Rotational Physics

m

R

M

Figure 14.13. The system used in Exercise 6.

 the force equation is ma mg T= − . The tension T exerts a torque on the cyl-
inder that induces an angular acceleration α. Use the fact that a Rα= .]

7. A spherical ball of mass m and radius R is placed on an incline that forms an
angle θ with the ground (see Figure 14.14). The coefficient of static friction
at the surface is Sμ . If the ball rolls down the incline under the influence of
gravity without slipping, determine its acceleration a. [Hint. Two forces are
acting on the ball, gravity and the frictional force, whose sum is equal to ma .
The frictional force also exerts torque on the ball, inducing an angular accel-
eration α. Use the fact that a Rα= as the ball rolls down the incline.]

8. Suppose that a box of uniform density having mass m is resting on the
ground where the coefficient of static friction is Sμ (see Figure 14.15). The
box has a square base of length and width d, and the box’s height is h. De-
termine the minimum height z at which a force SF μ mg< applied directly to
the horizontal center of a side of the box would cause the box to begin top-
pling over. [Hint. Equate the torques induced by the pull of gravity on the
center of mass and the force F about the bottom edge on the side opposite
that where the force is applied.]

Exercises for Chapter 14 441

θ

R
m

Figure 14.14. The ball used in Exercise 7.

mh

O d

F

z

Figure 14.15. The box used in Exercise 8.

This page intentionally left blank

 443

Chapter 15
Fluid and Cloth Simulation

The animation of a two-dimensional fluid and a two-dimensional cloth are two
effects that can be added to a game engine to provide a large visual impact for a
relatively small amount of implementation effort. Although both fluid and cloth
simulation can become very complex in advanced implementations, an elemen-
tary simulator for each type of animation is not difficult to construct. The math-
ematics behind these kinds of systems turn out to be somewhat simple, and the
bulk of the implementation ends up being the bookkeeping for the actual triangle
meshes composing the fluid and cloth surfaces. In this chapter, we describe basic
ways of achieving fluid and cloth simulation, and we provide sample implemen-
tations that can be used to animate triangle meshes.

15.1 Fluid Simulation

The worlds presented by many games contain regions covered by a fluid surface.
Whether it be a pool of water, a vat of deadly acid, or a pit of molten lava, we
would like the fluid surface to behave in a physically realistic manner. We can
accomplish this by modeling the way in which disturbances propagate through
the fluid as waves. In this section, we introduce the well-known wave equation
and apply it to real-time simulation of fluid surfaces.

15.1.1 The Wave Equation

The wave equation is a partial differential equation that describes the motion of
each point on a one-dimensional string or a two-dimensional surface experienc-
ing a constant tension. We can derive the one-dimensional wave equation by
considering a flexible elastic string that is tightly bound between two fixed end-
points lying on the x axis (see Figure 15.1). We assume that the string has a con-
stant linear density (mass per unit length) ρ and experiences a constant tension T
that acts in the tangential direction.

444 15. Fluid and Cloth Simulation

z

x

Figure 15.1. A string having linear density ρ is tightly bound between two endpoints and
experiences a constant tension T.

 Let the function (),z x t represent the vertical displacement of the string at the
horizontal position x and at time t. When the string is displaced in the z direction,
the tension produces a force at each point along the string that results in an accel-
eration. Newton’s second law dictates that the net force (),x tF experienced by a
small segment of the string lying between x s= and Δx s x= + at any time t is
equal to the product of its mass and its acceleration (),x ta . Since the linear densi-
ty of the string is ρ, the mass of the segment is equal to Δρ x, and we have

 () (),,
Δ

x tx t
ρ x

=
F

a . (15.1)

As shown in Figure 15.2, we can divide the force experienced by each endpoint
of the segment lying between x s= and Δx s x= + into horizontal and vertical
components (),H x t and (),V x t . Let θ represent the angle between the tangent to
the string and the x axis at the endpoint where x s= . Since the tension T acts in
the tangential direction, the horizontal component (),H s t and vertical component

(),V s t are given by

()
()

, cos
, sin .

H s t T θ
V s t T θ

=
= (15.2)

Let Δθ θ+ represent the angle between the tangent to the string and the x axis at
the endpoint where Δx s x= + . The horizontal component ()Δ ,H s x t+ and verti-
cal component ()Δ ,V s x t+ of the tension experienced at this endpoint are given
by

15.1 Fluid Simulation 445

T(),V s t

(),H s t
θ

x s=

Δx s x= +

Δθ θ+

Figure 15.2. The forces experienced at each endpoint of the segment lying between x s=
and Δx s x= + can be divided into horizontal and vertical components.

() ()
() ()

Δ , cos Δ

Δ , sin Δ .
H s x t T θ θ
V s x t T θ θ

+ = +
+ = + (15.3)

 For small motions, we assume that the net horizontal force is zero so that the
segment accelerates only in the vertical direction. Thus, for the segment lying
between x s= and Δx s x= + , we require that

 () ()Δ , , 0H s x t H s t+ − = . (15.4)

Consequently, the function H is independent of x, so we can write ()H t instead
of (),H x t .
 The net vertical force acting on the segment lying between x s= and

Δx s x= + produces an acceleration that is given by the z component of Equation
(15.1). Since the vertical acceleration is equal to the second derivative of the po-
sition function (),z x t , we have

 () () () ()2

2

Δ , ,, ,
Δ

z
V s x t V s ta s t z s t

t ρ x
+ −∂= =

∂
. (15.5)

Multiplying both sides by the density ρ and taking the limit as Δx approaches
zero gives us

 () () ()2

2 Δ 0

Δ , ,, lim
Δx

V s x t V s tρ z s t
t x→

+ −∂ =
∂

. (15.6)

The right side of Equation (15.6) is equal to the definition of the partial deriva-
tive of V with respect to x evaluated at s, so we can rewrite it as

446 15. Fluid and Cloth Simulation

 () ()
2

2 , ,ρ z s t V s t
t x

∂ ∂=
∂ ∂

. (15.7)

 Using the values of ()H t and (),V s t given by Equation (15.2), we can ex-
press (),V s t in terms of ()H t as follows.

 () (), tanV s t H t θ= (15.8)

Since θ is the angle formed between the tangent to the string and the x axis, tanθ
is equal to the slope of the function (),z x t at s. Therefore,

 () () (), ,V s t H t z s t
x

∂=
∂

, (15.9)

and Equation (15.7) becomes

 () () ()
2

2 , ,ρ z s t H t z s t
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
. (15.10)

Since ()H t does not depend on x, we can write

 () () ()
2 2

2 2, ,ρ z s t H t z s t
t x

∂ ∂=
∂ ∂

. (15.11)

 For small motions, cosθ is close to 1, so we approximate ()H t with the ten-
sion T. Letting 2c T ρ= , we now arrive at the one-dimensional wave equation:

2 2

2
2 2

z zc
t x

∂ ∂=
∂ ∂

. (15.12)

The two-dimensional wave equation is obtained by adding a second spatial term
to Equation (15.12) as follows.

2 2 2

2
2 2 2

z z zc
t x y

∂ ∂ ∂ = + ∂ ∂ ∂ 
 (15.13)

The constant c has dimensions of distance per unit time and thus represents a ve-
locity. A fact that we do not prove here is that c is actually the velocity at which
waves propagate along a string or through a surface. This makes sense since the
wave speed increases with tension experienced by the medium and decreases
with the density of the medium.

15.1 Fluid Simulation 447

 Equation (15.13) does not account for any forces other than the surface ten-
sion. Thus, the average amplitude of the waves on the surface never diminishes
as it does for a real-world fluid. We can add a viscous damping force to the equa-
tion by introducing a force that acts in the direction opposite that of the velocity
of a point on the surface to obtain

2 2 2

2
2 2 2

z z z zc μ
t x y t

∂ ∂ ∂ ∂ = + − ∂ ∂ ∂ ∂ 
, (15.14)

where the nonnegative constant μ represents the viscosity of the fluid. The value
of μ generally controls how long it takes for waves on a surface to calm down. A
small value of μ allows waves to exist for a long time, as with water, but a large
value of μ causes waves to diminish rapidly, as for a thick oil.

15.1.2 Approximating Derivatives

The two-dimensional wave equation with viscous damping given by Equation
(15.14) can be solved analytically using separation of variables. The solution,
however, is quite complex and would require a significant amount of computa-
tion for a real-time simulation. We instead choose to use a numerical technique to
model the propagation of waves over a fluid surface.
 Suppose that our fluid surface is represented by a triangle mesh whose verti-
ces are arranged on an n m× regular grid as shown in Figure 15.3. Let d be the
distance between adjacent vertices in both the x and y directions, and let t be the
time interval between consecutive calculations of the fluid’s state. We denote the
displacement of a vertex in the mesh by (), ,z i j k , where i and j are integers satis-
fying 0 i n≤ < and 0 j m≤ < that represent the spatial coordinates, and k is a
nonnegative integer that represents the temporal coordinate. That is, (), ,z i j k is
equal to the displacement of the vertex lying at the point ,id jd at the time kt.
 We impose the boundary condition that the vertices lying on the edge of the
surface are fixed at a displacement of zero. The displacement of the interior
points can be calculated by using Equation (15.14) and approximating the deriva-
tives using the differences in the displacements of adjacent vertices. As illustrat-
ed in Figure 15.4, we can approximate the x-axis-aligned tangent to the surface at
a vertex having coordinates (),i j by calculating the average ratio of Δz to Δx be-
tween that vertex and its immediate neighbors in the x direction. Using this tech-
nique and the fact that Δx d= , we define the derivative z x∂ ∂ as follows.

448 15. Fluid and Cloth Simulation

x

y

d
d

0i = 1i = i n=�
0j =

1j =

j m=

�

Figure 15.3. A fluid surface is represented by a triangle mesh whose vertices are ar-
ranged on an n m× regular grid.

()
() () () ()

() ()

, , 1, , 1, , , ,

, ,
2

1, , 1, ,
2

z i j k z i j k z i j k z i j k
d dz i j k

x
z i j k z i j k

d

− − + −+∂ =
∂

+ − −
= (15.15)

We define the derivative z y∂ ∂ at the vertex having coordinates (),i j in a similar
manner by calculating the average ratio of Δz to Δy between that vertex and its
immediate neighbors in the y direction. As with the x direction, Δy d= , so we
have

 () () (), 1, , 1,, ,
2

z i j k z i j kz i j k
y d

+ − −∂ =
∂

. (15.16)

We can define the temporal derivative z t∂ ∂ by calculating the average difference
in the displacement of a vertex between the current time and the previous and
succeeding times at which the displacement is evaluated. The time between eval-
uations is t, so the average ratio of Δz to Δt is given by

 () () (), , 1 , , 1, ,
2

z i j k z i j kz i j k
t t

+ − −∂ =
∂

. (15.17)

15.1 Fluid Simulation 449

1 1,i ix z− −

1 1,i ix z+ +

,i ix z

1Δ
Δ

i iz z z
x d

−−
=

1Δ
Δ

i iz z z
x d

+ −
=

1 1Δ
Δ 2

i iz z z
x d

+ −−
=

Figure 15.4. The x-axis-aligned tangent to the surface can be approximated by calculat-
ing the average ratio of Δz to Δx between that vertex and its immediate neighbors.

 Second derivatives can be approximated by employing the same method used
to approximate the first derivatives. This is done by calculating the average ratios
of the differences between the first derivatives to one of the spatial or temporal
coordinates. To illustrate, we consider the second derivative at the vertex having
coordinates (),i j with respect to x. The average difference ()Δ z x∂ ∂ between
first derivatives at this vertex is given by

 ()
() ()1, , 1, ,

Δ , ,
2

z i j k z i j k
x xz i j k

x

∂ ∂+ − −∂  ∂ ∂= ∂ 
. (15.18)

Substituting the value given by Equation (15.15) for the derivatives with respect
to x, we have the following.

()
() () () ()

() () ()

2, , , , , , 2, ,
2 2Δ , ,

2
2, , 2 , , 2, ,

4

z i j k z i j k z i j k z i j k
d dz i j k

x
z i j k z i j k z i j k

d

+ − − −−∂  = ∂ 
+ − + −

= (15.19)

Dividing by d gives us the ratio of ()Δ z x∂ ∂ to Δx, which we use to define the
second derivative:

 () () () ()2

2 2

2, , 2 , , 2, ,, ,
4

z i j k z i j k z i j kz i j k
x d

+ − + −∂ =
∂

. (15.20)

450 15. Fluid and Cloth Simulation

This formula requires that we use the displacements of neighbors lying two verti-
ces away from the vertex where we wish to calculate the second derivative. For-
tunately, the adjacent neighbors are not used, so we can scale the coordinate sys-
tem about the vertex lying at (),i j by one-half. Using the nearest neighbors and
cutting the distance Δx in half, we obtain the following equivalent formula for the
second derivative with respect to x.

 () () () ()2

2 2

1, , 2 , , 1, ,, , z i j k z i j k z i j kz i j k
x d

+ − + −∂ =
∂

 (15.21)

The following similar formulas give the second derivatives with respect to the
spatial coordinate y and the temporal coordinate t.

 () () () ()2

2 2

, 1, 2 , , , 1,, , z i j k z i j k z i j kz i j k
y d

+ − + −∂ =
∂

 (15.22)

 () () () ()2

2 2

, , 1 2 , , , , 1, , z i j k z i j k z i j kz i j k
t t

+ − + −∂ =
∂

 (15.23)

15.1.3 Evaluating Surface Displacement

Using the first derivative with respect to t given by Equation (15.17) and the se-
cond derivatives given by Equations (15.21), (15.22), and (15.23), the two-
dimensional wave equation with viscous damping given by Equation (15.14) can
be written as follows for the vertex having coordinates (),i j .

() () ()

() () ()

() () ()

() ()

2

2
2

2
2

, , 1 2 , , , , 1

1, , 2 , , 1, ,

, 1, 2 , , , 1,

, , 1 , , 1
2

z i j k z i j k z i j k
t

z i j k z i j k z i j kc
d

z i j k z i j k z i j kc
d

z i j k z i j kμ
t

+ − + − =

+ − + −

+ − + −
+

+ − −− (15.24)

We would like to be able to determine the future displacement (), , 1z i j k + occur-
ring after the time interval t has passed, given that we already know the current
displacement (), ,z i j k and the previous displacement (), , 1z i j k − . Solving Equa-
tion (15.24) for (), , 1z i j k + yields

15.1 Fluid Simulation 451

() () ()

() () () ()[]

2 2 2

2 2 2

4 8 2, , 1 , , , , 1
2 2

2 1, , 1, , , 1, , 1,
2

c t d μtz i j k z i j k z i j k
μt μt

c t d z i j k z i j k z i j k z i j k
μt

− −+ = + −
+ +

+ + + − + + + −
+

, (15.25)

which provides exactly what we need. The constants preceding each term can be
precomputed, leaving only three multiplications and four additions to be calcu-
lated at each vertex in the mesh.
 If the wave velocity c is too fast, or the time interval t is too long, then suc-
cessive iterations of Equation (15.25) cause the displacements to diverge toward
infinity. To keep the displacements finite, we need to determine the exact condi-
tions under which Equation (15.25) is stable. These conditions are revealed when
we impose the requirement that any vertex displaced and held away from an oth-
erwise flat surface should move toward the surface when released.
 Suppose that we have an n m× array of vertices for which (), ,0 0z i j = and

(), ,1 0z i j = for every vertex except the one having coordinates ()0 0,i j . Let the
vertex at ()0 0,i j be held in place such that ()0 0, ,0z i j h= and ()0 0, ,1z i j h= ,
where h is a nonzero displacement. Now suppose that the vertex at ()0 0,i j is re-
leased at time 2t. When ()0 0, ,2z i j is evaluated, the third term of Equation
(15.25) is zero, so we have

() () ()
2 2 2

0 0 0 0 0 0

2 2 2

4 8 2, ,2 , ,1 , ,0
2 2

2 8 .
2

c t d μtz i j z i j z i j
μt μt
c t d μt h
μt

− −= +
+ +

− +=
+

 (15.26)

For the vertex to move toward the surrounding flat surface, its displacement must
be smaller at time 2t than it was at time t. Thus, we must require that

 () ()0 0 0 0, ,2 , ,1z i j z i j h< = . (15.27)

Plugging in the value given by Equation (15.26) for ()0 0, ,2z i j , we have

2 2 22 8

2
c t d μt h h
μt

− + <
+

. (15.28)

Thus,

2 2 22 81 1

2
c t d μt
μt

− +− < <
+

. (15.29)

452 15. Fluid and Cloth Simulation

Solving for c, we find

 0 2
2
dc μt
t

< < + . (15.30)

This tells us that for any given distance d between adjacent vertices and any time
interval t between consecutive iterations of Equation (15.25), the wave velocity c
must be less than the maximum value imposed by Equation (15.30).
 Alternatively, we may calculate a maximum time interval t given the distance
d and the wave velocity c. Multiplying both sides of Equation (15.29) by

()2μt− + and simplifying yields

2

2
2

40 2c t μt
d

< < + . (15.31)

The left inequality simply requires that 0t > , a condition that we would naturally
impose in any case. The right inequality yields the quadratic expression

2

2
2

4 2 0c t μt
d

− − < . (15.32)

Using the quadratic equation, the roots of the polynomial are given by

2 2 2

2 2

32
8

μ μ c dt
c d

± += . (15.33)

Since the coefficient of the quadratic term in Equation (15.32) is positive, the
corresponding parabola is concave upward, and the polynomial is therefore nega-
tive when t lies in between the two roots. The value under the radical in Equation
(15.33) is larger than μ, so the lesser of the two roots is negative and can be dis-
carded. We can now express the restriction on the time interval t as

2 2 2

2 2

320
8

μ μ c dt
c d

+ +< < . (15.34)

 Using a value for the wave velocity c falling outside the range given by
Equation (15.30) or a value for the time interval t falling outside the range given
by Equation (15.34) results in an exponential explosion of the vertex dis-
placements.

15.1 Fluid Simulation 453

15.1.4 Implementation

An implementation of Equation (15.25) for a fluid surface requires that we store
two buffers, each containing an n m× array of vertex positions. At each frame,
one of the buffers contains the current vertex positions, and the other buffer con-
tains the previous vertex positions. When we evaluate new displacements, we
replace each vertex in the buffer containing the previous vertex positions with the
new vertex position. The buffer containing the current vertex positions then be-
comes the buffer containing the previous vertex positions, so we actually alter-
nate which buffer is used to render each frame.
 To perform lighting calculations, we need to know the correct normal vector
at each vertex and possibly the correct tangent vector at each vertex. At the ver-
tex having coordinates (),i j , the (unnormalized) x-axis-aligned tangent vector T
and y-axis-aligned tangent vector B are given by

()

()

1,0, , ,

0,1, , ,

z i j k
x

z i j k
y

∂=
∂
∂=
∂

T

B . (15.35)

Substituting the formulas for the partial derivatives given by Equations (15.15)
and (15.16), we have

() ()

() ()

1, , 1, ,1,0,
2

, 1, , 1,
0,1,

2

z i j k z i j k
d

z i j k z i j k
d

+ − −
=

+ − −
=

T

B . (15.36)

The (also unnormalized) normal vector N is then simply given by = ×N T B,
which can be expressed as follows.

() ()

() ()

() () () ()

1, , 1, ,1 0
2

, 1, , 1,0 1
2

1, , 1, , , 1, , 1,, ,1
2 2

z i j k z i j k
d

z i j k z i j k
d

z i j k z i j k z i j k z i j k
d d

+ − −
=

+ − −

+ − − + − −
= − −

i j k

N

 (15.37)

454 15. Fluid and Cloth Simulation

Multiplying the vectors T, B, and N by 2d does not change the direction in which
they point but does eliminate the divisions, yielding the following formulas.

() ()
() ()

() () () ()

2 ,0, 1, , 1, ,
0,2 , , 1, , 1,

1, , 1, , , , 1, , 1, ,2

d z i j k z i j k
d z i j k z i j k

z i j k z i j k z i j k z i j k d

= + − −
= + − −
= − − + − − +

T

B

N (15.38)

 Listing 15.1 demonstrates how a fluid surface simulation might be imple-
mented. It is important to realize that the time interval between evaluations of the
fluid displacement must be constant. The frame rate for most games varies con-
siderably, so some mechanism should be used to ensure that the position of the
surface is updated only after enough time has passed in situations when the frame
rate is high.
 When an object interacts with the fluid surface (e.g., a rock is thrown into it),
it should cause a disturbance. The surface can be displaced by explicitly modify-
ing the current and previous positions of the vertices surrounding the point where
the interaction takes place. Displacing the vertex nearest to the point of impact
and, by a lesser amount, the eight nearest neighbors generally produces pleasing
results.

Listing 15.1. This code implements a two-buffer surface displacement algorithm. The constructor
of the Fluid class takes the size of the vertex array, the distance d between adjacent vertices, the
time interval t, the wave velocity c, and the viscosity μ. The renderBuffer member variable
indicates which buffer should be rendered for the current frame—it alternates between 0 and 1
during each call to the Fluid::Evaluate() function.

class Fluid

{

 private:

 long width;

 long height;

 Vector3D *buffer[2];

 long renderBuffer;

 Vector3D *normal;

 Vector3D *tangent;

 float k1, k2, k3;

15.1 Fluid Simulation 455

 public:

 Fluid(long n, long m, float d, float t, float c, float mu);

 ~Fluid();

 void Evaluate(void);

};

Fluid::Fluid(long n, long m, float d, float t, float c, float mu)

{

 width = n;

 height = m;

 long count = n * m;

 buffer[0] = new Vector3D[count];

 buffer[1] = new Vector3D[count];

 renderBuffer = 0;

 normal = new Vector3D[count];

 tangent = new Vector3D[count];

 // Precompute constants for Equation (15.25).

 float f1 = c * c * t * t / (d * d);

 float f2 = 1.0F / (mu * t + 2);

 k1 = (4.0F - 8.0F * f1) * f2;

 k2 = (mu * t - 2) * f2;

 k3 = 2.0F * f1 * f2;

 // Initialize buffers.

 long a = 0;

 for (long j = 0; j < m; j++)

 {

 float y = d * j;

 for (long i = 0; i < n; i++)

 {

 buffer[0][a].Set(d * i, y, 0.0F);

 buffer[1][a] = buffer[0][a];

 normal[a].Set(0.0F, 0.0F, 2.0F * d);

 tangent[a].Set(2.0F * d, 0.0F, 0.0F);

 a++;

456 15. Fluid and Cloth Simulation

 }

 }

}

Fluid::~Fluid()

{

 delete[] tangent;

 delete[] normal;

 delete[] buffer[1];

 delete[] buffer[0];

}

void Fluid::Evaluate(void)

{

 // Apply Equation (15.25).

 for (long j = 1; j < height - 1; j++)

 {

 const Vector3D *crnt = buffer[renderBuffer] + j * width;

 Vector3D *prev = buffer[1 - renderBuffer] + j * width;

 for (long i = 1; i < width - 1; i++)

 {

 prev[i].z = k1 * crnt[i].z + k2 * prev[i].z +

 k3 * (crnt[i + 1].z + crnt[i - 1].z +

 crnt[i + width].z + crnt[i - width].z);

 }

 }

 // Swap buffers.

 renderBuffer = 1 - renderBuffer;

 // Calculate normals and tangents.

 for (long j = 1; j < height - 1; j++)

 {

 const Vector3D *next = buffer[renderBuffer] + j * width;

 Vector3D *nrml = normal + j * width;

 Vector3D *tang = tangent + j * width;

 for (long i = 1; i < width - 1; i++)

 {

15.2 Cloth Simulation 457

 nrml[i].x = next[i - 1].z - next[i + 1].z;

 nrml[i].y = next[i - width].z - next[i + width].z;

 tang[i].z = next[i + 1].z - next[i - 1].z;

 }

 }

}

15.2 Cloth Simulation

A flag blowing in the wind and a cape trailing behind a character are two exam-
ples of animation that can be achieved using cloth simulation. This topic can get
very complex, but a basic simulation of a rectangular sheet of cloth can be im-
plemented fairly easily and with realistic results. This section describes the fun-
damental design of a simple cloth simulator.

15.2.1 The Spring System

Our cloth is composed of an array of point particles arranged in a regular two-
dimensional grid formation. We simulate the motion of only these particles, and
then fill each grid square with triangles to render the cloth. In order to give the
cloth cohesion and to control its motion, each particle is connected to several of
its neighboring particles by a virtual spring and damper. Each spring has the ef-
fect of maintaining a specific distance between particles, and each damper pre-
vents neighboring particles from acquiring wildly different velocities.
 Figure 15.5 shows the connections made for a single particle in the interior of
a cloth mesh. First, springs and dampers are established between the particle and
its immediate neighbors in the left, right, up, and down directions, as shown by
the red lines in the figure. These connections are what give the cloth its primary
structure, and they prevent the particles from flying apart or collapsing into a sin-
gle point. However, they do nothing to prevent unwanted situations such as a
cloth folding over on itself to form an infinitely sharp crease. To limit the amount
of bending that can occur, springs and dampers are also established between the
central particle and its neighbors two grid points away in the left, right, up, and
down directions, as shown by the green lines in the figure. With these eight con-
nections for each particle, the cloth behaves pretty well, but there is still one pos-
sibility that we would like to prevent. A shearing motion can arise because the
distances between the particles remain the same if the grid squares are deformed
into a rhombus shape. To eliminate this case, we add four more connections be-

458 15. Fluid and Cloth Simulation

x

y

d
d

Figure 15.5. The central particle is connected to its four immediate neighbors (red lines)
to give the cloth cohesion, to its four neighbors two grid points away (green lines) to limit
bending, and to its four diagonal neighbors (blue lines) to prevent shearing.

tween the central particle and its diagonal neighbors, as shown by the blue lines
in the figure. For particles near the boundary of the mesh, any connections that
can’t be made because some neighbors don’t exist simply aren’t made, and fewer
springs and dampers are used to control their motions.
 Let P and Q represent the positions of two immediately neighboring particles
connected by a spring and damper, and let d be the rest length of the spring. The
distance d is the distance that the spring would like to maintain between the two
particles, so if the actual distance is anything else, then the particles experience a
force springF due to the spring given by

 ()spring springk d −= − −
−

Q P
F Q P

Q P
, (15.39)

where springk is the spring constant (see Section 14.3.1). The force springF is experi-
enced by the particle at P, and the force spring−F is experienced by the particle at
Q. For the springs that connect particles that are two grid points apart or particles
that are diagonal from each other, the rest length used in Equation (15.39) be-
comes 2d and 2d , respectively.
 A force damperF is exerted by the damper if there is a difference in the veloci-
ties d dtP and d dtQ , and it is given by

 ()damper damper
d dk
dt dt

= −Q P
F ,

15.2 Cloth Simulation 459

where damperk is a positive constant that determines how strong the damper is. As
with the spring force, the force damperF is experienced by the particle at P, and the
force damper−F is experienced by the particle at Q.
 In order to finely tune the behavior of our cloth, we can choose different
spring and damper constants for the different types of connections in the cloth.
For example, we might use a large spring constant for the long springs connect-
ing particles two grid points apart to make the cloth highly resistant to bending.
It’s important not to go too high, however, because strong springs have a tenden-
cy to introduce unwanted vibration into the simulation.

15.2.2 External Forces

If all of the particles in our cloth are initially placed so that all of the springs have
their rest lengths, then nothing would ever move in our cloth simulation. In order
to see some animation, we need to apply some external forces, the most obvious
of which is gravity. Each particle in the cloth experiences a force

 gravity m=F g, (15.40)

where m is the mass of the particle, and g is the acceleration of gravity (which
would normally be 20,0, 9.8 m s= −g).
 After gravity, the most common force applied to a cloth is due to wind, or
more precisely, the difference between the velocity of the cloth and the velocity
of the air. For a particle at the point P where the unit normal direction to the cloth
is N, the force due to the wind is given by

 ()wind wind
dk
dt

= − ⋅P
F W N . (15.41)

Here, W is the velocity of the wind, and windk is a constant that controls how
quickly the wind accelerates the cloth, which is an adjustable parameter that
could depend on factors such as the heaviness of the air or whether any air blows
through the cloth. The dot product with the normal causes the force to be greatest
when the wind direction is perpendicular to the tangent plane of the cloth and
least when the cloth is nearly aligned to the wind direction. We take the absolute
value because it doesn’t matter which side of the cloth that the wind strikes.

15.2.3 Implementation

For each particle in our cloth, we store a three-dimensional position and a three-
dimensional velocity. We animate our cloth by updating the positions and veloci-

460 15. Fluid and Cloth Simulation

ties of all the particles at a fixed time interval Δt. This time interval is independ-
ent of the actual frame rate at which a scene is being displayed, so the number of
simulation steps taken during any one rendering frame can vary. A time interval
between 5 and 20 milliseconds is typical and generally produces good results.
 During a single simulation step, a particle’s new position is calculated by
considering its current velocity and the set of forces acting on the particle. Once
the new position is known, we calculate the new velocity (to be used in the next
simulation step) by simply dividing the difference between the old and new posi-
tions by the time interval Δt.
 We can iterate through all of the particles and calculate the external forces
for each one separately. For the i-th particle, whose current position is iP , whose
surface normal is iN , and whose current velocity is iV , the external force externF
exerted on the particle is given by

 ()extern wind i im k= + − ⋅F g W V N . (15.42)

If we were to calculate the spring and damper forces while iterating over the par-
ticles, then we would end up calculating the force exerted by each connection
twice, which is hardly efficient. There is also an inconsistency in the number of
connections that each particle has that makes a per-particle accumulation of the
spring and damper forces an unattractive approach. Instead, we initialize an array
of forces, with one entry per particle, to the value given by Equation (15.42). We
then iterate over all of the connections in the entire cloth system, calculate the
force for each one, and apply the force to the two particles it connects. The force
exerted at one end of the connection is the negation of the force exerted at the
other end.
 Once the total force iF has been accumulated for each particle, we determine
the new position i′P using

 () 2Δ Δ
2

i
i i i t t

m
′ = + + F

P P V . (15.43)

After all of the positions have been updated, new normal and tangent vectors
need to be calculated, both for shading purposes and, in the case of the normal
vector, for use in Equation (15.42) during the next simulation step. Since the tex-
ture map would typically be aligned to the grid over which the cloth is construct-
ed, we can compute tangents and bitangents using a central difference method, as
opposed to running something similar to the code shown in Listing 7.1.

Chapter 15 Summary 461

Chapter 15 Summary

The Wave Equation

The two-dimensional wave equation for a surface experiencing a viscous damp-
ing force is

2 2 2

2
2 2 2

z z z zc μ
t x y t

∂ ∂ ∂ ∂ = + − ∂ ∂ ∂ ∂ 
.

The constant c is the speed at which waves propagate through the medium, and
the constant μ represents the viscosity of the medium.

Approximating Derivatives for a Fluid Surface

The first derivative of a function ()z x can be approximated by the formula

 () () ()
2

z x d z x dd z x
dx d

+ − −≈ ,

where d represents some constant step size. The second derivative of ()z x can be
approximated by the formula

 () () () ()2

2 2

2z x d z x z x dd z x
dx d

+ − + −
≈ .

Evaluating Fluid Surface Displacement

The future displacement (), , 1z i j k + of a point on the surface of a fluid after a
time t has passed is calculated using the equation

() () ()

() () () ()[]

2 2 2

2 2 2

4 8 2, , 1 , , , , 1
2 2

2 1, , 1, , , 1, , 1,
2

c t d μtz i j k z i j k z i j k
μt μt

c t d z i j k z i j k z i j k z i j k
μt

− −+ = + −
+ +

+ + + − + + + −
+

,

where d is the distance between neighboring vertices in the triangle mesh.

Stability of the Numerical Method for a Fluid

Given a constant time step t, the wave speed c must satisfy

 0 2
2
dc μt
t

< < + .

462 15. Fluid and Cloth Simulation

Given a constant wave speed c, the time step t must satisfy

2 2 2

2 2

320
8

μ μ c dt
c d

+ +< < .

Internal Forces for a Cloth Particle

A particle of mass m at a point P connected to another particle at the point Q ex-
periences the forces

 ()spring springk d −= − −
−

Q P
F Q P

Q P

and

 ()damper damper
d dk
dt dt

= −Q P
F ,

where d is the rest length of the spring connecting them.

External Forces for a Cloth Particle

A particle of mass m having a velocity V experiences the force

 ()extern windm k= + − ⋅F g W V N ,

where g is the acceleration of gravity, W is the velocity of the wind, and N is the
surface normal at the particle’s location.

Exercises for Chapter 15

1. Suppose that the fluid surface displacement of each vertex in a triangle mesh
is evaluated 20 times per second. If the distance between neighboring verti-
ces is 0.1m and the viscous damping constant is 11sμ −= , what is the maxi-
mum wave speed for which Equation (15.25) is numerically stable?

2. Suppose that the distance between neighboring vertices of a fluid surface
mesh is 0.1m and the viscous damping constant is 11sμ −= , as in the previ-
ous exercise. What is the maximum time interval between consecutive eval-
uations that allows a stable wave speed of 2 m s?

 463

Chapter 16
Numerical Methods

During the course of 3D graphics development, problems often arise that require
us to numerically calculate the solution to some kind of mathematical model. In
this chapter, we start with an effective technique for simultaneously calculating
the sine and cosine functions. We then discuss numerical methods for solving
three classes of problems. First, we discuss techniques for solving arbitrary linear
systems and linear systems having a special form. Second, we examine methods
for finding the eigenvalues and eigenvectors of a symmetric matrix. Lastly, we
introduce classical procedures for approximating the solutions to ordinary differ-
ential equations.

16.1 Trigonometric Functions

The sine and cosine functions are frequently used in games and computer
graphics, so it’s good to have a fast way of calculating them. Furthermore, it’s
often the case that the sine and cosine of an angle are both needed at the same
time, so a method that produces both values together for the price of calculating
either one separately is very attractive. Such a method exists, and it combines a
lookup table with a simple refinement based on a trigonometric identity.
 Suppose that we wanted to calculate the sine and cosine of an arbitrary angle
θ and that we have access to a lookup table containing precomputed values of the
sine and cosine functions for n evenly distributed values in the range [)0,2π ,
where n is a power of two. We can express the angle θ as the sum α β+ , where

2
2
.

π n θα
n π

β θ α

 =   
= − (16.1)

Here, the angle α is the result of rounding the angle θ down to the nearest multi-
ple of 2π n, and the angle β is simply what’s left over.

464 16. Numerical Methods

 The values of sinα and cosα are fetched from our lookup table. As long as n
is chosen to be large enough, the angle β is always very small, so it only takes a
few terms of a Taylor series (see Appendix D) to calculate sin β and cos β to the
full precision of a 32-bit floating-point number. For 256n = , the following for-
mulas are sufficient:

3 5

2 4

sin
3! 5!

cos 1 .
2! 4!

β ββ β

β ββ

= − +

= − + (16.2)

 With the sines and cosines of the angles α and β in hand, we calculate the
sine and cosine of the angle θ using the angle sum formulas

()
()

sin sin cos cos sin
cos cos cos sin sin

α β α β α β
α β α β α β

+ = +
+ = − (16.3)

(see Appendix B, Section B.4). Since we took the absolute value of the angle θ ,
we need to negate the value of the sine function if θ is negative.
 The code for implementing this method is shown in Listing 16.1. We use a
256-entry lookup table containing Vector2D objects, where the i-th entry holds
the cosine and sine of the angle 2

256
π i in the x and y components, respectively.

Listing 16.1. This code calculates the cosine and sine of the 32-bit floating-point value f and
returns them in the x and y components of a two-dimensional vector, respectively. The lookup
table from which the values of sin α and cosα are fetched is a global variable named trigTable.

Vector2D CosSin(float f)

{

 // Determine the index i for the lookup table.

 float a = fabs(f) * 40.74366543F; // 40.74366543 = 256 / 2pi

 float i = floor(a);

 // Determine the angle beta.

 float b = (a - i) * 0.0245436926F; // 0.0245436926 = 2pi / 256

 // Look up the sine and cosine of alpha, masking the index with

 // n - 1 so it stays within a single period.

 const Vector2D& alphaCosSin = trigTable[(long) i & 255];

16.2 Linear Systems 465

 // Calculate the sine and cosine of beta.

 float b2 = b * b;

 float sine_beta = b - b * b2 * (0.1666666667F - b2 * 0.008333333333F);

 float cosine_beta = 1.0F - b2 * (0.5F - b2 * 0.04166666667F);

 // Use the angle sum identities to calculate the sine and cosine

 // of theta. If theta < 0, then negate the sine.

 float sine = alphaCosSin.y * cosine_beta + alphaCosSin.x * sine_beta;

 float cosine = alphaCosSin.x * cosine_beta - alphaCosSin.y * sine_beta;

 return (Vector2D(cosine, (f < 0.0F) ? -sine : sine));

}

16.2 Linear Systems

In Chapter 3, we discussed a method for solving linear systems by transforming
the augmented coefficient matrix to reduced form. In this section, we more close-
ly investigate the problem of solving nonhomogeneous linear systems and pay
particular attention to implementation details. The general problem that we ex-
amine is written =Mx r, where M is an n n× invertible matrix representing the
coefficients of a set of linear equations, and r is an 1n × vector of constants. Our
goal is to find the 1n × vector x for which the equation =Mx r is satisfied.

16.2.1 Triangular Systems

A triangular system is one for which the coefficient matrix is either lower trian-
gular or upper triangular, as defined by the following.

Definition 16.1. A lower triangular matrix L is a square matrix for which
0ijL = when i j< . That is, a lower triangular matrix has nonzero entries only on

and below the main diagonal.

Definition 16.2. An upper triangular matrix U is a square matrix for which
0ijU = when i j> . That is, an upper triangular matrix has nonzero entries only

on and above the main diagonal.

466 16. Numerical Methods

 Triangular systems can be solved quite easily using direct substitution. In the
case of the linear system =Lx r, where L is an n n× lower triangular matrix, we
can write

11 1 1

21 22 2 2

1 2

0 0
0

n n nn n n

L x r
L L x r

L L L x r

     
     
     =
     
     
     




     


. (16.4)

From the first row in the coefficient matrix, we can immediately see that

 1
1

11

rx
L

= . (16.5)

If we solve the equation represented by the second row of the coefficient matrix
for 2x , we have

 ()2 2 21 1
22

1x r L x
L

= − . (16.6)

We already know the value of 1x , so it can be substituted into Equation (16.6) to
obtain the value of 2x . Continuing this process, we observe the general formula

1

1

1 i

i i ik k
ii k

x r L r
L

−

=

 = − 
 

 . (16.7)

This process is called forward substitution. For an n n× upper triangular matrix
U, a similar process, called backward substitution, allows us to solve the linear
system =Ux r. In this case, we can write

11 12 1 1 1

22 2 2 20

0 0

n

n

nn n n

U U U x r
U U x r

U x r

     
     
     =
     
     
     




     


. (16.8)

The last row of the coefficient matrix tells us that

 n
n

nn

rx
U

= . (16.9)

16.2 Linear Systems 467

By substituting into preceding rows, we obtain the general backward substitution
formula

1

1 n

i i ik k
ii k i

x r U r
U = +

 = − 
 

 . (16.10)

 In the remainder of this section, we examine two methods for solving general
linear systems. Each method transforms the problem into one in which triangular
systems appear. Forward and backward substitution can then be used to obtain a
solution.

16.2.2 Gaussian Elimination

Suppose we have a nonhomogeneous linear system of n equations having n un-
knowns 1 2, , , nx x x that can be written as =Mx r. By performing elementary
row operations (see Definition 3.3) on the coefficient matrix M, we can reduce
the linear system to

 ′=Ux r , (16.11)

where U is an upper triangular matrix, and the new constant vector ′r is the result
of performing the same row operations on r. The values of ix are then calculated
using the backward substitution formula given by Equation (16.10).
 The process of transforming the linear system =Mx r into the linear system

′=Ux r is known as Gaussian elimination. For each column 1,2, ,j n=  , we
eliminate the entries ijM below the main diagonal by adding row j multiplied by

ij jjM M− to row i for each i j> . If 0jjM = , we must exchange row j with anoth-
er row below it before performing the eliminations in column j. It is generally
true that the best numerical stability is achieved by exchanging rows so that the
absolute value of jjM is maximized, so we search for the largest entry on or be-
low the main diagonal as we process each column. As mentioned in Chapter 3,
this is called pivoting.
 Since multiplying any row of the matrix M and the corresponding entry of
the vector r by a nonzero scalar does not alter the solution to the linear system,
we can normalize each row of M so that its largest coefficient is 1± . This im-
proves numerical stability by placing all of the rows on equal ground, avoiding
the possibility that one row dominates the others during pivoting because it has
been scaled by a large value. Normalizing the rows for this reason is called im-
plicit pivoting.

468 16. Numerical Methods

 The SolveLinearSystem() function shown in Listing 16.2 solves a linear
system of the form =Mx r using Gaussian elimination and implicit pivoting. A
disadvantage of Gaussian elimination is that the constant vector r must be known
at the time that the coefficient matrix is transformed into an upper triangular ma-
trix. If the solution to the system is desired for multiple values of r (e.g., to calcu-
late the inverse of M), then the entire elimination process must be redone. This
limitation is circumvented by LU decomposition, which is discussed in the next
section.

Listing 16.2. The SolveLinearSystem() function solves the linear system =Mx r using
Gaussian elimination. The return value is false if the matrix M is singular and true otherwise.
Parameters
 n The size of the matrix M.
 m A pointer to the entries of the matrix M. The entries must be stored in column-

major order. This matrix is transformed into the matrix U appearing in Equation
(16.11).

 r A pointer to the constant vector r. The solution vector x is returned in this array.

bool SolveLinearSystem(int n, float *m, float *r)

{

 float *rowNormalizer = new float[n];

 bool result = false;

 // Calculate a normalizer for each row.

 for (int i = 0; i < n; i++)

 {

 const float *entry = m + i;

 float maxvalue = 0.0F;

 for (int j = 0; j < n; j++)

 {

 float value = fabs(*entry);

 if (value > maxvalue) maxvalue = value;

 entry += n;

 }

 if (maxvalue == 0.0F) goto exit; // Singular

 rowNormalizer[i] = 1.0F / maxvalue;

 }

16.2 Linear Systems 469

 // Perform elimination one column at a time.

 for (int j = 0; j < n - 1; j++)

 {

 // Find pivot element.

 int pivotRow = -1;

 float maxvalue = 0.0F;

 for (int i = j; i < n; i++)

 {

 float p = fabs(m[j * n + i]) * rowNormalizer[i];

 if (p > maxvalue)

 {

 maxvalue = p;

 pivotRow = i;

 }

 }

 if (pivotRow != j)

 {

 if (pivotRow == -1) goto exit; // Singular

 // Exchange rows.

 for (int k = 0; k < n; k++)

 {

 float temp = m[k * n + j];

 m[k * n + j] = m[k * n + pivotRow];

 m[k * n + pivotRow] = temp;

 }

 float temp = r[j];

 r[j] = r[pivotRow];

 r[pivotRow] = temp;

 rowNormalizer[pivotRow] = rowNormalizer[j];

 }

 float denom = 1.0F / m[j * n + j];

 for (int i = j + 1; i < n; i++)

 {

 float factor = m[j * n + i] * denom;

 r[i] -= r[j] * factor;

470 16. Numerical Methods

 for (int k = 0; k < n; k++)

 m[k * n + i] -= m[k * n + j] * factor;

 }

 }

 // Perform backward substitution.

 for (int i = n - 1; i >= 0; i--)

 {

 float sum = r[i];

 for (int k = i + 1; k < n; k++) sum -= m[k * n + i] * r[k];

 r[i] = sum / m[i * n + i];

 }

 result = true;

 exit:

 delete[] rowNormalizer;

 return (result);

}

16.2.3 LU Decomposition

Suppose again that we have a linear system of n equations that can be written as
=Mx r. If we can find two matrices L and U, where L is a lower triangular ma-

trix and U is an upper triangular matrix, such that =LU M, then the linear system
=Mx r can be written as

 () =L Ux r. (16.12)

This transforms the problem of solving the system =Mx r into the problems of
solving the system =Ly r and then solving the system =Ux y. The solutions to
both of these systems is easily calculated using forward substitution (for =Ly r)
and backward substitution (for =Ux y).
 The pair of triangular matrices L and U whose product yields M is called the
LU decomposition of M. Once determined, the LU decomposition of a matrix can
be repeatedly used to solve linear systems having the same coefficient matrix M
and different constant vectors r. In particular, we can calculate the j-th column of

1−M by setting i ijr δ= , where δ is the Kronecker delta symbol.
 We need an algorithm that determines the matrices L and U such that

16.2 Linear Systems 471

11 11 12 1 11 12 1

21 22 22 2 21 22 2

1 2 1 2

0 0
0 0

0 0

n n

n n

n n nn nn n n nn

L U U U M M M
L L U U M M M

L L L U M M M

     
     
     =
     
     
     

  
  

           
  

. (16.13)

When examining how the matrix product LU produces each entry of the matrix
M, we observe the following two summations.

1

, if
i

ij ik kj
k

M L U i j
=

= ≤ (16.14)

1

, if
j

ij ik kj
k

M L U i j
=

= ≥ (16.15)

(Both equations are valid for i j= .) The nonzero entries of L and U represent
2n n+ unknown values, and Equations (16.14) and (16.15) give a total of 2n

equations relating those unknowns. We therefore expect that n of the unknowns
may be arbitrarily chosen, and we can then solve for the remaining 2n unknowns.
For the method that we present here, known as Doolittle’s method, we set all of
the diagonal elements of L to unity. That is,

 1, 1,2, ,iiL i n≡ =  . (16.16)

(A similar method in which the diagonal elements of U are set to unity is known
as Crout’s method.) To make efficient usage of storage space, we write the val-
ues of the remaining nonzero entries of L and U in a single matrix D as follows.

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

n n n nn

U U U U
L U U U
L L U U

L L L U

 
 
 

=  
 
 
  

D





    


 (16.17)

 Doolittle’s method determines the (),i j entry of the matrix D using only the
(),i j entry of the matrix M and entries of D in the same column above ijD and in
the same row to the left of ijD . Solving Equation (16.14) for ijU and applying
Equation (16.16) gives us

472 16. Numerical Methods

1 1

1

1

;

, if 1.

j j

i

ij ij ik kj
k

U M

U M L U i
−

=

=

= − > (16.18)

The calculation of ijU requires the entries of U in the j-th column above row i and
the entries of L in the i-th row to the left of the main diagonal. Similarly, solving
Equation (16.15) for ijL gives us

1
1

11
1

1

;

1 , if 1.

i
i

j

ij ij ik kj
jj k

ML
U

L M L U j
U

−

=

=

 = − > 
 

 (16.19)

The calculation of ijL requires the entries of L in the i-th row to the left of column
j and the entries of U in the j-th column above and on the main diagonal.
 The general procedure for producing the matrix D is to calculate the columns
from left to right. For each column j, we first use Equation (16.18) to calculate

ijU for 1 i j≤ ≤ . These values are subsequently used in Equation (16.19) to calcu-
late ijL for 1j i n+ ≤ ≤ . It is possible to store each value ijU or ijL at the location
that ijM originally occupied since ijM is only used in the calculation for the (),i j
entry of the matrix D.
 The division in Equation (16.19) requires that we pivot when performing LU
decomposition. We do so for each column j by choosing the largest possible divi-
sor from the candidates ijP given by

1

1

j

ij ij ik kj
k

P M L U
−

=

= − (16.20)

for i j≥ . When i j= , Equation (16.20) yields jjU given by Equation (16.18); and
when i j> , Equation (16.20) yields ijL given by Equation (16.19), except that the
division is not performed. Once the value of ijP having the largest absolute value
has been identified, we exchange the row in which it appears with row j to move

ijP to the main diagonal where it becomes jjU . All of the other entries ijP in col-
umn j below the main diagonal are then divided by jjU to obtain ijL . All of this
produces the LU decomposition of a matrix M that is actually the LU decomposi-
tion of a permutation of the rows of M. We must keep track of the row exchanges
so that they can be accounted for when using the matrix D to solve a linear
system.

16.2 Linear Systems 473

 The LUDecompose() function shown in Listing 16.3 performs in-place LU
decomposition of a given n n× matrix M. Pivoting is performed using the nor-
malized rows of M in a manner similar to that used in Gaussian elimination. In
addition to returning the decomposed matrix D given by Equation (16.17), the
function returns an array of indexes that indicate how the rows were permuted
during the decomposition. All of this information is subsequently passed to the
LUBacksubstitute() function shown in Listing 16.4 to solve a linear system.
 After a matrix M has been decomposed into the product LU, its determinant
can be calculated using the equation

 det det det= ±M L U. (16.21)

Since the diagonal entries of L are all unity, det 1=L , and the right side reduces
to det± U. Which sign we choose depends on the number of row exchanges per-
formed during the decomposition. The LUDecompose() function returns a pari-
ty 1p = ± in the detSign parameter indicating whether the number of row ex-
changes performed was even or odd. Since each row exchange negates the de-
terminant (see Theorem 3.17), this value enables us to calculate the determinant
of M using the formula

1

det det
n

ii
i

p p U
=

= = M U . (16.22)

Listing 16.3. The LUDecompose() function performs the LU decomposition of an n n× matrix
M. The decomposition is performed in place—the matrix D given by Equation (16.17) is returned
in the space occupied by M. This function also returns an array of indexes that indicate how the
rows were permuted during the decomposition process. The matrix D and the permutation array
are passed to the LUBacksubstitute() function (see Listing 16.4) to solve linear systems. The
LUDecompose() function returns false if the matrix M is singular and true otherwise.
Parameters

 n The size of the matrix M.
 m A pointer to the entries of the matrix M. The entries must be stored in column-

major order.
 index A pointer to an array of size n where the row permutation information can be

stored.
 detSign A pointer to a location where the parity of the row exchanges can be stored. This

may be nullptr if this information is not needed.

bool LUDecompose(int n, float *m, unsigned short *index, float *detSign)

{

474 16. Numerical Methods

 float *rowNormalizer = new float[n];

 float exchangeParity = 1.0F;

 bool result = false;

 // Calculate a normalizer for each row.

 for (int i = 0; i < n; i++)

 {

 const float *entry = m + i;

 float maxvalue = 0.0F;

 for (int j = 0; j < n; j++)

 {

 float value = fabs(*entry);

 if (value > maxvalue) maxvalue = value;

 entry += n;

 }

 if (maxvalue == 0.0F) goto exit; // Singular

 rowNormalizer[i] = 1.0F / maxvalue;

 index[i] = i;

 }

 // Perform decomposition.

 for (int j = 0; j < n; j++)

 {

 for (int i = 1; i < j; i++)

 {

 // Evaluate Equation (16.18).

 float sum = m[j * n + i];

 for (int k = 0; k < i; k++) sum -= m[k * n + i] * m[j * n + k];

 m[j * n + i] = sum;

 }

 // Find pivot element.

 int pivotRow = -1;

 float maxvalue = 0.0F;

 for (int i = j; i < n; i++)

 {

 // Evaluate Equation (16.20).

 float sum = m[j * n + i];

16.2 Linear Systems 475

 for (int k = 0; k < j; k++) sum -= m[k * n + i] * m[j * n + k];

 m[j * n + i] = sum;

 sum = fabs(sum) * rowNormalizer[i];

 if (sum > maxvalue)

 {

 maxvalue = sum;

 pivotRow = i;

 }

 }

 if (pivotRow != j)

 {

 if (pivotRow == -1) goto exit; // Singular

 // Exchange rows.

 for (int k = 0; k < n; k++)

 {

 float temp = m[k * n + j];

 m[k * n + j] = m[k * n + pivotRow];

 m[k * n + pivotRow] = temp;

 }

 unsigned short temp = index[j];

 index[j] = index[pivotRow];

 index[pivotRow] = temp;

 rowNormalizer[pivotRow] = rowNormalizer[j];

 exchangeParity = -exchangeParity;

 }

 // Divide by pivot element.

 if (j != n - 1)

 {

 float denom = 1.0F / m[j * n + j];

 for (int i = j + 1; i < n; i++) m[j * n + i] *= denom;

 }

 }

 if (detSign) *detSign = exchangeParity;

476 16. Numerical Methods

 result = true;

 exit:

 delete[] rowNormalizer;

 return (result);

}

Listing 16.4. The LUBacksubstitute() function takes the LU-decomposed matrix D and
permutation array returned by the LUDecompose() function (see Listing 16.3) and uses them to
solve a linear system of n equations =Mx r. First, the system =Ly r is solved using Equation
(16.7), and then the system =Ux y is solved using Equation (16.10).
Parameters
 n The size of the matrix D.
 d A pointer to the entries of the matrix D. This should be the same pointer that was

passed to the m parameter of the LUDecompose() function.
 index A pointer to the array of row permutation indexes returned by the LUDecom-

pose() function.
 r A pointer to an array of n constant values representing the vector r for which the

linear system =Mx r is to be solved.
 x A pointer to the array in which the n solutions representing the vector x are to be

returned.

void LUBacksubstitute(int n, const float *d, const unsigned short *index,

 const float *r, float *x)

{

 for (int i = 0; i < n; i++) x[i] = r[index[i]];

 // Perform forward substitution for Ly = r.

 for (int i = 0; i < n; i++)

 {

 float sum = x[i];

 for (int k = 0; k < i; k++) sum -= d[k * n + i] * x[k];

 x[i] = sum;

 }

 // Perform backward substitution for Ux = y.

 for (int i = n - 1; i >= 0; i--)

 {

16.2 Linear Systems 477

 float sum = x[i];

 for (int k = i + 1; k < n; k++) sum -= d[k * n + i] * x[k];

 x[i] = sum / d[i * n + i];

 }

}

16.2.4 Error Reduction

Suppose that we have solved a linear system =Mx r and obtained the solution
0=x x . Due to round-off error, it is usually the case that 0x is slightly different

from the true solution to the system, and thus 0 0=Mx r , where 0r is slightly dif-
ferent from the original constant vector r. Calling the true solution to the system
x, we can write

 ()Δ Δ+ = +M x x r r, (16.23)

where 0Δ = −x x x and 0Δ = −r r r. Subtracting the original system =Mx r from
this equation gives us

 Δ Δ=M x r. (16.24)

If we solve Equation (16.23) for Δr and plug it into Equation (16.24), then we
arrive at the following linear system.

 0Δ = −M x Mx r (16.25)

The entire right side of this equation is known, so we can solve for the error vec-
tor Δx and subtract from our original solution 0x to obtain a better answer.
 The LURefineSolution() function shown in Listing 16.5 solves the sys-
tem given by Equation (16.25) using the same LU decomposition needed to solve
the original system =Mx r. The result is then used to improve the original solu-
tion 0x . The right side of Equation (16.25) is evaluated in double precision since
its value may become very small during its computation. We need both the origi-
nal coefficient matrix M and the LU-decomposed matrix D given by Equation
(16.17). The code assumes that the matrix M has already been copied and de-
composed into the matrix D using the LUDecompose() function shown in
Listing 16.3.

478 16. Numerical Methods

Listing 16.5. The LURefineSolution() function uses Equation (16.25) to improve the solution
x to the linear system =Mx r.
Parameters
 n The size of the matrix M.
 m A pointer to the entries of the matrix M. The entries must be stored in column-

major order.
 d A pointer to the entries of the matrix D. This should be the same pointer that was

passed to the m parameter of the LUDecompose() function.
 index A pointer to the array of row permutation indexes returned by the LUDecom-

pose() function.
 r A pointer to an array of n constant values representing the vector r for which the

linear system =Mx r was originally solved.
 x A pointer to the array containing the n solutions representing the vector x. This

function refines these solutions.

void LURefineSolution(int n, const float *m, const float *d,

 const unsigned short *index, const float *r, float *x)

{

 float *t = new float[n];

 for (int i = 0; i < n; i++)

 {

 double q = -r[i];

 for (int k = 0; k < n; k++) q += m[k * n + i] * x[k];

 t[i] = (float) q;

 }

 LUBacksubstitute(n, d, index, t, t);

 for (int i = 0; i < n; i++) x[i] -= t[i];

 delete[] t;

}

16.2 Linear Systems 479

16.2.5 Tridiagonal Systems

A particular type of linear system =Mx r frequently arises in which each equa-
tion has only three nonzero coefficients and those coefficients are centered on the
main diagonal of M. This special form of the coefficient matrix is given the fol-
lowing name.

Definition 16.3. A square matrix M is tridiagonal if 0ijM = whenever
1i j− > . That is, a tridiagonal matrix has nonzero entries only on the main di-

agonal and immediately above and below the main diagonal.

A tridiagonal matrix having the property that its diagonal elements are larger than
the sum of the remaining elements in their rows is described using the following
term.

Definition 16.4. Let M be the tridiagonal matrix

1 1

2 2 2

3 3 3

0 0 0
0 0

0 0

b c
a b c

a b c

 
 
 =
 
 
 

M



   

. (16.26)

M is diagonally dominant if i i ib a c> + for all i, where we assume 1 0a ≡ and

0nc ≡ .

 Suppose we have a linear system =Mx r of n equations, where M is a tridi-
agonal matrix. It turns out that such a linear system can be solved very efficient-
ly. Furthermore, if M is diagonally dominant, then we can prove that a solution
to the linear system must exist.
 Expanding the equation =Mx r, we can write

1 1 1 1

2 2 2 2 2

1 1 1 1 1

0 0 0 0
0 0 0

0 0 0
0 0 0 0

n n n n n

n n n n

b c x r
a b c x r

a b c x r
a b x r

− − − − −

     
     
     

=     
     
     
          



  



. (16.27)

480 16. Numerical Methods

The first two rows of the matrix M represent the equations

 1 1 1 2 1b x c x r+ = (16.28)

and

 2 1 2 2 2 3 2a x b x c x r+ + = . (16.29)

We can solve Equation (16.28) for 1x and substitute the result into Equation
(16.29) to obtain

 1 1
2 2 2 2 3 2 2

1 1

c rb a x c x r a
b b

 − + = − 
 

, (16.30)

which now contains only two unknowns instead of three. Continuing this pro-
cess, we can write each of the equations as

 1i i i i iβ x c x ρ++ = , (16.31)

where iβ and iρ are constants given by the recurrence formulas

1

1

1

1
.

i
i i i

i

i
i i i

i

cβ b a
β
ρρ r a
β

−

−

−

−

= −

= − (16.32)

The equation corresponding to the last row of the matrix M becomes n n nβ x ρ= ,
giving us the value of nx :

 n
n

n

ρx
β

= . (16.33)

Plugging this value back into Equation (16.31) for 1i n= − gives us the value of
1nx − , and in general,

 1
i i

i i
i i

ρ cx x
β β += − . (16.34)

 An implementation of this algorithm is shown in Listing 16.6. The algorithm
is begun with 1 1β b= and 1 1ρ r= . Each value of i ic β calculated with Equation
(16.32) is saved for later use in Equation (16.34). This implementation assumes

16.2 Linear Systems 481

that iβ is never zero, which is guaranteed to be true if the matrix M is diagonally
dominant. The fact that a diagonally dominant matrix is always invertible is
summarized by the following theorem.

Theorem 16.5. Let M be an n n× diagonally dominant tridiagonal matrix. Then
the linear system =Mx r is always solvable, and as a corollary, the matrix M is
invertible.

Proof. Let the entries of M be named as shown in Equation (16.26). Since M is
diagonally dominant, i i ib a c> + for all i. We will show that the value of iβ
given by Equation (16.32) always satisfies i iβ c> and is therefore never zero.
For 1i = , this is trivially true since 1 1 1β b c= > . Now assume that for any 1i >
that 1 1i iβ c− −> . For iβ , we have

1

1

1

1

1

1

1

1
1

i
i i i

i

i
i i

i

i
i i i

i

i
i i

i

cβ b a
β

cb a
β

ca c a
β

cc a
β

−

−

−

−

−

−

−

−

= −

≥ −

> + −

 = + − 
 

. (16.35)

Since 1 1i iβ c− −> , the quantity 1 11 i ic β− −− is positive, and thus i iβ c> . By in-
duction, this shows that i iβ c> for all i. Consequently, the value of each ix can
always be calculated using Equation (16.34). The inverse of the matrix M can be
found by solving the system n times, producing the columns of 1−M one at a time.
The j-th column of 1−M is found by setting i ijr δ= . 

482 16. Numerical Methods

Listing 16.6. The SolveTridiagonalSystem() function solves a tridiagonal system of n
equations having the form =Mx r given by Equation (16.27).
Parameters
 n The size of the tridiagonal matrix M.
 a, b, c Pointers to arrays containing the coefficients ia , ib , and ic , where 1 i n≤ ≤ . (These

arrays are accessed using zero-based indexes, so 1b=b[0] .) The coefficients a[0]
and c[n - 1] do not exist and are never accessed.

 r A pointer to an array of n constant values representing the vector r for which the
linear system =Mx r is to be solved.

 x A pointer to the array in which the n solutions representing the vector x are to be
returned.

void SolveTridiagonalSystem(int n, const float *a, const float *b,

 const float *c, const float *r, float *x)

{

 // Allocate temporary storage for c[i]/beta[i].

 float *t = new float[n - 1];

 float recipBeta = 1.0F / b[0];

 x[0] = r[0] * recipBeta;

 for (int i = 1; i < n; i++)

 {

 t[i - 1] = c[i - 1] * recipBeta;

 recipBeta = 1.0F / (b[i] - a[i] * t[i - 1]);

 x[i] = (r[i] - a[i] * x[i - 1]) * recipBeta;

 }

 for (int i = n - 2; i >= 0; i--) x[i] -= t[i] * x[i + 1];

 delete[] t;

}

16.3 Eigenvalues and Eigenvectors 483

16.3 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors were introduced in Section 3.5. We have studied
how they are important for performing principal component analysis (see Section
8.1.1) and for determining principal axes of inertia (see Section 14.2.4). Both of
these problems required calculating the eigenvalues and eigenvectors of a 3 3×
symmetric matrix, and we restrict our discussion to that particular problem in this
section.1
 Recall from Section 3.6 that a symmetric matrix M can be written as

 T=M A DA, (16.36)

where D is a diagonal matrix whose entries are the eigenvalues of M, and A is an
orthogonal matrix whose columns are the eigenvectors of M. Our strategy in this
section is to apply a series of transformations to a given symmetric matrix 0M of
the form

 T
1k k k k−=M R M R , (16.37)

where kR is an orthogonal matrix, in such a way that each iteration moves the
matrix kM closer to being diagonal. Once the off-diagonal entries have been
made sufficiently small (perhaps even zero to machine precision), we are left
with the following.

 T T T
1 1 0 1 2m m m m−=M R R R M R R R  (16.38)

After m iterations, the diagonal entries of the matrix mM are the eigenvalues of
0M , and the columns of the product 1 2 mR R R are the corresponding eigen-

vectors.
 We choose each matrix kR to be a rotation matrix that annihilates one of the
three distinct off-diagonal entries of 1k−M when Equation (16.37) is evaluated.
The use of this process to diagonalize the matrix 0M is known as the Jacobi
method. Each iteration sets a symmetric pair of off-diagonal entries to zero, but
also undoes previous annihilations. We will show, however, that the off-diagonal
entries become smaller in magnitude as a group and eventually vanish.
 For a 3 3× matrix 0M , the rotation matrix kR may assume one of the follow-
ing three forms, where s and c represent the sine and cosine of a rotation angle θ .

1 For a treatment of larger and nonsymmetric matrices, see William H. Press et al., Nu-
merical Recipes in C, Cambridge, 1988.

484 16. Numerical Methods

 () () ()12 13 23

0 0 1 0 0
0 , 0 1 0 , 0

0 0 1 0 0

c s c s
s c c s

s c s c

     
     = − = =     

− −          

R R R (16.39)

Suppose that we use one of the matrices ()pqR to transform the matrix M into the
matrix ′M through the formula () ()Tpq pq′ =M R MR . By explicitly calculating the
entries of ′M , we obtain the following relationships.

 ,

,

if and ;
ii ii

ip pi ip iq

iq qi ip iq

M M
M cM sM i p i q
M sM cM

′ = 
′ = − ≠ ≠
′ = + 

 (16.40)

 2 2 2pp pp qq pqM c M s M scM′ = + − (16.41)

 2 2 2qq pp qq pqM s M c M scM′ = + + (16.42)

 () ()2 2
,pq qp pp qq pqM sc M M c s M′ = − + − (16.43)

We use the rotation matrix ()pqR to annihilate the (),p q entry of M and therefore
need to choose the angle θ so that 0pqM ′ = . Equation (16.43) thus becomes

2 2

pp qq

pq

c s M M
sc M
− −

= . (16.44)

Using the trigonometric identities

 2 2

sin 2 2sin cos
cos2 cos sin

α α α
α α α

=
= − (16.45)

(see Appendix B, Section B.4), we define u as

2 21

tan 2 2 2
pp qq

pq

c s M Mu
θ sc M

− −
= = = . (16.46)

We could now determine the angle θ by calculating 11 1
2 tan u

− . However, c and s
can be found much more efficiently by observing that

 2 2 1 0t ut+ − = , (16.47)

16.3 Eigenvalues and Eigenvectors 485

where tant s c θ= = . Applying the quadratic formula, we have

 2 1t u u= − ± + . (16.48)

For best numerical stability, we want to choose the smaller of the two angles of
rotation represented by this equation. The smaller value of t is given by

 ()()2sgn 1t u u u= + − . (16.49)

(In this case, we need ()sgn 0 1= so that 1t = when 0u = .) If u is so large that 2u
produces a floating-point infinity (possible when 0θ ≈), we assign ()1 2t u= be-
cause

 ()() ()2
2

2 2

sgn1sgn 1
1 1

uu uu u u
u u u u

+ +
+ − =

+ + + +
 (16.50)

and

2 1lim 1

u

u
u→∞

+ = . (16.51)

Using the identity 2 21 1t c+ = (see Appendix B, Section B.3), we can now com-
pute the values of c and s as follows.

2

1
1

c
t

s ct

=
+

= (16.52)

 When calculating the entries of ′M , we simply assume that 0pqM ′ = . We can
then solve Equation (16.43) for ppM and qqM :

2 2

2 2

pp qq pq

qq pp pq

s cM M M
sc

s cM M M
sc

−= +

−= − . (16.53)

Plugging this value of qqM into Equation (16.41) and this value of ppM into
Equation (16.42) gives us the much simpler expressions

486 16. Numerical Methods

2 2
2 2 2pp pp pp pq pq

pp pq

s cM c M s M M scM
sc

M tM

− ′ = + − − 
 

= − (16.54)

and

2 2
2 2 2

.

qq qq pq qq pq

qq pq

s cM s M M c M scM
sc

M tM

− ′ = + + + 
 

= + (16.55)

 To see that the Jacobi method converges to a diagonal matrix, we examine
the sum of the squares of the distinct off-diagonal entries. For the matrix M, the
sum S of these three entries is

 2 2 2
ip iq pqS M M M= + + , (16.56)

where ,i p q≠ . Using Equation (16.40) to calculate the same sum S ′ for the ma-
trix ′M gives us

() () ()2 2 2

2 2 .
ip iq ip iq pq

ip iq

S cM sM sM cM M

M M

′ ′= − + + +

= + (16.57)

Thus, choosing a nonzero entry to serve as pqM guarantees that the sum of the
squares of the off-diagonal entries decreases by 2

pqM . Over many iterations, the
sequence of sums decreases monotonically and has a lower bound of zero, so it
must converge to zero.
 The CalculateEigensystem() function shown in Listing 16.7 imple-
ments the Jacobi method for finding the eigenvalues and eigenvectors of a 3 3×
symmetric matrix M. It annihilates the ()1,2 entry of M, then the ()1,3 entry, and
finally the ()2,3 entry. This process of cycling through the off-diagonal entries,
each iteration of which is called a sweep, is repeated until the total size of the off-
diagonal entries falls below a small positive threshold or a maximum number of
sweeps have been executed.

16.3 Eigenvalues and Eigenvectors 487

Listing 16.7. The CalculateEigensystem() function calculates the eigenvalues and eigen-
vectors of a 3 3× symmetric matrix.

Parameters

 m The 3 3× matrix for which eigenvalues and eigenvectors are to be calculated. This
matrix must be symmetric.

 lambda A pointer to an array where the three eigenvalues are to be returned.

 r A 3 3× matrix whose columns contain the eigenvectors upon return. The i-th
column corresponds to the i-th eigenvalue returned in the lambda array.

const float epsilon = 1.0e-10F;

const int maxSweeps = 32;

void CalculateEigensystem(const Matrix3D& m, float *lambda, Matrix3D& r)

{

 float m11 = m(0,0);

 float m12 = m(0,1);

 float m13 = m(0,2);

 float m22 = m(1,1);

 float m23 = m(1,2);

 float m33 = m(2,2);

 r.SetIdentity();

 for (int a = 0; a < maxSweeps; a++)

 {

 // Exit if off-diagonal entries small enough.

 if ((Fabs(m12) < epsilon) && (Fabs(m13) < epsilon) &&

 (Fabs(m23) < epsilon)) break;

 // Annihilate (1,2) entry.

 if (m12 != 0.0F)

 {

 float u = (m22 - m11) * 0.5F / m12;

 float u2 = u * u;

 float u2p1 = u2 + 1.0F;

 float t = (u2p1 != u2) ?

 ((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u))

 : 0.5F / u;

 float c = 1.0F / sqrt(t * t + 1.0F);

 float s = c * t;

488 16. Numerical Methods

 m11 -= t * m12;

 m22 += t * m12;

 m12 = 0.0F;

 float temp = c * m13 - s * m23;

 m23 = s * m13 + c * m23;

 m13 = temp;

 for (int i = 0; i < 3; i++)

 {

 float temp = c * r(i,0) - s * r(i,1);

 r(i,1) = s * r(i,0) + c * r(i,1);

 r(i,0) = temp;

 }

 }

 // Annihilate (1,3) entry.

 if (m13 != 0.0F)

 {

 float u = (m33 - m11) * 0.5F / m13;

 float u2 = u * u;

 float u2p1 = u2 + 1.0F;

 float t = (u2p1 != u2) ?

 ((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u))

 : 0.5F / u;

 float c = 1.0F / sqrt(t * t + 1.0F);

 float s = c * t;

 m11 -= t * m13;

 m33 += t * m13;

 m13 = 0.0F;

 float temp = c * m12 - s * m23;

 m23 = s * m12 + c * m23;

 m12 = temp;

 for (int i = 0; i < 3; i++)

 {

 float temp = c * r(i,0) - s * r(i,2);

 r(i,2) = s * r(i,0) + c * r(i,2);

16.3 Eigenvalues and Eigenvectors 489

 r(i,0) = temp;

 }

 }

 // Annihilate (2,3) entry.

 if (m23 != 0.0F)

 {

 float u = (m33 - m22) * 0.5F / m23;

 float u2 = u * u;

 float u2p1 = u2 + 1.0F;

 float t = (u2p1 != u2) ?

 ((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u))

 : 0.5F / u;

 float c = 1.0F / sqrt(t * t + 1.0F);

 float s = c * t;

 m22 -= t * m23;

 m33 += t * m23;

 m23 = 0.0F;

 float temp = c * m12 - s * m13;

 m13 = s * m12 + c * m13;

 m12 = temp;

 for (int i = 0; i < 3; i++)

 {

 float temp = c * r(i,1) - s * r(i,2);

 r(i,2) = s * r(i,1) + c * r(i,2);

 r(i,1) = temp;

 }

 }

 }

 lambda[0] = m11;

 lambda[1] = m22;

 lambda[2] = m33;

}

490 16. Numerical Methods

16.4 Ordinary Differential Equations

In this section, we study methods for numerically solving first-order ordinary
differential equations. We can always write such equations in the form

 () (),y x f x y′ = , (16.58)

where f is a function that we are able to evaluate for any given values of x and y.
Most differential equations encountered in a physical simulation are second-order
or higher, but we will be able to show that the ability to solve first-order equa-
tions also gives us the ability to solve equations of any order by writing them as a
system of first-order equations.

16.4.1 Euler’s Method

Euler’s method is an extremely simple technique for approximating values of the
solution ()y x to the differential equation given by Equation (16.58). Coupled
with this simplicity is low accuracy, so we describe Euler’s method now only as
an introduction to later discussions of more effective methods.
 Suppose that we know an initial state ()0 0y x y= , and we wish to approxi-
mate the value of the function y at 0x x h= + , where h is some small step size.
Writing the derivative ()0y x′ as a finite difference, Equation (16.58) becomes

 () ()0 0 ,y x h y f x y
h

+ − = . (16.59)

Solving for ()0y x h+ , we have

 () ()0 0 ,y x h y hf x y+ = + . (16.60)

This gives us the state () ()()1 1 0 0, ,x y x h y x h= + + from which the process can be
repeated. The general formula for Euler’s method is thus

 ()
1

1 ,
i i

i i i i

x x h
y y hf x y

+

+

= +
= + . (16.61)

 Let us consider as an example a projectile moving under the influence of
gravity. Its equation of motion is

 () 0y t v gt′ = − , (16.62)

16.4 Ordinary Differential Equations 491

where t is time, y represents the height of the projectile, 0v is the initial vertical
velocity, and g is the (positive) acceleration of gravity. (We assume the horizon-
tal velocity is constant.) We can use Euler’s method to move from the point
(),i it y to the point ()1 1,i it y+ + by evaluating the equation

 ()1 0i iy y h v gt+ = + − . (16.63)

Figure 16.1 shows the exact solution to Equation (16.62) for 0 6 m sv = and
()0 0y = , which we know to be () 21

0 2y t v t gt= − , and the approximation to the
projectile’s position calculated using Euler’s method with a step size of 0.1sh = .
The minimal accuracy of Euler’s method is clearly demonstrated by the diver-
gence of the two curves. We could improve the situation by decreasing the step
size h, but doing so requires more evaluations of Equation (16.61).

x

y

Figure 16.1. The solution to the differential equation () 0y t v gt′ = − with ()0 0y = ,

0 6 m sv = , and 29.8 m sg = . The piecewise curve is the approximation calculated using
Euler’s method with a step size of 0.1 sh = .

492 16. Numerical Methods

16.4.2 Taylor Series Method

Any method for approximating the solution to a differential equation by taking
one step at a time assumes the form

 () () (),i i i iy x h y x hF x y+ = + , (16.64)

where the function F is some function that produces an approximation to the de-
rivative of y over the interval [],i ix x h+ . For Euler’s method, the function F is
simply the function f. To find a function F that achieves greater accuracy than
that provided by Euler’s method, we consider the Taylor series (see Appendix D)
of ()iy x h+ :

 () () () () () ()
2 3

3

2! 3!i i i i i
h hy x h y x hy x y x y x′ ′′+ = + + + +. (16.65)

For a differential equation written in the form of Equation (16.58), the derivatives
of ()y x can all be calculated using the relationship

 () () () ()1 ,n ny x f x y−= . (16.66)

By taking 1k − derivatives, we can calculate the Taylor series approximation of
()iy x h+ to k-th order in the step size h, yielding

 () () () () ()
2

1, , ,
2! !

k
k

i i i i i i i i
h hy x h y hf x y f x y f x y

k
−′+ ≈ + + + + , (16.67)

where ()i iy y x= . When 1k = , this reduces to Euler’s method. Writing Equation
(16.67) in the form of Equation (16.64), we have

 () () (),i i k i iy x h y x hT x y+ = + , (16.68)

where (),k i iT x y is defined as

 () () () () ()
2 1

1, , , ,
2! !

k
k

k i i i i i i i i
h hT x y f x y f x y f x y

k

−
−′= + + + . (16.69)

This is known as the k-th order Taylor series method.
 Since y is a function of x, we must be careful to evaluate the total derivatives
of (),f x y in the Taylor series. The first derivative is

16.4 Ordinary Differential Equations 493

 () () (), , , dyf x y f x y f x y
x y dx

∂ ∂′ = +
∂ ∂

. (16.70)

Since (),dy dx f x y= , this becomes

 () () () (), , , ,f x y f x y f x y f x y
x y

∂ ∂′ = +
∂ ∂

. (16.71)

Higher derivatives of (),f x y quickly become very messy, but we could theoreti-
cally compute them to construct the k-th order Taylor series approximation. The
function f may have a form that enables easy calculation of its derivatives.

16.4.3 Runge-Kutta Method

Because of the necessity of calculating derivatives, the Taylor series method is
not commonly used. Everything that we have examined so far in this section has
served as a prelude to our discussion of the Runge-Kutta method, a reliable and
accurate technique for numerically solving most differential equations that arise
in physical simulations appearing in a 3D graphics application.
 The Runge-Kutta method determines how to step from iy to 1iy + by choosing
the function F in Equation (16.64) to be one that evaluates (),f x y at multiple
points and takes a weighted average to approximate the derivative of y. In gen-
eral, the function F has the form

 () ()
1

, ,
m

i i j j j
j

F x y w f u v
=

= , (16.72)

where m is the number of points at which (),f x y is evaluated, each point (),j ju v
lies near the point (),i ix y , and jw is the weight associated with the j-th point. The
points and weights are chosen so that (),i iF x y matches a k-th order Taylor series
function (),k i iT x y given by Equation (16.69). This is accomplished without hav-
ing to evaluate derivatives of f.
 The value of m is called the number of stages of the method. We first consid-
er a two-stage Runge-Kutta method in which the function F has the form

 () () ()()1 2, , , ,i i i i i i i iF x y w f x y w f x ah y ahf x y= + + + . (16.73)

We would like to choose 1w , 2w , and a so that this function matches the second-
order Taylor series function ()2 ,i iT x y as closely as possible. To achieve this
goal, we expand ()(), ,i i i if x ah y ahf x y+ + in a Taylor series as follows.

494 16. Numerical Methods

()(), ,

(,) (,) (,) (,)

i i i i

i i i i i i i i

f x ah y ahf x y

f x y ah f x y f x y f x y R
x y

+ +

∂ ∂ = + + + ∂ ∂ 
 (16.74)

The remainder term R involves only higher powers of ah. Using this expansion,
the function F can be written as

() () ()1 2

2 2

, ,

(,) (,) (,)

i i i i

i i i i i i

F x y w w f x y

w ah f x y f x y f x y w R
x y

= + +

∂ ∂ + + ∂ ∂ 
. (16.75)

The Taylor series function ()2 ,i iT x y is given by

 () () () () ()2 , , , , ,
2i i i i
hT x y f x y f x y f x y f x y

x y
∂ ∂ = + + ∂ ∂ 

. (16.76)

Equating like terms in Equations (16.75) and (16.76) (ignoring the term contain-
ing R), we see that the weights 1w and 2w must satisfy

1 2

1
2 2

1w w
aw

+ =
= . (16.77)

Thus, ()2 1 2w a= and ()1 1 1 2w a= − . The value of a is unrestricted, but we
should use a quantity that keeps the second point sampled in Equation (16.73) in
the neighborhood of the point (),i ix y .
 Choosing 1

2a = forces 1 0w = and produces the following step after plugging
(),i iF x y into Equation (16.64).

 ()1 , ,
2 2i i i i i i
h hy y hf x y f x y+

 = + + + 
 

 (16.78)

Equation (16.78) is called the modified Euler’s method. If we instead choose
1a = , then the weights are equal, and we have

 () ()()[]1 , , ,
2i i i i i i i i
hy y f x y f x h y hf x y+ = + + + + . (16.79)

Equation (16.79) is called the improved Euler’s method and is also known as
Heun’s method.

16.4 Ordinary Differential Equations 495

 Runge-Kutta methods having a greater number of stages are derived in a
manner similar to that used to derive the two-stage method, except that higher-
order Taylor series expansions are equated. Without concerning ourselves with
the details of the long and uninteresting derivation, we state a popular four-stage
Runge-Kutta method, often called the RK4 method, as follows.

 () () () ()[]1 1 2 3 4, 2 , 2 , ,
6i i i i i i i i i i
hy y K x y K x y K x y K x y+ = + + + + (16.80)

() ()

() ()

() ()

() ()()

1

2 1

3 2

4 3

, ,

, , ,
2 2

, , ,
2 2

, , ,

i i i i

i i i i i i

i i i i i i

i i i i i i

K x y f x y
h hK x y f x y K x y

h hK x y f x y K x y

K x y f x h y hK x y

=

 = + + 
 
 = + + 
 

= + +

 (16.81)

The RK4 method is usually more than adequate for the types of real-time simula-
tions encountered in a 3D game application. The calculation of Equation (16.80)
is very straightforward and also rather efficient for the accuracy that the RK4
method provides.

16.4.4 Higher-Order Differential Equations

We mentioned earlier that a higher-order differential equation could be trans-
formed into a system of first-order differential equations, allowing us to solve it
numerically using the methods already presented. First, let us consider a second-
order differential equation

 () (), ,y x f x y y′′ ′= . (16.82)

This can be expressed as the following pair of first-order equations.

() ()
() (), ,

y x z x
z x f x y z
′ =
′ = (16.83)

Given initial conditions ()0 0y x y= and ()0 0z x z= , we can solve this system us-
ing Euler’s method by applying the following step formula.

496 16. Numerical Methods

 ()

1

1

1 , ,

i i

i i i

i i i i i

x x h
y y hz
z z hf x y z

+

+

+

= +
= +
= + (16.84)

 In general, an n-th order differential equation () () ()()1, , , ,n ny x f x y y y −′= 
can be written as the system of n first-order equations

() ()
() ()

() ()

1 2

2 3

1 2, , , ,n n

z x z x
z x z x

z x f x z z z

′ =
′ =

′ =


 , (16.85)

where () ()1z x y x= , () ()2z x y x′= , and so on to () () ()1n
nz x y x−= . We can ex-

press this as the vector first-order differential equation

 () (),x x′ =z f z , (16.86)

where () () () ()1 2, , , nx z x z x z x=z  and

 ()

()
()

()

2

3

1 2

,

, , , , n

z x
z x

x

f x z z z

 
 
 =
 
 
 

f z



. (16.87)

The vector analog of Equation (16.64) is

 () () (),i i i ix h x h x+ = +z z F z , (16.88)

where (),i ixF z is a vector function representing an Euler method, Taylor series
method, or Runge-Kutta method that is simply calculated componentwise.

Chapter 16 Summary

Linear Systems

The solution to a linear system =Lx r, where L is an n n× lower triangular ma-
trix, can be found by forward substitution:

Chapter 16 Summary 497

1

1

1 i

i i ik k
ii k

x r L r
L

−

=

 = − 
 

 .

The solution to a linear system =Ux r, where U is an n n× upper triangular ma-
trix, can be found by backward substitution:

1

1 n

i i ik k
ii k i

x r U r
U = +

 = − 
 

 .

A matrix M can be decomposed into the product LU, where L is lower triangular
and U is upper triangular, using Doolittle’s method. The linear system =Mx r
then becomes () =L Ux r, which can be solved in two stages by first using for-
ward substitution to solve =Ly r and then backward substitution to solve =Ux y.

Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of a 3 3× symmetric matrix M can be numeri-
cally calculated by applying the Jacobi method to diagonalize M. When M is
transformed by one of the rotation matrices ()pqR given by Equation (16.39), the
new entries of M are given by

 ,

,

if and ;
ii ii

ip pi ip iq

iq qi ip iq

M M
M cM sM i p i q
M sM cM

′ = 
′ = − ≠ ≠
′ = + 

 , 0,

pp pp pq

qq qq pq

pq qp

M M tM
M M tM
M

′ = −
′ = +
′ =

where t s c= .

Ordinary Differential Equations

The first-order ordinary differential equation () (),y x f x y′ = can be approximat-
ed using Euler’s method as follows.

 ()1 ,i i i iy y hf x y+ = +

The improved Euler’s method, also known as Heun’s method, uses the step
formula

498 16. Numerical Methods

 () ()()[]1 , , ,
2i i i i i i i i
hy y f x y f x h y hf x y+ = + + + + .

The RK4 method has the following formulation.

 () () () ()[]1 1 2 3 4, 2 , 2 , ,
6i i i i i i i i i i
hy y K x y K x y K x y K x y+ = + + + +

() ()

() ()

() ()

() ()()

1

2 1

3 2

4 3

, ,

, , ,
2 2

, , ,
2 2

, , ,

i i i i

i i i i i i

i i i i i i

i i i i i i

K x y f x y
h hK x y f x y K x y

h hK x y f x y K x y

K x y f x h y hK x y

=

 = + + 
 
 = + + 
 

= + +

Exercises for Chapter 16

1. Extend the Jacobi method to find eigenvalues and eigenvectors for an n n×
symmetric matrix M. Modify Listing 16.7 so that it cycles through all of the
off-diagonal entries, annihilating them one at a time.

2. Calculate the second total derivative of ()(),f x y x necessary to implement
the third-order Taylor series method.

3. Implement the improved Euler’s method (Heun’s method) and apply it to
the case of a projectile under the influence of gravity. Show that this method
gives the exact solution to the equation () 0y t v gt′ = − no matter what step
size is used.

4. Implement the RK4 method for first-order differential equations.

5. Implement the vector form of the RK4 method and apply it to the exact
equation of motion for a pendulum given by Equation (14.126).

 499

Appendix A

Complex Numbers

A.1 Definition

The set of complex numbers  is a field containing the set of real numbers  and
the “imaginary” number i. The number i is defined to be the square root of 1− :

 1i = − . (A.1)

Thus, the square root of any negative number n− can be written as

 n i n− = . (A.2)

A complex number z is one of the form

 z a bi= + , (A.3)

where a and b are real numbers. The number a is called the real part of z, denot-
ed by ()Re z , and the number b is called the imaginary part of z, denoted by

()Im z . If 0b = , then the number z is purely real. If 0a = , then the number z is
purely imaginary.

A.2 Addition and Multiplication

The sum of two complex numbers a bi+ and c di+ is given by

 () () () ()a bi c di a c b d i+ + + = + + + . (A.4)

The product of two complex numbers can be calculated by using the distributive
property and the fact that 2 1i = − . The product of a bi+ and c di+ is given by

 ()() () ()a bi c di ac bd ad bc i+ + = − + + . (A.5)

500 A. Complex Numbers

Addition and multiplication of complex numbers are both commutative and asso-
ciative. This means that for any three complex numbers 1z , 2z , and 3z , the follow-
ing properties hold.

(a) 1 2 2 1z z z z+ = +
(b) () ()1 2 3 1 2 3z z z z z z+ + = + +
(c) 1 2 2 1z z z z=
(d) () ()1 2 3 1 2 3z z z z z z=

A.3 Conjugates and Inverses

The conjugate of a complex number z a bi= + is denoted by z and is defined as

 z a bi= − . (A.6)

The conjugate of z has the same components as the number z itself, except that
the imaginary part is negated. Taking the product of z and its conjugate z yields

 ()() 2 2zz a bi a bi a b= + − = + . (A.7)

Thus, the product zz is a real number that reflects the magnitude of the number z.
We use this to define the absolute value of a complex number, which is some-
times called the modulus. The modulus of a complex number z a bi= + is denoted
by z and is defined as

 2 2z zz a b= = + . (A.8)

If z is purely real, then this definition reduces to that of the ordinary absolute val-
ue for a real number.
 Let 1z a bi= + and 2z c di= + be complex numbers such that 2 0z ≠ . We can
determine the value of the quotient 1 2z z by multiplying the numerator and de-
nominator by the conjugate of 2z . This gives us

 ()()1 2
12 2 2

2 2

a bi c diz a bi a bi c di zz
z c di c di c di c d z

+ −+ + −= = ⋅ = =
+ + − +

. (A.9)

We now have a way to define the inverse of a nonzero complex number z, which
we denote by 1z − , as follows.

A.4 The Euler Formula 501

 1
2

zz
z

− = (A.10)

As shown below, the product of a complex number z and its inverse is 1.

 1
2 1zz zzzz

z zz
− = = = (A.11)

A.4 The Euler Formula

A fascinating property of complex numbers ties exponential and trigonometric
functions together. For any real number x representing a radian angle of measure,
we have the following identity.

 cos sinixe x i x= + (A.12)

This equation is known as the Euler formula and can be used to derive a multi-
tude of trigonometric identities (see Appendix B, Section B.4). The formula can
be verified by expanding the function ixe into its power series and collecting real
and imaginary terms, as shown in Appendix D, Section D.3.
 The complex plane is a 2D coordinate system having a real axis and an imag-
inary axis that are perpendicular to each other. As shown in Figure A.1, a com-
plex number z can be uniquely identified by its absolute value and the angle that
it forms with the real axis in the complex plane. This angle is called the argument
of a complex number and is denoted by arg z. One possible value of the argument
of z a bi= + is given by

 ()

()

1

1

tan , if 0;

arg sgn , if 0;
2

tan sgn , if 0.

b a
a
πz b a

b b π a
a

−

−

 >

= =

 + <

 (A.13)

Any angle differing from the value given by Equation (A.13) by a multiple of 2π
is also correct.
 We can now express any complex number z as

 iθz re= , (A.14)

502 A. Complex Numbers

Re

Im

z

z

arg z

Figure A.1. A complex number z can be expressed in terms of its distance z from the
origin and the angle arg z that it forms with the real axis in the complex plane.

where r z= and argθ z= . Since the sine and cosine functions have a period of
2π, we know that

 ()2i θ πkiθe e += (A.15)

for any integer k.
 The Euler formula is useful for raising a complex number to a power. The
quantity nz can be written as

 ()cos sinn n inθ nz r e r nθ i nθ= = + . (A.16)

In particular, we can calculate the n-th roots of a complex number z by writing

 ()()21 1 2 2cos sinni θ πkn n θ πk θ πkz re r i
n n

+ + + = = + 
 

, (A.17)

where k is an integer. Choosing 0,1, , 1k n= − produces all n roots of the num-
ber z. A root ρ is called primitive if the smallest positive power m yielding mρ z=
is m n= .
 The n-th roots of unity can be calculated using the formula

 2 2 2cos sinπki n πk πke i
n n

= + (A.18)

A.4 The Euler Formula 503

since 1r = and 0θ = in this case. For example, the three cube roots of unity 0ρ , 1ρ ,
and 2ρ are given by

0

1

2

1

2 2 1 3cos sin
3 3 2 2

4 4 1 3cos sin
3 3 2 2

ρ

π πρ i i

π πρ i i

=

= + = − +

= + = − − . (A.19)

Note that 1ρ and 2ρ are both primitive roots of unity, and that 2
1 2ρ ρ= and 2

2 1ρ ρ= .
In general, a primitive n-th root of unity generates all the n-th roots of unity when
raised to the powers 1,2, ,n .

This page intentionally left blank

 505

Appendix B
Trigonometry Reference

B.1 Function Definitions

For the angle α shown in Figure B.1, the trigonometric functions are defined as
follows.

sin cos

tan cot

sec csc

y xα α
r r
y xα α
x y
r rα α
x y

= =

= =

= = (B.1)

The relationships among the trigonometric functions listed below follow imme-
diately from the definitions.

sin 1tan cot
cos tan

1 1sec csc
cos sin

αα α
α α

α α
α α

= =

= = (B.2)

α

r
y

x
Figure B.1. Equation (B.1) defines the trigonometric functions in terms of the angle α
shown in this triangle.

506 B. Trigonometry Reference

B.2 Symmetry and Phase Shifts

The cosine function is an even function, meaning that it is symmetric about the y
axis. The sine and tangent functions are odd functions, meaning that they are
symmetric about the origin. We thus have the following identities.

()
()
()

sin sin
cos cos
tan tan

α α
α α
α α

− = −
− =
− = − (B.3)

 The cosine function produces the same value at an angle α that the sine func-
tion does at the angle 2α π+ . That is, the graph of the cosine function is identi-
cal to the graph of the sine function shifted to the left by 2π radians. We can
thus formulate the following phase shift identities.

()
()
()

sin 2 cos
cos 2 sin
tan 2 cot

α π α
α π α
α π α

+ =
+ = −
+ = − (B.4)

Using the symmetry properties given by Equation (B.3), we can also state

()
()
()

sin 2 cos
cos 2 sin
tan 2 cot

π α α
π α α
π α α

− =
− =
− = . (B.5)

 Shifting the sine or cosine function by a value of π simply negates the values
of the function. This gives us

()
()
()

sin sin
cos cos
tan tan .

α π α
α π α
α π α

+ = −
+ = −
+ = (B.6)

Again using the symmetry properties of the functions, we can also state

()
()
()

sin sin
cos cos
tan tan

π α α
π α α
π α α

− =
− = −
− = − . (B.7)

B.3 Pythagorean Identities 507

B.3 Pythagorean Identities

The following identities arise directly from the definitions given in Equation
(B.1) and the fact that 2 2 2x y r+ = .

2 2

2 2

2 2

sin cos 1
tan 1 sec
cot 1 csc

α α
α α
α α

+ =
+ =
+ = (B.8)

If the angle α satisfies 0 2α π≤ ≤ , then we can write

2

2

2

2

1sin 1 cos
cot 1

1cos 1 sin
tan 1

α α
α

α α
α

= − =
+

= − =
+

. (B.9)

B.4 Exponential Identities

The Euler formula states

 cos sinαie α i α= + . (B.10)

This relationship can be used to derive several trigonometric identities simply by
applying the laws of exponents. The angle sum and difference identities are given
by the equation

 ()α β i αi βie e e+ = . (B.11)

Expanding this using Equation (B.10) yields

 () () ()()cos sin cos sin cos sinα β i α β α i α β i β+ + + = + + . (B.12)

By equating the real and imaginary components of one side to those of the other,
we can infer the following.

()
()

sin sin cos cos sin
cos cos cos sin sin

α β α β α β
α β α β α β

+ = +
+ = − (B.13)

The angle difference identities are derived by negating β as follows.

508 B. Trigonometry Reference

()
()

sin sin cos cos sin
cos cos cos sin sin

α β α β α β
α β α β α β

− = −
− = + (B.14)

When the angles α and β are the same, the angle sum identities become

 2 2

sin 2 2sin cos
cos2 cos sin

α α α
α α α

=
= − . (B.15)

Using the fact that 2 2sin cos 1α α+ = , we can rewrite cos2α in the following
ways.

2

2

cos2 1 2sin
cos2 2cos 1

α α
α α

= −
= − (B.16)

Solving these for 2sin α and 2cos α gives us

2

2

1 cos2sin
2

1 cos 2cos
2

αα

αα

−=

+= . (B.17)

B.5 Inverse Functions

The inverse ()1f x− of a trigonometric function ()f α returns the angle α for
which ()f α x= . The domains and ranges of the inverse trigonometric functions
are listed in Table B.1.

Function Domain Range
1sin x− []1,1− []2, 2π π−
1cos x− []1,1− []0,π
1tan x−  []2, 2π π−

Table B.1. Domains and ranges of inverse trigonometric functions.

 As shown in Figure B.2, the inverse sine of x is equal to the acute angle α in
a triangle having an opposite side of length x and a hypotenuse of length 1. Since

B.6 Laws of Sines and Cosines 509

α

x
1

21 x−
Figure B.2. A triangle representing the inverse sine function.

we know that the third side of the triangle has length 21 x− , we can derive the
values of the other trigonometric functions at the angle 1sin x− as follows.

()
()

1 2

1

2

cos sin 1

tan sin
1

x x
xx

x

−

−

= −

=
−

 (B.18)

Applying the same technique for the inverse cosine and inverse tangent func-
tions, we have the following.

()

()

()

()

1 2

2
1

1

2

1

2

sin cos 1

1tan cos

sin tan
1

1cos tan
1

x x

xx
x
xx

x

x
x

−

−

−

−

= −

−=

=
+

=
+

 (B.19)

B.6 Laws of Sines and Cosines

Consider the triangle shown in Figure B.3 and observe the following.

sin

sin

zα
c
yβ
c

=

= (B.20)

510 B. Trigonometry Reference

π γ−

π γ−

γ

α

β a

b
c

x

y

z

Figure B.3. For the triangle having side lengths a, b, and c, and angles α, β, and γ, the
law of sines is given by Equation (B.24), and the law of cosines is given by Equation
(B.29).

Solving these for c allows us to form the equality

 sin sin
z y
α β

= . (B.21)

The following observations may also be made.

()

()

sin

sin

zπ γ
a
yπ γ
b

− =

− = (B.22)

Thus, z a y b= . Multiplying the left side of Equation (B.21) by a z and the right
side of Equation (B.21) by b y yields the law of sines:

sin sin

a b
α β

= . (B.23)

The same relationship can be derived for the pair of angles α and γ or the pair of
angles β and γ, so we can write

B.6 Laws of Sines and Cosines 511

sin sin sin

a b c
α β γ

= = . (B.24)

 Now observe the following Pythagorean relationships in the triangle shown
in Figure B.3.

 ()

2 2 2

2 2 2

x y b
a x y c

+ =
+ + = (B.25)

Solving the first equation for 2y and substituting into the second equation gives
us

()2 2 2 2

2 2 2 .

c a x b x

a b ax

= + + −

= + + (B.26)

The value of x can be replaced by observing

 ()cos xπ γ
b

− = . (B.27)

Since ()cos cosπ γ γ− = − , we have

 cosx b γ= − . (B.28)

Plugging this into Equation (B.26) produces the law of cosines:

 2 2 2 2 cosc a b ab γ= + − . (B.29)

Of course, this reduces to the Pythagorean theorem when γ is a right angle since
cos 2 0π = .

This page intentionally left blank

 513

Appendix C
Coordinate Systems

C.1 Cartesian Coordinates

A Cartesian coordinate system is characterized by three mutually perpendicular
axes, usually named x, y, and z. As shown in Figure C.1, a point P can be ex-
pressed as

 x y z= + +P i j k , (C.1)

where i, j, and k are unit vectors parallel to the three axes. The scalars x, y, and z
are the Cartesian coordinates of the point P.

y
x

z

P

j

i

k

Figure C.1. Cartesian coordinates.

514 C. Coordinate Systems

 The gradient operator ∇ has the following form in Cartesian coordinates.

x y z

∂ ∂ ∂≡ + +
∂ ∂ ∂

i j k∇ (C.2)

In other coordinate systems in which a point P has coordinates u, v, and w, where
we can write (), ,u u x y z= , (), ,v v x y z= , and (), ,w w x y z= , the gradient operator
follows the chain rule to become

 u v w
u v w
∂ ∂ ∂′ = + +
∂ ∂ ∂

∇ ∇ ∇ ∇ . (C.3)

C.2 Cylindrical Coordinates

A point P is represented by the quantities r, θ , and z in cylindrical coordinates.
As shown in Figure C.2, r is equal to the radial distance between P and the z axis.
The angle θ is called the azimuthal angle, or simply the azimuth, and is equal to
the counterclockwise angle formed between the x axis and the line connecting the
projection of P onto the x-y plane to the origin. The z coordinate has the same
meaning as it does in Cartesian coordinates.

z

P

j

i

k

r

θ

Figure C.2. Cylindrical coordinates.

C.2 Cylindrical Coordinates 515

 The x and y Cartesian coordinates corresponding to a point having cylindrical
coordinates , ,r θ z are given by

cos
sin .

x r θ
y r θ

=
= (C.4)

The cylindrical coordinates r and θ can be written in terms of the Cartesian coor-
dinates x and y as follows.

()

() ()

2 2

1

2 2

, ,

, , sgn cos

r x y z x y
xθ x y z y

x y
−

= +

=
+

 (C.5)

The azimuthal angle θ can also be expressed as

 () ()

()

1

1

tan , if 0;

, , sgn , if 0;
2

tan sgn , if 0.

y x
x
πθ x y z y x

y y π x
x

−

−

 >

= =

 + <

 (C.6)

(In both Equations (C.5) and (C.6), the value of θ satisfies π θ π− ≤ ≤ .)
 A point P having cylindrical coordinates , ,r θ z is written in terms of the
Cartesian basis vectors i, j, and k as follows.

 () ()cos sinr θ r θ z= + +P i j k (C.7)

Taking partial derivatives with respect to the coordinates r, θ , and z, and normal-
izing gives us the unit vectors r̂ , θ̂, and ẑ at the point P in the cylindrical coordi-
nate system:

() ()

() ()

ˆ cos sin

ˆ sin cos

ˆ .

r θ θ
r
θ θ θ
θ
z
z

∂ ∂= = +
∂ ∂
∂ ∂= = − +
∂ ∂
∂ ∂= =
∂ ∂

P
r i j

P

P
i j

P

P
z k

P

θ

 (C.8)

516 C. Coordinate Systems

 The gradient operator in cylindrical coordinates is given by

 () () ˆ, , , ,r x y z θ x y z
r θ z

∂ ∂ ∂′ = + +
∂ ∂ ∂

z∇ ∇ ∇ . (C.9)

Using the definitions given in Equation (C.5) for (), ,r x y z and (), ,θ x y z , we ob-
tain the following for the gradients (), ,r x y z∇ and (), ,θ x y z∇ .

()

2 2 2 2

, ,

cos sin
ˆ

r r rr x y z
x y z

x y
x y x y
θ θ

∂ ∂ ∂= + +
∂ ∂ ∂

= +
+ +

= +
=

i j k

i j

i j

r

∇

 (C.10)

()

2 2 2 2

, ,

sin cos

1 ˆ

θ θ θθ x y z
x y z

y x
x y x y

θ θ
r r

r

∂ ∂ ∂= + +
∂ ∂ ∂

−= +
+ +

   = − +   
   

=

i j k

i j

i j

∇

θ (C.11)

Thus, the gradient operator can be written as

 1 ˆˆ ˆ
r r θ z

∂ ∂ ∂′ = + +
∂ ∂ ∂

r z∇ θ . (C.12)

C.3 Spherical Coordinates

A point P is represented by the quantities r, θ , and φ in spherical coordinates. As
shown in Figure C.3, r is equal to the distance from the origin to the point P. The
angle θ is the azimuth representing the angle formed between the x axis and the
line connecting the projection of P onto the x-y plane to the origin (just as in cy-
lindrical coordinates). The angle φ is called the polar angle and represents the

C.3 Spherical Coordinates 517

j

i

k

r

θ

P

φ

Figure C.3. Spherical coordinates.

angle formed between the z axis and the line connecting P to the origin. The po-
lar angle φ always satisfies 0 φ π≤ ≤ .
 The Cartesian coordinates , ,x y z corresponding to a point having spherical
coordinates , ,r θ φ are given by

sin cos
sin sin
cos .

x r φ θ
y r φ θ
z r φ

=
=
= (C.13)

The spherical coordinates , ,r θ φ can be written in terms of the Cartesian coor-
dinates , ,x y z as follows.

()

() ()

()

2 2 2

1

2 2

1

2 2 2

, ,

, , sgn cos

, , cos

r x y z x y z
xθ x y z y

x y
zφ x y z

x y z

−

−

= + +

=
+

=
+ +

 (C.14)

518 C. Coordinate Systems

The azimuthal angle θ can also be expressed as shown in Equation (C.6), and the
polar angle φ can also be expressed as

 ()

2 2
1

2 2
1

tan , if 0;

, , 2, if 0;

tan , if 0.

x y z
z

φ x y z π z

x y π z
z

−

−

 + >
= =


+ + <

 (C.15)

 A point P having spherical coordinates , ,r θ φ is written in terms of the Car-
tesian basis vectors i, j, and k as follows.

 () () ()sin cos sin sin cosr φ θ r φ θ r φ= + +P i j k (C.16)

Taking partial derivatives with respect to the coordinates r, θ , and φ, and normal-
izing gives us the unit vectors r̂ , θ̂, and ϕ̂ at the point P in the spherical coordi-
nate system:

() () ()

() ()

() () ()

ˆ sin cos sin sin cos

ˆ sin cos

ˆ cos cos cos sin sin

r φ θ φ θ φ
r
θ θ θ
θ
φ φ θ φ θ φ
φ

∂ ∂= = + +
∂ ∂
∂ ∂= = − +
∂ ∂
∂ ∂= = + + −
∂ ∂

P
r i j k

P

P
i j

P

P
i j k

P

θ

ϕ . (C.17)

 The gradient operator in spherical coordinates is given by

 () () (), , , , , ,r x y z θ x y z φ x y z
r θ φ

∂ ∂ ∂′ = + +
∂ ∂ ∂

∇ ∇ ∇ ∇ . (C.18)

Using the definitions given in Equation (C.14) for (), ,r x y z , (), ,θ x y z and
(), ,φ x y z , we obtain the following for the gradients (), ,r x y z∇ , (), ,θ x y z∇ , and

(), ,φ x y z∇ .

C.3 Spherical Coordinates 519

()

2 2 2 2 2 2 2 2 2

, ,

sin cos sin sin cos
ˆ

r r rr x y z
x y z

x y z
x y z x y z x y z
φ θ φ θ φ

∂ ∂ ∂= + +
∂ ∂ ∂

= + +
+ + + + + +

= + +
=

i j k

i j k

i j k

r

∇

 (C.19)

()

2 2 2 2

, ,

sin cos
sin sin

1 ˆ
sin

θ θ θθ x y z
x y z

y x
x y x y

θ θ
r φ r φ

r φ

∂ ∂ ∂= + +
∂ ∂ ∂

−= +
+ +

   = − +   
   

=

i j k

i j

i j

∇

θ (C.20)

()

() ()2 2 2 2 2 2 2 2 2 2

2 2

2 2 2

, ,

cos cos cos sin sin

1 ˆ

φ φ φφ x y z
x y z

xz yz
x y z x y x y z x y

x y
x y z

φ θ φ θ φ
r r r

r

∂ ∂ ∂= + +
∂ ∂ ∂

= +
+ + + + + +

− ++
+ +

−= + +

=

i j k

i j

k

i j k

∇

ϕ (C.21)

Thus, the gradient operator can be written as

 1 1ˆˆ ˆ
sinr r φ θ r φ

∂ ∂ ∂′ = + +
∂ ∂ ∂

r∇ θ ϕ . (C.22)

520 C. Coordinate Systems

C.4 Generalized Coordinates

Let S be a coordinate system in which points are described by three coordinates
1u , 2u , and 3u , and let ()1 2 3, ,x u u u , ()1 2 3, ,y u u u , and ()1 2 3, ,z u u u be functions that

transform coordinates in S to the corresponding Cartesian coordinates x, y, and z.
Then a point P having coordinates 1u , 2u , and 3u in S can be written as

 () () ()1 2 3 1 2 3 1 2 3, , , , , , .x u u u y u u u z u u u= + +P i j k (C.23)

The contravariant basis vectors 1e , 2e , and 3e for the coordinate system S are giv-
en by the partial derivatives of P with respect to the coordinates 1u , 2u , and 3u as
follows.

() () ()

() () ()

() () ()

1 1 2 3 1 2 3 1 2 3

2 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3

, , , , , ,

, , , , , ,

, , , , , ,

x u u u y u u u z u u u
u u u u

x u u u y u u u z u u u
v v v v

x u u u y u u u z u u u
w w w w

∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂

P
e i j k

P
e i j k

P
e i j k (C.24)

The scalar quantities ijg defined by

 ij i jg ≡ ⋅e e (C.25)

constitute the nine components of the metric tensor, at most six of which are dis-
tinct since ij jig g= . The metric tensors corresponding to Cartesian coordinates,
cylindrical coordinates, and spherical coordinates are displayed in Table C.1.
 The metric tensor is used in the generalized formula for the dot product be-
tween two vectors in an arbitrary coordinate system. The dot product between
two vectors a and b having coordinates in S is given by

3 3

1 1
ij i j

i j
g a b

= =

⋅ =a b . (C.26)

The squared magnitude of a vector v is given by its dot product with itself, so we
have

3 3

1 1
ij i j

i j
g v v

= =

= ⋅ = v v v . (C.27)

C.4 Generalized Coordinates 521

Coordinate System Metric Tensor

Cartesian coordinates []
1 0 0
0 1 0
0 0 1

ijg
 
 =  
  

Cylindrical coordinates [] 2

1 0 0
0 0
0 0 1

ijg r
 
 =  
  

Spherical coordinates [] 2 2

2

1 0 0
0 sin 0
0 0

ijg r φ
r

 
 =  
  

Table C.1. Metric tensors.

This establishes a metric in the coordinate system S and reveals the source of the
metric tensor’s name. If the vector v represents the coordinate difference between
two points, then the metric tensor is used in Equation (C.27) to obtain a (not gen-
erally Euclidean) measure of distance between the two points.
 To calculate the Euclidean distance between two points, we integrate differ-
ential distances along a straight-line path. Straight lines are not generally given
by linear functions of the coordinates, so we consider an arbitrary parametric
path ()tu in the coordinate system S. The length L of the path over the interval in
which [],t a b∈ is given by

1 2

1 23 3

1 1

b b

a a
b

i j
ij

i j
a

d d dL dt dt
dt dt dt

du du
g dt

dt dt= =

 = = ⋅ 
 

 
=  

 


 



u u u

. (C.28)

The quantity

3 3

2

1 1
ij i j

i j
ds g du du

= =

= (C.29)

522 C. Coordinate Systems

is called the line element and characterizes the differential unit of length in the
coordinate system S. The line element is a generalization of the Pythagorean the-
orem, of which the familiar form 2 3 2

1Σ i ids dx== of Equation (C.29) in Cartesian
coordinates is a special case.
 In an orthogonal coordinate system (in which the basis vectors are always
mutually perpendicular), we have

 i j ij ijg δ⋅ =e e , (C.30)

where ijδ is the Kronecker delta. In such a coordinate system, the metric tensor is
diagonal, and we define the scale factors ih as

 i iih g≡ . (C.31)

The line element reduces to

3

2 2 2

1
i i

i
ds h du

=

= . (C.32)

The volume element dV in an orthogonal coordinate system is defined as

3

1
i i

i
dV h du

=

= ∏ (C.33)

and characterizes the differential unit of volume. The volume V of space bounded
by the intervals []1 1 1,u a b∈ , []2 2 2,u a b∈ , and []3 3 3,u a b∈ is given by

 3 2 1 3 2 1

3 2 1 3 2 1
1 2 3 1 2 3

b b b b b b

a a a a a a
V dV h h h du du du= =      . (C.34)

The line elements and volume elements corresponding to Cartesian coordinates,
cylindrical coordinates, and spherical coordinates are listed in Table C.2.

Coordinate System Line Element Volume Element

Cartesian coordinates 2 2 2dx dy dz+ + dx dy dz

Cylindrical coordinates 2 2 2 2dr r dθ dz+ + r dr dθ dz

Spherical coordinates 2 2 2 2 2 2sindr r φdθ r dφ+ + 2 sinr φdr dθ dφ

Table C.2. Line elements and volume elements.

 523

Appendix D

Taylor Series

D.1 Derivation

Let ()f x be a function whose first n derivatives exist on some interval I. Sup-
pose that we wish to approximate ()f x near the value x c= in I using a degree n
polynomial ()np x so that

 () () () () ()2
0 1 2

n
n np x a a x c a x c a x c f x= + − + − + + − ≈ (D.1)

whenever x is small. The derivatives of ()np x evaluated at x c= are the fol-
lowing.

()
()

() ()

1

22

!

n

n

n
n n

p c a
p c a

p c n a

′ =
′′ =

=


 (D.2)

We can determine the coefficients ia by requiring that

() ()
() ()
() ()

() () () ()

n

n

n

n n
n

p c f c
p c f c
p c f c

p c f c

=
′ ′=
′′ ′′=

=


. (D.3)

The polynomial ()np x is thus given by

 () () ()() () ()
() () ()2

2! !

n
n

n
f c f cp x f c f c x c x c x c

n
′′

′= + − + − + + − . (D.4)

524 D. Taylor Series

 We define the error term ()nr x to be the difference between the approxima-
tion ()np x and the actual function value ()f x so that

() () ()() () ()
() () () ()

2

2!

.
!

n
n

n

f cf x f c f c x c x c

f c x c r x
n

′′
′= + − + − +

+ − +



 (D.5)

Let ()g z be the function defined by

() () () ()() () ()
() () () ()

()
()

2

1

1

2!

.
!

nn
n

nn

f zg z f x f z f z x z x z

f z x zx z r x
n x c

+

+

′′
′= − − − − − −

−
− − −

−



 (D.6)

It is easily verified that () 0g x = and, using Equation (D.5), that () 0g c = . The
derivative of ()g z simplifies significantly to the following.

 ()
() () () () ()

()
()

1

11
!

n n
n

nn

f z x zg z x z n r x
n x c

+

+

−′ = − − + +
−

 (D.7)

By Rolle’s theorem, there exists a 0z between x and c such that ()0 0g z′ = . Eval-
uating ()0g z′ and solving for ()nr x yields

 ()
() ()
()

()
1

0 1

1 !

n
n

n
f zr x x c

n

+
+= −

+
. (D.8)

If a function ()f x is infinitely differentiable, then we may state

 ()lim 0n
n

r x
→∞

= . (D.9)

We can therefore express any such function ()f x as the infinite series

() () ()() () () () ()
() () ()

2 3

0

2! 3!

.
!

k
k

k

f c f cf x f c f c x c x c x c

f c x c
k

∞

=

′′ ′′′
′= + − + − + − +

= −



 (D.10)

This is known as the Taylor series expansion of the function ()f x .

D.2 Power Series 525

D.2 Power Series

Equation (D.10) can be used to derive power series expansions for common func-
tions by using 0c = . Because the exponential function xe is equal to its own de-
rivative and 0 1e = , its power series is given by

2 3 4

0

1
2! 3! 4!

.
!

x

k

k

x x xe x

x
k

∞

=

= + + + + +

=



 (D.11)

For the sine function, we first observe the following.

() ()
() ()
() ()
() ()

sin 0 0
cos 0 1
sin 0 0
cos 0 1

f x x f
f x x f

f x x f
f x x f

= =
′ ′= =

′′ ′′= − =
′′′ ′′′= − = −

 (D.12)

The power series for the sine function is thus given by

 ()
()

3 5 7

2 1

0

sin
3! 5! 7!

1 .
2 1 !

k k

k

x x xx x

x
k

+∞

=

= − + − + −

−
=

+



 (D.13)

Similarly, the power series for the cosine function is given by

 ()
()

2 4 6

2

0

cos 1
2! 4! 6!

1 .
2 !

k k

k

x x xx

x
k

∞

=

= − + − + −

−=



 (D.14)

Another interesting function is

 () 1
1

f x
x

=
+

 (D.15)

because it is the derivative of ()ln 1 x+ on the interval ()1,− ∞ . The first few de-
rivatives of ()f x are the following.

526 D. Taylor Series

()
()

()
()

()
()

2

3

4

1
1

2
1

6
1

f x
x

f x
x

f x
x

−′ =
+

′′ =
+
−′′′ =
+

 (D.16)

In general, the k-th derivative of ()f x is given by

 () () ()
() 1

1 !
1

k
k

k

kf x
x +

−
=

+
, (D.17)

which when evaluated at 0x = produces () () ()0 1 !k kf k= − . Thus, the power se-
ries for the function ()f x is given by

 ()

2 3

0

1 1
1

1 .k k

k

x x x
x

x
∞

=

= − + − + −
+

= −



 (D.18)

This series converges on the interval ()1,1− . Integrating both sides, we arrive at
the following power series for the natural logarithm of 1 x+ on the same interval.

()

()

2 3 4

1

0

ln 1
2 3 4
1

1

k k

k

x x xx x

x
k

+∞

=

+ = − + − + −

−
=

+



 (D.19)

D.3 The Euler Formula

The Euler formula expresses the following relationship between the exponential
function and the sine and cosine functions.

 cos sinixe x i x= + (D.20)

This can be verified by examining the power series of the function ixe :

D.3 The Euler Formula 527

0 !

k k
ix

k

i xe
k

∞

=

= . (D.21)

Using the fact that 2 1i = − , 3i i= − , and 4 1i = , we can collect the real and imagi-
nary terms of this series as follows.

 ()
()

()
()

2 2 1

0 0

1 1
2 ! 2 1 !

k k k k
ix

k k

x xe i
k k

+∞ ∞

= =

− −
= +

+  (D.22)

Comparing this to Equations (D.13) and (D.14) confirms the result.

This page intentionally left blank

 529

Appendix E
Answers to Exercises

Chapter 2

1. (a) 2− (b) 2,1, 6− (c) 4 4 2
9 9 9, ,− − −

2. 1 1′ =e e , 2 2′ =e e , 3 1, 1, 2′ = − −e

3. 17.5

Chapter 3

1. (a) 22 (b) 1− (c) 1 (d) 0

2. (a)

1
2

1
3

1
4

0 0
0 0
0 0

 
 
 
  

 (b) 3 1 1
8 2 8

3 1
8 8

1 0 0

0

 
 − 
 − 

(c)
cos 0 sin

0 1 0
sin 0 cos

θ θ

θ θ

 
 
 
−  

 (d)

1 0 0 4
0 1 0 3
0 0 1 7
0 0 0 1

− 
 − 

− 
 
 

3.
1
2

1

x
y a
z

   
   = −   
      

4. 1 1λ = − , 2 2λ = , 3 5λ =

530 E. Answers to Exercises

Chapter 4

1. 3 1
2 2

31
2 2

1 0 0
0
0

x

 
 = − 
  

R ,

3 1
2 2

31
2 2

0
0 1 0

0
y

 
 =  
 − 

R ,

3 1
2 2

31
2 2

0
0

0 0 1
z

 −
 =  
  

R

2. ()3 3 2
2 10 50, ,= ± +q

Chapter 5

1. Any scalar multiple of 2,1,0, 4−

2.
()

2t
V
− ⋅= Q S V

4. 63.1 degrees

5. Left: 2 2
2 2,0, ,0− ; Right: 2 2

2 2,0, ,0− − ;

Bottom: 34
5 50, , ,0− ; Top: 34

5 50, , ,0− −

6.

2 0 0

20 0

0 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f nf
f n f n

+ 
 − −
 

+ 
 − − 
 − − − − 
 −  

Chapter 6

2. 5.3271783

3. ()1
1 1 p

n nx x p rx
p+ = + −

6. 0.315,0.946, 0.0788− −

 531

7.
2

2 2 2 2
2

2 2 2

2

2 0

x y z x x y y z z

x y z z

r r rV V V t S V S V V r S t
h h h

r rS S S r S r
h h

    + − + + + −       
 + + + − − = 
 

8. 49 degrees

Chapter 7

1. 3.16 meters

2. 4.35 meters

Chapter 8

1. If neither sphere encloses the other, ()1
1 22r d r r= + + and

()1
1 2 1

r r
d
−= + −Q Q Q Q , where 2 1d = −Q Q .

2. If s h< ,
2 2

2
s hr

h
+= and 0,0,h r= −Q .

If s h≥ , r s= and 0,0,0=Q .

3. eff
5 3 1.443

6
r = ≈

Chapter 9

1. 1.001

2. 0.006

Chapter 10

1. ()
()

1
z z

δε
P P δ

 −  + 

532 E. Answers to Exercises

Chapter 11

1. 0 0′ =P P , 1 2
1 0 13 3′ = +P P P , 2 1

2 1 23 3′ = +P P P , 3 2′ =P P

2.

8 4 2 1
0 4 4 31
0 0 2 38
0 0 0 1

Q

 
 
 =
 
 
 

M and

1 0 0 0
3 2 0 01
3 4 4 08
1 2 4 8

R

 
 
 =
 
 
 

M

3. (a) 0i i iτ γ β= = =

(b) 1 0iγ + =

(c) ()
00 00 00

00 11 00 11 10 00 11 10
1 1

11 01 10 11 10 01 11
1 1 1 1

01 01
1 1

0 2
2 2 6 41

2 0 2 6 4
0 0

i i i

i i i i i i i i
KB

i i i i i i i

i i

α α α
α α α α α α α α
α α α α α α α

α α

+ +

+ + + +

+ +

− − 
 − − + − − − + =
 − − + − + −
 

− 

M ,

 where () () ()1 1 1 1 1j kjk
i i i iα τ γ β   = − + − + −   .

4. 0 0,0′ =P , 1
1 2 ,1′ =P , 3

2 2 ,2′ =P , 5
3 2 ,1′ =P , 4 3,0′ =P

5. () 2 2

rκ t
r c

=
+

, () 2 2

cτ t
r c

=
+

Chapter 12

1. 4 st =

2. 2

1
r A

⋅ = − 
 

Q A
N Q A

Chapter 13

1. () 3 3 1t tx t Ae Bte t= + + +

2. () 3cos4 sin 4x t t t= +

3. 30.2 m

 533

4. 3.93 s

5. 0 ,0, 4
8 x z
g P P h
h

= +v

6. 6.1 st ≈

7. ()[]sin cosK
ga M m θ μ θ

M m
= − +

+

Chapter 14

1. 2 2 24F mω ω r v= +

2. Sμ gω
r

=

3. 5
90,0, h=C

4. ()2 21
1 22I m R R= +

5. Let cylinderm be the mass of the cylinder, and let domem be the mass of one
dome-shaped endcap. The diagonal entries of the inertia tensor  are

()
()
() ()

2 2 2 2 232 1 1 1
11 dome dome dome cylinder cylinder5 4 2 4 12

2 2 2 2 232 1 1 1
22 dome dome dome cylinder cylinder5 4 2 4 12

2 2 2 22 1
33 dome cylinder5 4 .

m b c m hc m h m b m h

m a c m hc m h m a m h

m a b m a b

= + + + + +

= + + + + +

= + + +







 The off-diagonal entries are zero. In terms of the total mass m of the
capsule, the diagonal entries of the inertia tensor  are

()[] []
()[] []
()[] ()[]

2 2 2 2 22 3 32 1 1 1
11 4 3 5 4 2 4 3 4 12

2 2 2 2 22 3 32 1 1 1
22 4 3 5 4 2 4 3 4 12

2 2 2 22 32 1
33 4 3 5 4 3 4 .

c h
c h c h

c h
c h c h

c h
c h c h

m b c hc h m b h

m a c hc h m a h

m a b m a b

+ +

+ +

+ +

= + + + + +

= + + + + +

= + + +







6. 21 1 2
g ga

I mR M m
= =

+ +

534 E. Answers to Exercises

7. 2

sin 5 sin
1 7

g θa g θ
I mR

= =
+

8.
2 S

dz
μ

=

Chapter 15

1. 1.43 m s

2. 0.0357 s

Chapter 16

2. () () () ()[] ()

() () () ()

2 2 2
2

2 2

2

, 2 , , , ,

, , , ,

f x y f x y f x y f x y f x y
x x y y

f x y f x y f x y f x y
x y y

∂ ∂ ∂+ +
∂ ∂ ∂ ∂

∂ ∂ ∂ + +  ∂ ∂ ∂ 

 535

Index

A
acceleration, 409

angular acceleration, 414, 415, 425
centrifugal component, 353
tangential component, 353

acceleration function, 380, 400
alpha test, 8
ambient light, 158–59, 205, 287
amplitude, 432
angular acceleration, 414, 415, 425

of pendulum, 434
angular frequency, 431
angular momentum, 413, 423, 436
angular velocity, 405–7
aspect ratio, 105, 128, 246
asynchronous operation, 1
attenuation constants, 159, 160, 205
auxiliary equation, 382
azimuthal angle, 189, 514, 516

B
backward substitution, 466, 497
barycentric coordinates, 141–43, 154
basis matrix, 319, 356
Beckmann distribution function, 195
Bernstein polynomial, 322, 323
Bézier curve, 322–29

basis matrix, 323
blending functions, 324

control point, 322, 325, 327
de Casteljau algorithm, 327–29, 358
degree elevation, 358
geometry matrix, 323
truncation, 326

bicubic surface, 348, 357
geometrical constraint matrix, 348
normal vector of, 348, 357

bidirectional reflectance distribution
function (BRDF), 187–91, 207

bilinear filtering, 171
billboarding, 254–60, 275

constrained quads, 257–58
polyboard, 258–60
unconstrained quads, 254

binary space partitioning (BSP) tree,
232–34
halfspace, 232
splitting plane, 232

binomial coefficient, 322
binormal vector

of curve, 353
bitangent vector, 181, 183, 206
blending, 9
blending functions, 319
Blinn-Phong shading, 177–78
Böhm subdivision, 345, 359
bounding box

construction, 215–17

536 Index

visibility test, 228–30
bounding cylinder

construction, 220–21
visibility test, 226–28

bounding ellipsoid
construction, 218–20
visibility test, 222–26

bounding sphere
construction, 217–18
of cone, 244
visibility test, 221–22

bounding volume
bounding box, 215–17, 228–30, 240
bounding cylinder, 220–21, 226–28,

242
bounding ellipsoid, 218–20, 222–26,

241
bounding sphere, 217–18, 221–22,

241
construction, 211–21
principal component analysis, 212–

15
visibility determination, 221–30

box
bounding box, 215–17, 228–30
collision with plane, 364–66, 376
effective radius, 228, 364
inertia tensor, 421, 427
ray intersection, 143

B-spline, 334–47
basis matrix, 337
blending functions, 337
globalization, 340–41
knot, 335
knot value, 341
knot vector, 341
nonuniform B-spline, 342–45, 355
nonuniform rational B-spline

(NURBS), 345–47, 356
uniform B-spline, 335–40

buffer swap, 4
bump map, 4, 178–86

calculating tangent vectors, 180–83
construction, 178–79
tangent space, 180

C
camera space, 5, 103, 116
capsule

inertia tensor, 438
Cartesian coordinates, 513–14
Catmull-Rom spline, 329–30

basis matrix, 330
geometry matrix, 330

Cauchy-Schwarz inequality, 18
center of mass, 410–13, 436

of cone, 411
central processing unit (CPU), 1
centrifugal acceleration, 353
centrifugal force, 407–8, 436
characteristic polynomial, 54
clipping

ear clipping, 268
polygon clipping, 252–54
portal clipping, 236–38, 243

cloth simulation, 457–60
coefficient of kinetic friction, 397
coefficient of static friction, 398
cofactor, 47, 51, 52, 63
collision detection

box and plane, 364–66, 376
collision of two spheres, 372–75, 377
general sphere collisions, 366–71
sliding, 371–72, 377
sphere and plane, 362–63, 376

complex number, 56, 81, 383, 499–503
argument of, 501
conjugate of, 500
imaginary part, 499
modulus of, 500
real part, 499

complex plane, 501
cone

center of mass, 411

 537

ray intersection, 155
continuity

geometric, 318
parametric, 318

contravariant vector, 80
control point

Bézier curve, 322, 325, 327
nonuniform B-spline, 342
uniform B-spline, 335, 340

convex hull, 324
Cook-Torrance illumination model,

191–92, 207
Fresnel factor, 192–95, 201, 208
geometrical attenuation factor, 192,

198–200, 203, 208
microfacet distribution function, 192,

195–97, 201, 208
coordinate space

camera space, 5, 103, 116
object space, 5, 141, 180, 207
tangent space, 180, 207
window space, 6
world space, 5

Coriolis force, 408–10, 436
covariance matrix, 212
covariant vector, 80
Cox-de Boor algorithm, 342, 355
Cramer’s rule, 53–54
critical angle, 156
cross product, 19–20, 29

anticommutative property, 25
magnitude of, 22, 29
properties of, 24–25

Crout’s method, 471
cube

principal axes of inertia, 423
cube texture map, 169–71

normalization cube map, 171, 178
cubic spline, 331–34

natural cubic spline, 334
curvature, 350–55, 357
curve

basis matrix, 319
Bézier curve, 322–29
binormal vector, 353
blending functions, 319
B-spline, 334–47
Catmull-Rom spline, 329–30
cubic spline, 331–34
curvature of, 350–55, 357
Frenet frame, 353
geometric continuity, 318
geometry matrix, 319
global control, 331
Hermite curve, 320–21
local control, 331
nonuniform B-spline, 342–45, 355
nonuniform rational B-spline

(NURBS), 345–47, 356
normal vector, 351
osculating circle, 352
osculating plane, 352
parametric continuity, 318
radius of curvature, 352, 357
tangent vector, 350
torsion of, 354–55, 357
uniform B-spline, 335–40

cylinder
bounding cylinder, 220–21, 226–28
effective radius, 226, 227
inertia tensor, 418
ray intersection, 145–46, 368–70,

377
cylindrical coordinates, 514–16

D
de Casteljau algorithm, 327–29, 358
decal application, 249–54, 274
del operator, 149
depth buffer, 4, 248, 284, 308–10
depth interpolation, 109–11
depth test, 9
depth value offset, 245–49, 274
determinant, 47–54, 62, 473

538 Index

and handedness, 70
diagonal dominance, 479
diagonal matrix, 31
diagonalization, 58, 64
differential equation, 381–90, 400, 490–

96, 497
auxiliary equation, 382
Euler’s method, 490–91, 497
homogeneous, 381–85
initial conditions, 388–90
nonhomogeneous, 385–88
particular solution, 385
Runge-Kutta method, 493–95, 498
Taylor series method, 492–93
undetermined coefficients, method

of, 386
diffuse lighting, 161–62, 205
directional light source, 159, 300
discriminant, 132, 133, 144
dome

inertia tensor, 428
Doolittle’s method, 471
dot product, 15, 16, 29

properties of, 17
sign of, 17

driver, 2

E
ear clipping, 268
edge collapse, 261
edge connectivity, 295
effective radius

of box, 228, 241, 364
of cylinder, 226, 227, 242
of ellipsoid, 222, 224, 242

eigensystem, numerical method, 483–89
eigenvalue, 54, 63

of covariance matrix, 213
of inertia tensor, 423

eigenvector, 54, 63
of covariance matrix, 213
of inertia tensor, 423

orthogonal eigenvectors, 57
elementary matrix, 45
elementary row operations, 35, 44, 49
ellipsoid

bounding ellipsoid, 218–20, 222–26
effective radius, 222, 224

emission, 174, 287
emission map, 174
Euclidean distance, 521
Euler formula, 134, 154, 501–3, 507,

526
Euler’s method, 490–91, 497

improved Euler’s method, 494, 497
modified Euler’s method, 494

eye space. See camera space

F
face culling, 7
far plane, 103, 107, 124, 246, 292
field of view, 104–7, 128
filtering

bilinear filtering, 171
trilinear filtering, 173

fluid simulation, 443–57
flux, 187
flux density, 187
focal length, 104, 105, 128, 246
force, 380, 400, 414

centrifugal force, 407–8, 436
Coriolis force, 408–10, 436
restoring force, 430

forward substitution, 466, 496
fragment, 7
fragment operation

alpha test, 8
blending, 9
depth test, 9
pixel ownership test, 8
scissor test, 8
stencil test, 8

fragment shading, 7, 177
Frenet formulas, 354

 539

Frenet frame, 353
Fresnel factor, 192–95, 201, 208
friction, 396–99

kinetic friction, 396, 402
static friction, 396, 402

frustum plane extraction, 119–21
frustum planes, 107–8

G
Gaussian elimination, 467–70
Gauss-Jordan elimination, 42
generalized coordinates, 520–22
geometric continuity, 318
geometrical attenuation factor, 192,

198–200, 203, 208
geometry matrix, 319, 356
glFrontFace() function, 122
glFrustum() function, 107, 113, 116,

248
glOrtho() function, 119
gloss map, 165
glPolygonOffset() function, 285
glScissor() function, 314
glTexParameteri() function, 284
glViewport() function, 283
Gouraud shading, 176–77
gradient, 149, 514, 516, 518
Gram-Schmidt orthogonalization, 28,

30, 182
graphics primitive, 1
graphics processing unit (GPU), 1
gravity, 390, 401, 434

H
halfspace, 232
halfway vector, 163, 192, 195, 197,

203, 206
Hamiltonian quaternions, ring of, 80
handedness, 70
hardware abstraction layer (HAL), 2
helix, 359
Hermite curve, 320–21

basis matrix, 320
blending functions, 321
geometry matrix, 320

Heun’s method, 494
homogeneous clip space, 6, 113, 116,

120, 233
homogeneous coordinates, 6, 75–78, 90
Hooke’s law, 430

I
identity matrix, 32
image buffer, 3
implicit pivoting, 467
improved Euler’s method, 494, 497
index of refraction, 151, 193, 208
inertia tensor, 414–22, 437

moment of inertia, 416
of annular cylinder, 438
of box, 421, 427
of capsule, 438
of cylinder, 418
of dome, 428
of sphere, 416
principal axes of inertia, 422–26
principal moment of inertia, 423
product of inertia, 416
transforming, 426–30

infinite light source. See directional
light source

infinite projection matrix, 117, 129, 292
tweaked, 293

inner product. See dot product
intersection

ray and box, 143
ray and cone, 155
ray and cylinder, 145–46, 368–70,

377
ray and sphere, 144–45, 153
ray and torus, 147–48
ray and triangle, 141–43

inversion transform. See reflection
transform

540 Index

invertible matrix, 40, 50
irradiance, 187

J
Jacobi method, 483, 497

K
kinetic friction, 396, 402
knot, 335
knot value, 341

multiplicity, 343
knot vector, 341
Kockanek-Bartels spline, 358
Kronecker delta, 28, 44, 69, 415, 470,

522

L
Lambertian reflection, 161, 187
law of cosines, 511
law of sines, 509–11
light source, 158–60

ambient light, 158–59
directional light source, 159, 300
point light source, 159–60, 205, 300
spot light source, 160, 205

lighting
diffuse lighting, 161–62, 205
specular lighting, 162–64, 205

line, 93–96, 127
distance between point and line, 93–

94, 127
distance between two lines, 94–96
skew lines, 94

line element, 522
linear physics, 379–99
linear system, 34, 53, 465–82, 496

backward substitution, 466, 497
coefficient matrix, 35
constant vector, 35
error reduction, 477–78
forward substitution, 466, 496
Gaussian elimination, 467–70

homogeneous system, 35
LU decomposition, 470–77
nonhomogeneous system, 35
reduced form, 35
triangular system, 465–67
tridiagonal system, 479–82

linear transformation, 67–68
linearly dependent vectors, 27
linearly independent vectors, 27
lower triangular matrix, 465
LU decomposition, 470–77

M
matrix

addition, 32
characteristic polynomial of, 54
determinant of, 47–54, 62
diagonal matrix, 31
diagonalization of, 58, 64
elementary matrix, 45
identity matrix, 32
inverse of, 40, 42, 51–52, 63
invertible matrix, 40, 50
lower triangular matrix, 465
main diagonal entries, 31
multiplication, 32, 62
orthogonal matrix, 68–70, 89
properties of, 33–34
scalar multiplication, 32
singular matrix, 40, 47
square matrix, 31
symmetric matrix, 56
transpose of, 31
tridiagonal matrix, 479
upper triangular matrix, 65, 465

metric tensor, 520–21
microfacet, 192, 198
microfacet distribution function, 192,

195–97, 201, 208
anisotropic, 197, 203, 208
isotropic, 196, 201, 208

mipmap, 172–73

 541

model-view transformation, 5
modified Euler’s method, 494
modulation, 158
moment of inertia, 416
motion

oscillatory motion, 430–35
pendulum motion, 434–35, 438
projectile motion, 390–94, 401
resisted motion, 394–96, 401
rigid body motion, 410–30
spring motion, 430–34, 437

N
natural cubic spline, 334
near plane, 103, 107, 113, 128, 129,

246, 292
oblique, 123–27, 129

near rectangle, 304
near-clip volume, 305
Newton’s method, 136–39, 153, 154,

201, 403
reciprocal calculation, 139, 153
reciprocal square root calculation,

140, 153
Newton-Raphson iteration. See

Newton’s method
nonuniform B-spline, 342–45, 355

Böhm subdivision, 345, 359
control point, 342
Cox-de Boor algorithm, 342

nonuniform rational B-spline (NURBS),
345–47, 356

normal map. See bump map
normal vector, 161, 175, 205

calculating, 148–49, 153, 175–76
of bicubic surface, 348, 357
of curve, 351
transforming, 79, 92

normalization cube map, 171, 178
normalized device coordinates, 6, 113

O
object space, 5, 141, 180, 207
oblique near plane, 123–27, 129
octree, 230–32, 370
OpenGL library, 1, 103, 113, 159, 246,

248, 291, 308, 314
orthogonal matrix, 68–70, 89
orthographic projection, 117–19
orthographic projection matrix, 119
orthonormal basis, 28, 180
oscillatory motion, 430–35

amplitude, 432
angular frequency, 431
phase, 432

osculating circle, 352
osculating plane, 352

P
parallel axis theorem, 426
parallelogram, area of, 22
parametric continuity, 318
particular solution, 385
Pascal’s triangle, 322
patch, bicubic, 348
pendulum motion, 434–35, 438
per-pixel lighting, 6
perspective projection, 113–17
perspective projection matrix, 116, 128,

246, 291
perspective-correct interpolation, 108–

12, 128
depth interpolation, 109–11
vertex attribute interpolation, 111–

12, 116, 128
per-vertex lighting, 6
phase, 432
Phong shading, 177–78
physics

linear physics, 379–99
rotational physics, 405–35

pivoting, 467, 472
implicit pivoting, 467

542 Index

pixel ownership test, 8
pixel shading. See fragment shading
plane, 97–102, 127

intersection of line and plane, 98–99,
128

intersection of three planes, 99–101
intersection of two planes, 101
transforming, 101–2, 128

point light source, 159–60, 205, 300
polar angle, 189, 516
polarization, 193
polyboard, 258–60
polygon

backfacing polygon, 7
clipping, 252–54
depth value offset, 245–49
portal, 235
triangulation, 267–74

polygon reduction, 260–64
portal, 235
portal clipping, 236–38, 243
portal system, 235–40

reduced view frustum, 238–40
position function, 379, 401
precession, 425
primitive root, 133, 502
principal axes of inertia, 422–26

of cube, 423
principal component analysis, 212–15,

240
covariance matrix, 212
primary principal component, 212

principal moment of inertia, 423
product of inertia, 416
projectile motion, 390–94, 401
projection, 112–21

orthographic projection, 117–19
perspective projection, 113–17

projection matrix
frustum plane extraction, 119–21
infinite projection matrix, 117, 129,

292

orthographic projection matrix, 119
perspective projection matrix, 116,

128, 246, 291
projection plane, 105, 109, 110, 112,

117
projection transformation, 5
projective texture map, 167–69
Pythagorean theorem, 93, 511, 522

Q
quadratic formula, 132, 153
quadtree, 230
quaternion, 80, 91

conjugate of, 81
inverse of, 82
linear interpolation, 86
multiplication, 81
rotation, 82–86, 91
spherical linear interpolation, 86–89,

91

R
radiance, 189
radiometry, 187
radiosity, 187
radius of curvature, 352, 357
rasterization, 7
ray, 93, 140

intersection with box, 143
intersection with cone, 155
intersection with cylinder, 145–46,

368–70, 377
intersection with sphere, 144–45, 153
intersection with torus, 147–48
intersection with triangle, 141–43

ray tracing, 131–52
reflection, 121–22
reflection buffer, 121
reflection transform, 70
reflection vector, 150, 153
refraction vector, 151–52, 154
resisted motion, 394–96, 401

 543

restoring force, 430
RGB color, 157–58
right hand rule, 22
rigid body motion, 410–30

center of mass, 410–13, 436
RK4 method. See Runge-Kutta method
Rolle’s theorem, 524
root finding, 131–40

cubic polynomials, 132–35
quadratic polynomials, 131–32
quartic polynomials, 135–36

rotation transform, 71–75
about arbitrary axis, 74–75, 90
about x-axis, 72, 90
about y-axis, 72, 90
about z-axis, 72, 90

rotational physics, 405–35
Runge-Kutta method, 493–95, 498

S
scalar product. See dot product
scale factor, 522
scaling transform, 70, 89

nonuniform scale, 71
uniform scale, 71

scissor rectangle, 8, 310–14
scissor test, 8
shading, 157, 175

Blinn-Phong shading, 177–78
Gouraud shading, 176–77
Phong shading, 177–78

shadow acne, 284
shadow casting set, 279–81
shadow mapping, 281–85
shadows

shadow mapping, 281–85
stencil shadow algorithm, 286–316

silhouette, 287, 294–99
edge extrusion, 300–303

singular matrix, 40, 47
skew lines, 94
sliding, 371–72, 377

Snell’s law, 151, 193, 194
solid angle, 188
spatial partitioning, 230–34, 366

binary space partitioning (BSP) tree,
232–34

octree, 230–32
specular exponent, 163, 206
specular lighting, 162–64, 205
sphere

bounding sphere, 217–18, 221–22
collision of two spheres, 372–75, 377
collision with plane, 362–63, 376
general sphere collisions, 366–71
inertia tensor, 416
ray intersection, 144–45, 153

spherical coordinates, 516–19
spherical linear interpolation, 86–89, 91
splitting plane, 232
spot light source, 160, 205
spring motion, 430–34, 437
square matrix, 31
static friction, 396, 402
stencil buffer, 4, 286, 308–10
stencil shadow algorithm, 286–316

rendering shadow volumes, 308–10
scissor optimization, 310–14
shadow volume caps, 304–8
shadow volume construction, 300–

303
silhouette determination, 294–99

stencil test, 8, 308–10
steradian, 188
symmetric matrix, 56

T
tangent space, 180, 207

calculating, 180–83
tangent vector, 179, 180, 183, 206

calculating, 180–83
of curve, 350

tangential acceleration, 353
Taylor series, 138, 523–27

544 Index

Taylor series method, 492–93
TCB spline. See Kockanek-Bartels

spline
tearing, 4
tensor

inertia tensor, 414–22, 437
metric tensor, 520–21

terminal velocity, 396, 401
texel, 164
texture coordinates, 6, 165
texture map, 4, 164–73

bump map, 178–86
cube texture map, 169–71
emission map, 174
gloss map, 165
mipmap, 172–73
projective texture map, 167–69
standard texture map, 166

T-junction elimination, 264–67, 268
torque, 413, 426, 434, 437
torsion, 354–55, 357
torus

ray intersection, 147–48
total internal reflection, 152
transform

reflection transform, 70
rotation transform, 71–75
scaling transform, 70, 89
translation, 75

translation, 75
triangle

area of, 22
ray intersection, 141–43

triangle inequality, 14
triangular system, 465–67
triangulation, 267–74
tridiagonal matrix, 479

diagonal dominance, 479
tridiagonal system, 479–82
trigonometric functions, 505–11

exponential identities, 507–8
inverse functions, 508–9

numerical calculation, 463–65
Pythagorean identities, 507
symmetry and phase shifts, 506

trilinear filtering, 173

U
undetermined coefficients, method of,

386
uniform B-spline, 335–40

control point, 335, 340
upper triangular matrix, 65, 465

V
vector

addition and subtraction, 12
bitangent vector, 181, 183, 206
components of, 11
contravariant vector, 80
covariant vector, 80
halfway vector, 163, 192, 195, 197,

203, 206
magnitude of, 13
normal vector, 161, 175, 205
normalization, 13
orthogonal vectors, 16
projection of, 18, 29
reflection vector, 150, 153
refraction vector, 151–52, 154
scalar multiplication, 12
tangent vector, 179, 180, 183, 206
unit length, 13
zero vector, 16

vector product. See cross product
vector space, 26

basis of, 26, 27
orthogonal basis, 27
orthonormal basis, 28

velocity
angular velocity, 405–7
terminal velocity, 396

velocity function, 379

 545

vertex attribute interpolation, 111–12,
116, 128

vertex space. See tangent space
video random access memory (VRAM),

3–4
view frustum, 102–8, 120, 128, 279

frustum planes, 107–8
reduced view frustum, 238–40

viewport, 3
viewport transformation, 6
viscosity, 447, 461
visibility test

bounding box, 228–30
bounding cylinder, 226–28
bounding ellipsoid, 222–26

bounding sphere, 221–22
volume element, 522

W
wave equation, 443–47, 461
w-coordinate, geometrical

interpretation, 78
welding, 266, 268
window space, 6
world space, 5

Z
z-buffer. See depth buffer
zero vector, 16
zone, 235

This page intentionally left blank

Fan us on Facebook or Follow us on Twitter to learn about upcoming books, promotions, contests, events and more!

facebook.com/courseptr twitter.com/courseptr

Let us know on Facebook or Twitter!

Like the Book?

	Cover
	Contents
	Preface
	What’s New in the Third Edition
	Contents Overview
	Website and Code Listings
	Notational Conventions

	Chapter 1 The Rendering Pipeline
	1.1 Graphics Processors
	1.2 Vertex Transformation
	1.3 Rasterization and Fragment Operations

	Chapter 2 Vectors
	2.1 Vector Properties
	2.2 The Dot Product
	2.3 The Cross Product
	2.4 Vector Spaces
	Chapter 2 Summary
	Exercises for Chapter 2

	Chapter 3 Matrices
	3.1 Matrix Properties
	3.2 Linear Systems
	3.3 Matrix Inverses
	3.4 Determinants
	3.5 Eigenvalues and Eigenvectors
	3.6 Diagonalization
	Chapter 3 Summary
	Exercises for Chapter 3

	Chapter 4 Transforms
	4.1 Linear Transformations
	4.1.1 Orthogonal Matrices
	4.1.2 Handedness

	4.2 Scaling Transforms
	4.3 Rotation Transforms
	4.3.1 Rotation About an Arbitrary Axis

	4.4 Homogeneous Coordinates
	4.4.1 Four-Dimensional Transforms
	4.4.2 Points and Directions
	4.4.3 Geometrical Interpretation of the w Coordinate

	4.5 Transforming Normal Vectors
	4.6 Quaternions
	4.6.1 Quaternion Mathematics
	4.6.2 Rotations with Quaternions
	4.6.3 Spherical Linear Interpolation

	Chapter 4 Summary
	Exercises for Chapter 4

	Chapter 5 Geometry for 3D Engines
	5.1 Lines in 3D Space
	5.1.1 Distance Between a Point and a Line
	5.1.2 Distance Between Two Lines

	5.2 Planes in 3D Space
	5.2.1 Intersection of a Line and a Plane
	5.2.2 Intersection of Three Planes
	5.2.3 Transforming Planes

	5.3 The View Frustum
	5.3.1 Field of View
	5.3.2 Frustum Planes

	5.4 Perspective-Correct Interpolation
	5.4.1 Depth Interpolation
	5.4.2 Vertex Attribute Interpolation

	5.5 Projections
	5.5.1 Perspective Projections
	5.5.2 Orthographic Projections
	5.5.3 Extracting Frustum Planes

	5.6 Reflections and Oblique Clipping
	Chapter 5 Summary
	Exercises for Chapter 5

	Chapter 6 Ray Tracing
	6.1 Root Finding
	6.1.1 Quadratic Polynomials
	6.1.2 Cubic Polynomials
	6.1.3 Quartic Polynomials
	6.1.4 Newton’s Method
	6.1.5 Refinement of Reciprocals and Square Roots

	6.2 Surface Intersections
	6.2.1 Intersection of a Ray and a Triangle
	6.2.2 Intersection of a Ray and a Box
	6.2.3 Intersection of a Ray and a Sphere
	6.2.4 Intersection of a Ray and a Cylinder
	6.2.5 Intersection of a Ray and a Torus

	6.3 Normal Vector Calculation
	6.4 Reflection and Refraction Vectors
	6.4.1 Reflection Vector Calculation
	6.4.2 Refraction Vector Calculation

	Chapter 6 Summary
	Exercises for Chapter 6

	Chapter 7 Lighting and Shading
	7.1 RGB Color
	7.2 Light Sources
	7.2.1 Ambient Light
	7.2.2 Directional Light Sources
	7.2.3 Point Light Sources
	7.2.4 Spot Light Sources

	7.3 Diffuse Reflection
	7.4 Specular Reflection
	7.5 Texture Mapping
	7.5.1 Standard Texture Maps
	7.5.2 Projective Texture Maps
	7.5.3 Cube Texture Maps
	7.5.4 Filtering and Mipmaps

	7.6 Emission
	7.7 Shading Models
	7.7.1 Calculating Normal Vectors
	7.7.2 Gouraud Shading
	7.7.3 Blinn-Phong Shading

	7.8 Bump Mapping
	7.8.1 Bump Map Construction
	7.8.2 Tangent Space
	7.8.3 Calculating Tangent Vectors
	7.8.4 Implementation

	7.9 A Physical Reflection Model
	7.9.1 Bidirectional Reflectance Distribution Functions
	7.9.2 Cook-Torrance Illumination
	7.9.3 The Fresnel Factor
	7.9.4 The Microfacet Distribution Function
	7.9.5 The Geometrical Attenuation Factor
	7.9.6 Implementation

	Chapter 7 Summary
	Exercises for Chapter 7

	Chapter 8 Visibility Determination
	8.1 Bounding Volume Construction
	8.1.1 Principal Component Analysis
	8.1.2 Bounding Box Construction
	8.1.3 Bounding Sphere Construction
	8.1.4 Bounding Ellipsoid Construction
	8.1.5 Bounding Cylinder Construction

	8.2 Bounding Volume Tests
	8.2.1 Bounding Sphere Test
	8.2.2 Bounding Ellipsoid Test
	8.2.3 Bounding Cylinder Test
	8.2.4 Bounding Box Test

	8.3 Spatial Partitioning
	8.3.1 Octrees
	8.3.2 Binary Space Partitioning Trees

	8.4 Portal Systems
	8.4.1 Portal Clipping
	8.4.2 Reduced View Frustums

	Chapter 8 Summary
	Exercises for Chapter 8

	Chapter 9 Polygonal Techniques
	9.1 Depth Value Offset
	9.1.1 Projection Matrix Modification
	9.1.2 Offset Value Selection
	9.1.3 Implementation

	9.2 Decal Application
	9.2.1 Decal Mesh Construction
	9.2.2 Polygon Clipping

	9.3 Billboarding
	9.3.1 Unconstrained Quads
	9.3.2 Constrained Quads
	9.3.3 Polyboards

	9.4 Polygon Reduction
	9.5 T-Junction Elimination
	9.6 Triangulation
	Chapter 9 Summary
	Exercises for Chapter 9

	Chapter 10 Shadows
	10.1 Shadow Casting Set
	10.2 Shadow Mapping
	10.2.1 Rendering the Shadow Map
	10.2.2 Rendering the Main Scene
	10.2.3 Self-Shadowing

	10.3 Stencil Shadows
	10.3.1 Algorithm Overview
	10.3.2 Infinite View Frustums
	10.3.3 Silhouette Determination
	10.3.4 Shadow Volume Construction
	10.3.5 Determining Cap Necessity
	10.3.6 Rendering Shadow Volumes
	10.3.7 Scissor Optimization

	Chapter 10 Summary
	Exercises for Chapter 10

	Chapter 11 Curves and Surfaces
	11.1 Cubic Curves
	11.2 Hermite Curves
	11.3 Bézier Curves
	11.3.1 Cubic Bézier Curves
	11.3.2 Bézier Curve Truncation
	11.3.3 The de Casteljau Algorithm

	11.4 Catmull-Rom Splines
	11.5 Cubic Splines
	11.6 B-Splines
	11.6.1 Uniform B-Splines
	11.6.2 B-Spline Globalization
	11.6.3 Nonuniform B-Splines
	11.6.4 NURBS

	11.7 Bicubic Surfaces
	11.8 Curvature and Torsion
	Chapter 11 Summary
	Exercises for Chapter 11

	Chapter 12 Collision Detection
	12.1 Plane Collisions
	12.1.1 Collision of a Sphere and a Plane
	12.1.2 Collision of a Box and a Plane
	12.1.3 Spatial Partitioning

	12.2 General Sphere Collisions
	12.3 Sliding
	12.4 Collision of Two Spheres
	Chapter 12 Summary
	Exercises for Chapter 12

	Chapter 13 Linear Physics
	13.1 Position Functions
	13.2 Second-Order Differential Equations
	13.2.1 Homogeneous Equations
	13.2.2 Nonhomogeneous Equations
	13.2.3 Initial Conditions

	13.3 Projectile Motion
	13.4 Resisted Motion
	13.5 Friction
	Chapter 13 Summary
	Exercises for Chapter 13

	Chapter 14 Rotational Physics
	14.1 Rotating Environments
	14.1.1 Angular Velocity
	14.1.2 The Centrifugal Force
	14.1.3 The Coriolis Force

	14.2 Rigid Body Motion
	14.2.1 Center of Mass
	14.2.2 Angular Momentum and Torque
	14.2.3 The Inertia Tensor
	14.2.4 Principal Axes of Inertia
	14.2.5 Transforming the Inertia Tensor

	14.3 Oscillatory Motion
	14.3.1 Spring Motion
	14.3.2 Pendulum Motion

	Chapter 14 Summary
	Exercises for Chapter 14

	Chapter 15 Fluid and Cloth Simulation
	15.1 Fluid Simulation
	15.1.1 The Wave Equation
	15.1.2 Approximating Derivatives
	15.1.3 Evaluating Surface Displacement
	15.1.4 Implementation

	15.2 Cloth Simulation
	15.2.1 The Spring System
	15.2.2 External Forces
	15.2.3 Implementation

	Chapter 15 Summary
	Exercises for Chapter 15

	Chapter 16 Numerical Methods
	16.1 Trigonometric Functions
	16.2 Linear Systems
	16.2.1 Triangular Systems
	16.2.2 Gaussian Elimination
	16.2.3 LU Decomposition
	16.2.4 Error Reduction
	16.2.5 Tridiagonal Systems

	16.3 Eigenvalues and Eigenvectors
	16.4 Ordinary Differential Equations
	16.4.1 Euler’s Method
	16.4.2 Taylor Series Method
	16.4.3 Runge-Kutta Method
	16.4.4 Higher-Order Differential Equations

	Chapter 16 Summary
	Exercises for Chapter 16

	Appendix A: Complex Numbers
	A.1 Definition
	A.2 Addition and Multiplication
	A.3 Conjugates and Inverses
	A.4 The Euler Formula

	Appendix B: Trigonometry Reference
	B.1 Function Definitions
	B.2 Symmetry and Phase Shifts
	B.3 Pythagorean Identities
	B.4 Exponential Identities
	B.5 Inverse Functions
	B.6 Laws of Sines and Cosines

	Appendix C: Coordinate Systems
	C.1 Cartesian Coordinates
	C.2 Cylindrical Coordinates
	C.3 Spherical Coordinates
	C.4 Generalized Coordinates

	Appendix D: Taylor Series
	D.1 Derivation
	D.2 Power Series
	D.3 The Euler Formula

	Appendix E: Answers to Exercises
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

